Для каких значений переменных верны равенства выражающие свойства сложения

Для каких значений переменных верны равенства выражающие свойства сложения thumbnail
  • Переместительное свойство умножения
  • Сочетательное свойство умножения
  • Распределительное свойство умножения

Переместительное свойство умножения

От перестановки сомножителей местами произведение не меняется.

Следовательно, для любых чисел  a  и  b  верно равенство:

a · b = b · a,

выражающее переместительное свойство умножения.

Примеры:

6 · 7 = 7 · 6 = 42;

4 · 2 · 3 = 3 · 2 · 4 = 24.

Обратите внимание, что данное свойство можно применять и к произведениям, в которых более двух множителей.

Сочетательное свойство умножения

Результат умножения трёх и более множителей не изменится, если какую-либо группу множителей заменить их произведением.

Следовательно, для любых чисел  ab  и  c  верно равенство:

a · b · c = (a · b) · c = a · (b · c),

выражающее сочетательное свойство умножения.

Пример:

3 · 2 · 5 = 3 · (2 · 5) = 3 · 10 = 30

или

3 · 2 · 5 = (3 · 2) · 5 = 6 · 5 = 30.

Сочетательное свойство используется для удобства и упрощения вычислений при умножении. Например:

25 · 15 · 4 = (25 · 4) · 15 = 100 · 15 = 1500.

В данном случае можно было вычислить всё последовательно:

25 · 15 · 4 = (25 · 15) · 4 = 375 · 4 = 1500,

но проще и легче сначала умножить  25  на  4  и получить  100,  а уже потом умножить  100  на  15.

Распределительное свойство умножения

Сначала рассмотрим распределительное свойство умножения относительно сложения:

Чтобы число умножить на сумму чисел, можно это число умножить отдельно на каждое слагаемое и полученные произведения сложить.

Следовательно, для любых чисел  ab  и  m  верно равенство:

m · (a + b) = m · a + m · b,

выражающее распределительное свойство умножения.

Так как в данном случае число и сумма являются множителями, то, поменяв их местами, используя переместительное свойство, можно сформулировать распределительное свойство так:

Чтобы сумму чисел умножить на число, можно каждое слагаемое отдельно умножить на это число и полученные произведения сложить.

Следовательно, для любых чисел  ab  и  m  верно равенство:

(a + b) · m = a · m + b · m.

Теперь рассмотрим распределительное свойство умножения относительно вычитания:

Чтобы число умножить на разность чисел, можно это число умножить отдельно на уменьшаемое и вычитаемое и из первого полученного произведения вычесть второе.

Следовательно, для любых чисел  ab  и  m  верно равенство:

m · (ab) = m · am · b.

Так как в данном случае число и разность являются множителями, то поменяв их местами, используя переместительное свойство, можно сформулировать распределительное свойство так:

Чтобы разность чисел умножить на число, можно уменьшаемое и вычитаемое отдельно умножить на это число и из первого полученного произведения вычесть второе.

Следовательно, для любых чисел  ab  и  m  верно равенство:

(ab) · m = a · mb · m.

Переход от умножения:

m · (a + b)    и    m · (ab)

соответственно к сложению и вычитанию:

m · a + m · b    и    m · am · b

называется раскрытием скобок.

Переход от сложения и вычитания:

m · a + m · b    и    m · am · b

к умножению:

m · (a + b)    и    m · (ab)

называется вынесением общего множителя за скобки.

Источник

Тема: Свойства сложения.

Цель: познакомить со свойством сложения, основанным на группировке слагаемых.

 – стремятся развивать внимание, память, логическое мышление, навыки сотрудничества со сверстниками и со взрослыми;

– проявляют самостоятельность.

– иметь представление о понятиях “переместительное свойство”, “сочетательное свойство”;

– уметь решать задачи изученных видов.

– прогнозируют результат деятельности, контролируют и оценивают, собственную деятельность и деятельность партнеров образовательному процессу, при необходимости вносят корректировки.

– аргументируют свою точку зрения, при возникновении спорных ситуаций не создают конфликтов.

Методы и формы обучения : частично- поисковый; индивидуальная, фронтальная, групповая.

