Для какой ткани характерно свойство сократимости

Для какой ткани характерно свойство сократимости thumbnail

Мышечные ткани составляют активную часть опорно-двигательного аппарата (пассивной частью являются кости, соединения костей). Важнейшие
свойства мышечной ткани: сократимость и возбудимость. К данной группе тканей относятся гладкая, поперечно-полосатая (скелетная) и сердечная
мышечные ткани.

Мышцы человека

Гладкая (висцеральная) мускулатура

Эта мышечная ткань встречается в стенках внутренних органах (кишечник, мочевой пузырь), в стенках сосудов, протоках
желез. Эволюционно является наиболее древним видом мускулатуры.

Состоит из веретенообразных миоцитов – коротких одноядерных клеток. Слабо выражено межклеточное вещество, клетки сближены друг с другом: благодаря этому возбуждение, возникшее в одной клетке, волнообразно распространяется на все
остальные клетки.

Гладкие миоциты, гладкая мышечная ткань

Гладкая мышечная ткань отличается своей способностью к длительному тоническому напряжению, что очень важно для работы
внутренних органов (к примеру мочевого пузыря), практически не утомляется. Скелетная мышечная ткань, которую мы изучим чуть позже, такой способностью не обладает и утомляется быстро.

Осуществляется сокращение с помощью клеточных органоидов – миофиламентов, которые расположены в клетке хаотично и не имеют
такой упорядоченной структуры, как миофибриллы в скелетной мускулатуре (все познается в сравнении, уже скоро мы их тоже изучим.)

Работа гладких мышц обеспечивается вегетативной (автономной) нервной системой: человек не может управлять ей произвольно.
К примеру, невозможно по желанию сузить или расширить зрачок.

Гладкая мускулатура

Скелетная поперечно-полосатая мускулатура

Скелетная ткань образует мышцы туловища, конечностей и головы.

В отличие от гладкой мускулатуры, скелетная образована не отдельными одноядерными клетками, а длинными многоядерными
волокнами, имеющими до 100 и более ядер – миосимпластами. Миосимпласт представляет совокупность слившихся клеток, имеет длину
от нескольких миллиметров до нескольких сантиметром.

Внутри миосимпласта находится саркоплазма, снаружи миосимпласт покрыт сарколеммой.

Скелетная мышечная ткань, миосимпласт

Характерная черта данной ткани – поперечная исчерченность, выражающаяся в равномерном чередовании светлых и темных полос
на мышечном волокне. Это происходит потому, что границы саркомеров в соседних миофибриллах совпадают, вследствие чего
все волокно приобретает поперечную исчерченность. Теперь самое время изучить микроскопическую основу мышцы – саркомер.

Саркомер (от греч. sarco – мясо (мышца) + mere – маленький)

Сократимость мышечной ткани обусловлена наличием в клетках миофиламентов. Саркомер – элементарная сократительная единица
мышцы. Состоит из тонкого белка – актина, и толстого – миозина. Сокращение осуществляется благодаря трению нитей актина о
нити миозина, в результате чего саркомер укорачивается.

Строение саркомера

Источником энергии для сокращения служат молекулы АТФ. К тому же невозможно представить сокращение мышц без участия ионов кальция: именно они
связываются с тропонином (белком между нитями актина), что обуславливает соединение актина и миозина. При сокращении мышц выделяется тепло.

Замечу, что трупное окоченение – посмертное затвердевание мышц – связано именно с ионами кальция, которые устремляются в область
низкой концентрации (мышцы), способствуя связыванию актина и миозина. Мертвый организм не способен разорвать цикл, возникший в мышцах,
в связи с чем наблюдается стойкая мышечная контрактура (лат. contractura – стягивание, сужение): конечности очень сложно разогнуть или согнуть.

Сокращение мышц

Вернемся к скелетным мышцам. Имеется еще ряд важных моментов, о которых нужно знать.

В процесс возбуждения вовлекается изолированно один миосимпласт, соседние волокна не возбуждают друг друга, в отличие
от гладких миоцитов. Скелетные мышцы сокращаются мгновенно (у гладких мышц фазы сокращения и расслабления
растянуты во времени) и быстро утомляются.

Скелетные мышцы подконтрольны нашему сознанию: их сокращение регулируется произвольно. К примеру, по желанию мы можем изменить
скорость движения руки, темп бега, силу прыжка. Мышцы покрыты фасцией, крепятся к костям сухожилиями, и, сокращаясь, приводят в движение
суставы.

Строение мышцы

Сердечная мышечная ткань

Мышечная ткань сердца – миокард (от др.-греч. μῦς «мышца» + καρδία – «сердце») – средний слой сердца, составляющий основную
часть его массы.

Миокард

Этот тип мышечной ткани удивительным образом сочетает свойства двух предыдущих, изученных нами, тканей (возбудимость, сократимость) и имеет одно новое
уникальное свойство. Сердечная мышечная ткань состоит из одиночных клеток, имеющих поперечно-полосатую исчерченность.

В некоторых участках эти клетки смыкаются, образуя между собой контакты, благодаря которым возбуждение одной клетки волнообразно
передается на соседние, таким образом, охватываются новые участки миокарда. Сокращается эта ткань непроизвольно, не утомляется.

Сердечная ткань обладает уникальным свойством – автоматизмом – способностью возбуждаться и сокращаться без влияний извне,
самопроизвольно. Это легко можно подтвердить, изолировав сердце лягушки из организма в физиологический раствор: сокращения
сердца в нем будут продолжаться еще несколько часов.

Автоматизм сердца, изолированное сердце лягушки сокращается

Автоматизм возможен благодаря наличию в миокарде особых пейсмекерных (англ. pacemaker – задающий ритм) клеток, которые также называют водителями ритма. Они
спонтанно генерируют нервные импульсы, которые охватывают весь миокард, в результате чего осуществляется сокращение. Именно благодаря водителям
ритма сердце лягушки продолжает биться, будучи полностью отделенным от тела.

Ответ мышц на физическую нагрузку

Физические нагрузки приводят к гипертрофии мышц (от др.-греч. ὑπερ- чрез, слишком + τροφή – еда, пища) – в них увеличивается количество мышечных волокон, объем мышечной
массы нарастает.

Гипертрофия мышц

В условиях гиподинамии (от греч. ὑπό – под и δύνᾰμις – сила), то есть пониженной активности, мышцы уменьшаются вплоть до полной
атрофии. В худшем случае волокна мышечной ткани перерождаются в соединительную ткань, после чего пациент становится обездвиженным.

Атрофия мышц

Необходимо отметить, что сердечная мышечная ткань также дает ответную реакцию на чрезмерную нагрузку: сердце увеличивается в
размере, нарастает масса миокарда. Причиной могут быть генетические заболевания, повышенное артериальное давление.
Гипертрофия сердца – состояние, требующее вмешательства врача и наблюдения за пациентом.

В большинстве случае
гипертрофия сердца обратима, а у спортсменов наблюдается так называемая физиологическая гипертрофия (вариант нормы).

Гипертрофия сердца

Происхождение мышц

Мышцы развиваются из среднего зародышевого листка – мезодермы.

Зародыш человека

© Беллевич Юрий Сергеевич 2018-2020

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение
(в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов
без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования,
обратитесь, пожалуйста, к Беллевичу Юрию.

Источник

1. Основные физиологические свойства возбудимых тканей

  • · Возбудимостьспособность ткани отвечать на раздражение возбуждением. Возбудимость зависти от уровня обменных процессов и заряда клеточной мембраны. Показатель возбудимости порог раздражения – та минимальная сила раздражителя, которая вызывает первую видимую ответную реакцию ткани. Раздражители бывают: подпороговые, пороговые, надпороговые. Возбудимость и порог раздражения – обратно пропорциональные величины.
  • · Проводимость – способность ткани проводить возбуждение по всей своей длине. Показатель проводимости – скорость проведения возбуждения. Скорость проведения возбуждения по скелетной ткани – 6-13 м/с, по нервной ткани до 120 м/с. Проводимость зависит от интенсивности обменных процессов, от возбудимости (прямо пропорционально).
  • · Рефрактерность (невозбудимость) – способность ткани резко снижать свою возбудимость при возбуждении. В момент самой активной ответной реакции ткань становится невозбудимой. Различают:
  • абсолютно рефрактерный период – время, в течении которого ткань не отвечает абсолютно ни на какие возбудители;
    относительный рефрактерный период – ткань относительно невозбудима – происходит восстановление возбудимости до исходного уровня.
    Показатель рефрактерностипродолжительность рефрактерного периода (t). Продолжительность рефрактерного периодау скелетной мышцы – 35-50 мс, а у нервной ткани – 5-5 мс. Рефрактерность ткани зависит от уровня обменных процессов и функциональной активности (обратная зависимость).