Образовательные ресурсы: Книгопечатная продукция : М.И. Моро  Математика. 2 класс. Часть 1.

Технические средства обучения:   Компьютер.  Медиапроектор.

Этапы урока

Деятельность учителя

Деятельность учащихся

Формирование УУД

1. Мотивация  к учебной деятельности.

Цель:  создание условий для возникновения у учеников внутренней потребности включения в учебную деятельность

Эмоциональный настрой на урок.

Дети, вам повезло? (Да!)

В классе светло? (Да!)

Прозвенел уже звонок? (Да!)

Уже закончился урок? (Нет!)

Только начался урок? (Да!)

Хотите учиться? (Да!)

Значит можно всем садиться!

Настраиваемся на урок.

– Будем учиться оценивать свою деятельность. Прочитайте.

– внимательно;

– правильно;

– дружно;

– быстро.

Правильно формулировать собственное мнение.

 (Р/УУД).

2. Актуализация знаний.

Цель:  обеспечение готовности учащихся к включению в продуктивную обучающую деятельность, повторение изученного материала, необходимого для «открытия нового знания».

На карточках задание.

–  Посмотрите.

– Будете работать в парах.

– 1 вариант решает первое выражение,

– 2 вариант – второе выражение, и т.д.

Задание: Решите  числовые выражения,  впишите буквы и расшифруйте слово:

6 + 9 =  15        в

11 – 3 = 8         й

8 + 4 = 12         с

16 – 6 = 10       о

9 + 2 = 11         т

13 – 8 = 5         с

4 + 8 = 12         о

14 – 7 = 7         в

На экране:

– Поднимите руки, кто закончил.

– Прочитайте слово, которое получилось.

– Как вы понимаете  слово «свойство»?

– Найдите два похожих выражения.

– Чем они похожи?

– Чем отличаются?

– Какое свойство  вспомнили?

– Это свойство поможет нам решать более сложные числовые выражения.

– А сейчас, те дети, у которых получилось слово «свойство» поставьте себе 4 балла (по количеству правильно решённых выражений).

Если вы допустили 1-2 ошибки – 2 балла.

– Оценим работу. Мы работали:  

– Дети решают числовые выражения, расшифровывают слово.

– Поясняют.

– от перестановки слагаемых сумма не изменится

– Внимательно, дружно, быстро, правильно.

Выделение и осознание того, что уже пройдено (Р/УУД).

Смыслообразование (Л/УУД).

Слушать и понимать речь других (К /УУД)

3. Самоопределение к деятельности.

Цель: обсуждение цели урока.

Практическая работа.

– Возьмите конверты.

– Выложите 4 круга, затем 3 треугольника и 7 квадратов.

– Сколько всего фигур выложили?

– Как их удобнее сосчитать?

4 + 3 + 7     записываю на доске

Вывод:  оказывается, эту сумму можно посчитать разными способами.

– Чему мы будем учиться?

– Складывать числа в любом порядке.

4. Постановка целей.

Цель:  проговаривание детьми цели и темы урока.

Стр. 44.

– Прочитайте цель урока.

Читайте также:  Укроп лечебные свойства и при каких заболеваниях

– Формулируют цель урока.

Определять и формулировать цель деятельности на уроке (Р/УУД).

5.  Работа по теме урока.

Цель:  обеспечение восприятия, осмысления и первичного запоминания детьми изученной темы.

№ 1. Коллективное выполнение с комментированием.

– Прочитайте задание.

– Сформулируйте задание.

– Чем похожи все числовые выражения?

– Чем отличаются?

– Какое свойство применили?

Вывод: результат сложения не изменится, если поменять слагаемые местами.

– Это свойство называют переместительным.   (поменяли местами).    Экран

– Обратимся к геометрическим фигурам.

– Как удобно сосчитать их?

– Как показать, что это действие выполним первым?

– Что скажете о результатах сложения?

– Как складывали?

– Оказывается, это тоже свойство. В математике – это свойство называют сочетательным. Экран

– Прочитайте вывод: результат сложения не изменится, если соседние слагаемые заменить их суммой.

– Выполняют задание, проговаривая свойства сложения.

– Заключим в скобки.

– Одинаковые.

– Соседние слагаемые заменили их суммой.

Проводить анализ учебного материала (П /УУД)

Ориентироваться в учебнике (П /УУД)

Слушать и понимать речь других (К /УУД)

6. Первичное закрепление.

Цель: обеспечение усвоения новых знаний и способов действий на уровне применения в измененной ситуации.

На экране – числовое выражение:

6 + 7 + 8 + 9 + 3 + 4 + 1 + 2 =

– Объясните как вы будете вычислять,  используя оба свойства сложения. ( в любом порядке, как удобнее).

Итог на экране:

(6+4) +(7+3) + (8+2) + (9+1) =

– Почему так объединяли?

– На листочках записано выражение: 14 + 15+ 6 +5 вычислите, используя оба свойства.

– Вычислите, работая в парах.

– Начнут решение 1 вариант.

– Проверим.   Экран.

– Что помогло быстро найти значение выражения?

– Оцените свою работу, поставьте 1 балл, если всё правильно.

– Как работали?

-Устно комментируют.

– Чтобы получить круглое число.

Работают в парах.

(14+6) + (15+5)=40

– Перестановка слагаемых и замена слагаемых суммой.

– Быстро, дружно, правильно, внимательно

Слушать и понимать речь других (К /УУД)

Определять правила работы в паре (Л /УУД)

7. Решение задач.

Цель: совершенствовать умение решать задачи.

– А сейчас  будете  работать над задачей на стр.47 № 6.

– Прочитайте задачу.

– Прочитайте условие. Вопрос.

– О чём задача?

– Кто участвовал в турнире?

– Что известно?

– Что нужно узнать?

– Какая это задача?

– Попробуйте сами записать решение и ответ.

– Проверим. Поставь 2 балла, если решил сам и правильно.

– Как мы работали?

9. Рефлексия.

Цель:  выявление качества и уровня овладения знаниями.

– Ребята, какова тема урока?

– Какую цель вы поставили вначале урока?

– Как вы считаете, достигли ли цели?

 – Почему?

– Где нам это пригодится?

Осознание результатов своей учебной деятельности.

Самооценка  результатов своей работы и работы всего класса.

– Познакомились со свойствами, научились их применять.

– При работе с большими числами.

Устанавливать связь между целью деятельности и ее результатом (Л /УУД)

Совместно с учителем и одноклассниками давать оценку деятельности  на уроке (Р/УУД).

9. Подведение итогов.

Цель:  анализ и оценка успешности достижения цели;

Спасибо за сотрудничество! Урок окончен.

Источник

Свойства действий над числами

Основные свойства сложения и умножения чисел.

Переместительное свойство сложения: от перестановки слагаемых значение суммы не меняется. Для любых чисел a и b верно равенство

a+b=b+a

Сочетательное свойство сложения: чтобы к сумме двух чисел прибавить третье число, можно к первому числу прибавить сумму второго и третьего. Для любых чисел a, b и c верно равенство

(a+b)+c=a+(b+c)

Переместительное свойство умножения: от перестановки множителей значение произведения не изменяется. Для любых чисел а, b и c верно равенство

ab=ba

Сочетательное свойство умножения: чтобы произведение двух чисел умножить на третье число, можно первое число умножить на произведение второго и третьего.

Для любых чисел а, b и c верно равенство

(ab)c=a(bc)

Распределительное свойство: чтобы умножить число на сумму, можно умножить это число на каждое слагаемое и сложить полученные результаты. Для любых чисел a, b и c верно равенство

a(b+c)=ab+ac.

Из переместительного и сочетательного свойств сложения следует: в любой сумме можно как угодно переставлять слагаемые и произвольным образом объединять их в группы.

Пример 1 Вычислим сумму 1,23+13,5+4,27.

Для этого удобно объединить первое слагаемое с третьим. Получим:

1,23+13,5+4,27=(1,23+4,27)+13,5=5,5+13,5=19.

Из переместительного и сочетательного свойств умножения следует: в любом произведении можно как угодно переставлять множители и произвольным образом объединять их в группы.

Пример 2 Найдём значение произведения 1,8·0,25·64·0,5.

Объединив первый множитель с четвёртым, а второй с третьим, будем иметь:

1,8·0,25·64·0,5=(1,8·0,5)·(0,25·64)=0,9·16=14,4.

Распределительное свойство справедливо и в том случае, когда число умножается на сумму трёх и более слагаемых.

Например, для любых чисел a, b, c и d верно равенство

a(b+c+d)=ab+ac+ad.

Мы знаем, что вычитание можно заменить сложением, прибавив к уменьшаемому число, противоположное вычитаемому:

a-b=a+(-b).

Это позволяет числовое выражение вида a-b считать суммой чисел a и -b, числовое выражение вида a+b-c-d считать суммой чисел a, b, -c, -d и т. п. Рассмотренные свойства действий справедливы и для таких сумм.

Пример 3 Найдём значение выражения 3,27-6,5-2,5+1,73.

Это выражение является суммой чисел 3,27, -6,5, -2,5 и 1,73. Применив свойства сложения, получим: 3,27-6,5-2,5+1,73=(3,27+1,73)+(-6,5-2,5)=5+(-9) =-4.

Пример 4 Вычислим произведение 36·().

Для каких значений переменных верны равенства выражающие свойства сложения

Множитель можно рассматривать как сумму чисел и -. Используя распределительное свойство умножения, получим:

36()=36·-36·=9-10=-1.

Тождества

Определение. Два выражения, соответственные значения которых равны при любых значениях переменных, называются тождественно равными.

Определение. Равенство, верное при любых значениях переменных, называется тождеством.

Найдём значения выражений 3(x+y) и 3x+3y при x=5, y=4:

3(x+y)=3(5+4)=3·9=27,

3x+3y=3·5+3·4=15+12=27.

Мы получили один и тот же результат. Из распределительного свойства следует, что вообще при любых значениях переменных соответственные значения выражений 3(x+y) и 3x+3y равны.

Рассмотрим теперь выражения 2x+y и 2xy. При x=1, y=2 они принимают равные значения:

2x+y=2·1+2=4;

2xy=2·1·2=4.

Однако можно указать такие значения x и y, при которых значения этих выражений не равны. Например, если x=3, y=4, то

2x+y=2·3+4=10,

2xy=2·3·4=24.

Выражения 3(x+y) и 3x+3y являются тождественно равными, а выражения 2x+y и 2xy не являются тождественно равными.

Равенство 3(x+y)=x+3y, верное при любых значениях x и y, является тождеством.

Читайте также:  Какими оптическими свойствами должны обладать краски

Тождествами считают и верные числовые равенства.

Так, тождествами являются равенства, выражающие основные свойства действий над числами:

a+b=b+a, (a+b)+c=a+(b+c),

ab=ba, (ab)c=a(bc), a(b+c)=ab+ac.

Можно привести и другие примеры тождеств:

a+0=a, a+(-a)=0, a-b=a+(-b),

a·1=a, a·(-b)=-ab, (-a)(-b)=ab.

Тождественные преобразования выражений

Замену одного выражения другим, тождественно равным ему выражением называют тождественным преобразованием или просто преобразованием выражения.

Тождественные преобразования выражений с переменными выполняются на основе свойств действий над числами.

Чтобы найти значение выражения xy-xz при заданных значениях x, y, z, надо выполнить три действия. Например, при x=2,3, y=0,8, z=0,2 получаем:

xy-xz=2,3·0,8-2,3·0,2=1,84-0,46=1,38.

Этот результат можно получить, выполнив лишь два действия, если воспользоваться выражением x(y-z), тождественно равным выражению xy-xz:

xy-xz=2,3(0,8-0,2)=2,3·0,6=1,38.

Мы упростили вычисления, заменив выражение xy-xz тождественно равным выражением x(y-z).

Тождественные преобразования выражений широко применяются при вычислении значений выражений и решении других задач. Некоторые тождественные преобразования уже приходилось выполнять, например, приведение подобных слагаемых, раскрытие скобок. Напомним правила выполнения этих преобразований:

чтобы привести подобные слагаемые, надо сложить их коэффициенты и результат умножить на общую буквенную часть;

если перед скобками стоит знак “плюс”, то скобки можно опустить, сохранив знак каждого слагаемого, заключённого в скобки;

если перед скобками стоит знак “минус”, то скобки можно опустить, изменив знак каждого слагаемого, заключённого в скобки.

Пример 1 Приведём подобные слагаемые в сумме 5x+2x-3x.

Воспользуемся правилом приведения подобных слагаемых:

5x+2x-3x=(5+2-3)x=4x.

Это преобразование основано на распределительном свойстве умножения.

Пример 2 Раскроем скобки в выражении 2a+(b-3c).

Применив правило раскрытия скобок, перед которыми стоит знак “плюс”:

2a+(b-3c)=2a+b-3c.

Проведённое преобразование основано на сочетательном свойстве сложения.

Пример 3 Раскроем скобки в выражении a-(4b-c).

Воспользуемся правилом раскрытия скобок, перед которыми стоит знак “минус”:

a-(4b-c)=a-4b+c.

Выполненное преобразование основано на распределительном свойстве умножения и сочетательном свойстве сложения. Покажем это. Представим в данном выражении второе слагаемое -(4b-c) в виде произведения (-1)(4b-c):

a-(4b-c)=a+(-1)(4b-c).

Применив указанные свойства действий, получим:

a-(4b-c)=a+(-1)(4b-c)=a+(-4b+c)=a-4b+c.

Источник

Числовые равенства и неравенства. Методика изучения числовых равенств и неравенств.

Возьмём два числовых выражения 32-20 и 144 : 12.

Соединим их знаком равенства. 32 -20 = 144 : 12 (и), т. к. 12=12

Получим высказывание, которое называется числовым равенством.

Это высказывание истинно.

14 + 4 • 8 = 4 • 9 (л), т. к. 46≠ 36

Определение 1. Два числа или два числовых выражения, соединённые знаком равенства, называются числовым равенством.

Определение 2. Высказывание вида a = b , где а и в числовые выражения, называется числовым равенством.

Символически числовое равенство записывается так: a = b.

Если знаком равенства соединены 2 числовых выражения, значения которых равны, то получится истинное числовое равенство, если не равны, то ложное.

Таким образом, с логической точки зрения числовое равенство – это высказывание, истинное или ложное.

Числовое равенство истинно, если значения числовых выражений, стоящих в левой и правой частях равенства, совпадают.

Свойства истинных числовых равенств

1) Если к обеим частям истинного числового равенства прибавить одно и то же число с, или числовое выражение, имеющее смысл, то получится истинное числовое равенство.

Если a = b (и), то a +c = b + c тоже истинно.

Дано: a = b истинное числовое равенство, c – число или числовое выражение, имеющее смысл

Доказать: a +c = b + c (и).

Доказательство:

По свойству рефлексивности отношения «равно» можно записать a +c = a + c .

По условию a = b , в правой части равенства заменим а на в, получим, а + с = в + с ч.т.д.

Следствие: Любой член истинного числового равенства можно переносить из одной части в другую, поменяв знак на противоположный.

a + m = b + m + n

a = – m + b + m + n

a = b + n

2) Если обе части истинного числового равенства умножить на одно и то же число с, или числовое выражение, имеющее смысл, то получится истинное числовое равенство.

Если a = b (и), то ac = bc тоже истинно.

Дано: a = b истинное числовое равенство, c – число или числовое выражение, имеющее смысл

Доказать: ac = bc (и).

Доказательство:

По свойству рефлексивности отношения «равно» можно записать ac = ac .

По условию a = b , в правой части равенства заменим а на в, получим, а с = в с ч.т.д.

Следствие: Обе части истинного числового равенства можно разделить на одно и то же число, не равное нулю.

В начальной школе истинные числовые равенства называют верными, ложные– неверными.

II. Повторение.

-Какие выражения называются числовыми выражениями? (Они образуются из чисел, знаков действий и скобок).

-Что такое значение числового выражения? (Если выполнить все действия, указанные в выражении, получим число, которое называется значением числового выражения).

-Существуют ли числовые выражения, значения которых нельзя найти?

Какие действия выполняются раньше 1 или 2 ступени? (действия второй ступени (умножение и деление), а затем действия первой ступени (сложение и вычитание)).

-Что называетсявыражением с переменной (Запись, состоящая из чисел, знаков действий, скобок и букв)

-Областью определения выражения с переменной? (множество тех значений переменной, при которых выражение имеет смысл).

-Какие преобразования относятся к тождественным?

-приведение подобных;

-раскрытие скобок;

-приведение дробей к общему знаменателю;

-группировка или заключение в скобки)

-Что такое тождественное преобразование? (Замена выражения с переменной другим выражением тождественно равным ему называется тождественным преобразованием).

-Как называются такие записи: (3 + 2)) – 12 или 3х-у:+)8, (их нельзя назвать ни числовым выражением, ни выражением с переменной).

Задача 1. Найти значение выражения Зх(х-2) + 4(х-2) при х = 6.

Решение.

1 способ. Подставим число 6 вместо переменной в данное выражение: 3-6(6-2) + 4(6-2). Чтобы найти значение полученного числового выражения, выполним все указанные действия:

3-6-(6-2) + 4-(6-2) = 18-4 + 4-4 = 72+ 16 = 88. Следовательно, при х = 6 значение выражения

Зх(х-2)+4(х-2) равно 88.

2 способ. Прежде чем подставлять число 6 в данное выражение, упростим его:

Зх(х-2) + 4(х-2) = (х-2)(Зх+4). И затем, подставив в полученное выражение вместо Х число 6, выполним действия: (6-2)-(3-6 + 4)= 4-(18+4) = 4-22 = 88.

Обратим внимание на следующее: и при первом способе решения задачи, и при втором мы одно выражение заменяли другим. Например, выражение 18-4+4-4 заменяли выражением 72+16, а выражение Зх (х-2) + 4(х-2)-выражением (х – 2)(3х + 4), причем эти замены привели к одному и тому же результату. В математике, описывая решение данной задачи, говорят, что мы выполняли тождественные преобразования выражений.

Читайте также:  Какие свойства относятся к технологическим свойствам металлов

-Какие два выражения называются тождественно равными? (если при любых значениях переменных из области определения выражений их соответственные значения равны).

– Как получить тождество? (Если два тождественно равных на некотором множестве выражения соединить знаком равенства, то получим предложение, которое называют тождествомна этом множестве).

Например, 5(х + 2) = 5х + 10 – тождество на множестве действительных чисел, потому что для всех действительных чисел значения выражения 5(х + 2) и 5х + 10 совпадают. Используя обозначение квантора общности, это тождество можно записать так: ( х  R)5(х + 2) = 5х + 10. Тождествами считают и верные числовые равенства.

Замена выражения другим, тождественно равным ему на некотором множестве, называется тождественным преобразованием данного выражения на этом множестве.

Задача 2. Разложить на множители выражение axbx+abb2.

Решение. Сгруппируем члены данного выражения по два (первый со вторым, третий с четвертым): axbx+abb2 = = (axbx) + (abb2). Это преобразование возможно на основании свойства ассоциативности сложения действительных чисел.

Вынесем в полученном выражении из каждой скобки общий множитель: (axbx)+(abb2) = x(ab)+b(ab) – это преобразование возможно на основании свойства дистрибутивности умножения относительно вычитания действительных чисел.

В полученном выражении слагаемые имеют общий множитель, вынесем его за скобки: x(ab)+b(ab) = (ab)(xb). Основой выполненного преобразования является свойство дистрибутивности умножения относительно сложения.

Итак, axbx+abb2 – (ab)(xb).

Числовые неравенства.

I. Повторение изученного:

– Какое предложение называют числовым равенством?

– Приведите примеры числовых равенств.

Возьмем, например, числовые выражения 3 + 2 и 6 – 1 и соединим их знаком равенства 3 + 2 = 6-1. Оно истинное. Если же соединить знаком равенства 3 + 2 и 7 – 3, то получим ложное числовое равенство 3 + 2 = 7-3.

– Можно ли числовое равенство считать высказыванием? (Да)

– Какое числовое равенство истинно? (Если значения числовых выражений, стоящих в левой и правой частях равенства, совпадают).

– Назовите свойства истинных числовых равенств.

Если к обеим частям истинного числового равенства прибавить одно и то же числовое выражение, имеющее смысл, то получим также истинное числовое равенство.

Если обе части истинного числового равенства умножить на одно и то же числовое выражение, имеющее смысл, то получим также истинное числовое равенство.

Если два числовых выражения соединить знаком «>» или «<», то получим числовое неравенство.

Определение. Два числовых выражения, соединённые знаком «>» или «<», образуют числовое неравенство.

Например, если соединить выражение 6 + 2 и 13-7 знаком «>», то получим истинное числовое неравенство 6 + 2 > 13-7 (И). Если соединить те же выражения знаком «<», получим ложное числовое неравенство 6 +2 < 13-7(Л).

Таким образом, с логической точки зрения числовое неравенство – это высказывание, истинное или ложное. А, следовательно, к числовым неравенствам можно применить логические операции.

Конъюнкцию двух числовых неравенств принято записывать в виде двойного неравенства.

(5 > 4 / 5 < 6) <=> (4 < 5 < 6)

Дизъюнкцию числового равенства и неравенства записывают в виде нестрогого неравенства

(5 > 4 V 5 = 4) <=> (5≥ 4 )

Определение. Если два числовых неравенства имеют одинаковые знаки, то их называют неравенствами одинакового смысла, если у неравенств разные знаки, то неравенствами противоположного смысла.

a >b и c > d – одинакового смысла;

a >b и c < d – противоположного смысла.

Рассмотрим свойства истинных числовых неравенств.

Свойство 1.

Для любых чисел a и b верно, что если a >b, то a – b > 0.

(a, b) (a >b=>a – b > 0).

Доказательство:

Нам дано, что a >b.По опр отношения «>», существует такое натуральное число к, что a = b + к. => по 2 опр разности a – b = к. Так как к N , к > 0, то a – b > 0 ч.т.д.

Свойство 2.

Если к обеим частям истинного числового неравенства прибавить одно и то же числовое выражение, имеющее смысл, то получим также истинное числовое неравенство.

(a, b, с) (a >b => a +с > b + с).

Доказательство:

По условию a > b, тогда по 1 свойству a – b > 0 => (a – b) + (с – с) > 0 =>применяем сочет свойство (a + с) – (b + с) > 0 => по свойству 1 a +с > b + с ч.т.д.

Свойство 3.

Обе части истинного числового неравенства можно умножать на одно и то же положительное число, в результате получим истинное числовое неравенство того же смысла.

(a, b, с>0) (a >b => a • с > b • с).

Доказательство:

По условию a > b, => a – b > 0 => (a – b) • с > 0 =>применяем распределит свойство a • с – b • с > 0 => a • с > b • с ч.т.д.

Свойство 4.

Обе части истинного числового неравенства можно умножать на одно и то же отрицательное число, в результате получим истинное числовое неравенство противоположного смысла (с противоположным знаком).

(a, b, с<0) (a >b => a • с < b • с).

Свойство 5

Истинные числовые неравенства одинакового смысла можно почленно складывать, в результате получается неравенство того же смысла.

(a, b, с, d) (a >b и c >d => a + c > b +d).

Свойство 6

Истинные числовые неравенства противоположного смысла можно почленно вычитать, сохраняя знак того неравенства, из которого вычитаем.

(a, b, с, d) (a > b и c => a – c > b – d).

Свойство 7

Истинные числовые неравенства одинакового смысла с положительными частями можно почленно перемножать, в результате получается истинное числовое неравенство того же смысла.

(a, b, с, d) (a >b >0 и c >d >0 => a • c > b • d).

Свойство 8

Истинные числовые неравенства одинакового смысла с отрицательными частями можно почленно перемножать, в результате получается истинное числовое неравенство противоположного смысла.

(a, b, с, d) (a < b < 0 и c < d < 0 => a • c > b • d).

Свойство 9

Обе части истинного числового неравенства можно возводить в одну и ту же степень с натуральным показателем, при этом получается неравенство того же смысла.

(a, b и nN) (a > b =>an > bn).

Источник