  • · Лабильность (функциональная подвижность) – способность ткани воспроизводить определенное число волн возбуждения в единицу времени в точном соответствии с ритмом наносимых раздражений. Это свойство характеризует скорость возникновения возбуждения. Показатель лабильности: максимальное количество волн возбуждения в данной ткани: нервные волокна – 500-1000 импульсов в секунду, мышечная ткань – 200-250 импульсов в секунду, синапс – 100-125 импульсов в секунду. Лабильность зависит от уровня обменных процессов в ткани, возбудимости, рефрактерности.
  • ·Для мышечной ткани к четырем перечисленным свойствам добавляется пятое – сократимость.
  •  
    2. Понятие о состоянии относительного физиологического покоя и активности Состояние покоя наблюдается при отсутствии действия раздражителя. Характеризуется относительно постоянным уровнем обменных процессов (т. к. этот уровень все же постоянно меняется – состояние относительного покоя); отсутствием функциональных проявлений данной ткани.
    Состояние активностивозникает под действием раздражителей. Характеризуется выраженным изменением уровня обменных процессов, проявлениями функциональных отправлений данной ткани.
    Согласно А. А. Ухтомскому: “Покой и активность – два разных уровня обменных процессов”.
    3. Формы активного состояния возбудимых тканей Существуют 2 формы активного состояния возбудимых тканей:
    возбуждение;
    торможение.
    Возбуждениеактивный процесс – ответная реакция ткани на раздражение. Характеризуется проявлением функциональных отправлений. Любое возбуждение имеет ряд признаков.
    1. Неспецифические признаки: имеются во всех тканях – изменение проницаемости клеточной мембраны, изменение движения ионов через клеточную мембрану, изменение заряда клеточной мембраны, изменение уровня обменных процессов, изменение потребления кислорода и выделения углекислого газа, изменение температуры ткани. Изменение вязкости и т. д.. Легче всего регистрируется изменение заряда клеточной мембраны.
    2. Специфические признаки (функция ткани) – характерны для определенного вида ткани (например: мышечная ткань – сокращение, нервная ткань – генерация нервных импульсов).
    Торможениевозникает в ткани в ответ на раздражение и характеризуется угнетением функциональных отправлений данной ткани. Торможение протекает с затратой и выделением энергии, но они меньше, чем при возбуждении.
    Вывод: при нанесении раздражения в ткани возникает или возбуждение или торможение, эти процессы тесно взаимосвязаны между собой и (по Павлову) являются двумя сторонами одного процесса.
    4. Виды возбуждения Возбуждение может быть 2-х видов:
    местное (локальный ответ);
    распространяющееся (импульсное).
    Местное возбуждение – наиболее древний вид (низшие формы организмов и низковозбудимые ткани – например, соединительная ткань). Местное возбуждение возникает и в высокоорганизованных тканях под действием подпорогового раздражителя или как компонент потенциала действия. При местном возбуждении нет видимой ответной реакции.
    Особенности местного возбуждения:
    нет латентного (скрытого) периода – возникает сразу же при действии раздражителя;
    нет порога раздражения;
    местное возбуждение градуально – изменение заряда клеточной мембраны пропорционально силе подпорогового раздражителя;
    нет рефрактерного периода, наоборот характерно небольшое повышение возбудимости;
    распространяется с декрементом (затуханием).
    Импульсное (распространяющееся) возбуждение – присуще высокоорганизменным тканям, возникает под действием порогового и сверхпорогового раздражителей.
    Особенности импульсного возбуждения:
    имеет латентный период – между моментом нанесения раздражения и видимой ответной реакцией проходит некоторое время;
    имеет порог раздражения;
    не градуально – изменение заряда клеточной мембраны не зависит от силы раздражителя;
    наличие рефрактерного периода;
    импульсное возбуждение не затухает.
    Вывод: в организме животного и человека наблюдается местное и импульсное возбуждение. Возникновение того или иного вида возбуждения зависит от степени развития ткани и силы раздражителя.
    5. Законы взаимодействия раздражителя с возбудимой тканью Существует определенная зависимость ответной реакции от параметра раздражителя.
    Законы:
    закон силы раздражителя;
    закон длительности действия раздражителя;
    закон градиента раздражителя.
    Закон силы раздражителя. Ответная реакция ткани пропорциональна силе наносимых раздражений до определенного предела. Увеличение ответной реакции – результат возбуждения все большего числа волокон ткани. При действии максимального раздражителя возникает наибольшая ответная реакция, т. к. все волокна возбуждения и дальнейшее увеличение ответной реакции невозможно.
    Закон длительности действия раздражителя. Ответная реакция ткани зависит от времени действия раздражителя, но до определенного предела. Характер ответной реакции зависит от силы раздражителя и времени действия. Кривая силы – времени Гофвега-ВейсаЛанина отражает эту зависимость:P – реобаза, п. в. – полезное время.
    Пояснения: под действием слабых раздражителей с течением времени нет видимой реакции. При достижении порога – появляется видимая ответная реакция. Эта пороговая величина называется реобазой – минимальной по силе электрический ток, вызывающий минимальную ответную реакцию ткани. Время, в течении которого ток равный реобазе вызывает ответную реакцию – полезное время. Т. к. порог раздражения – величина непостоянная, в клинических исследованиях используют раздражитель равный по силе двум реобазам. Время, в течение которого раздражитель, равный двум реобазам вызывает ответную реакцию, называется хроноксией. Хроноксия определяется для суждения о функциональной активности ткани (нервной и мышечной). Хроноксия один из показателей возбудимости, чем больше возбудимость, тем меньше хроноксия.
    Закон градиента раздражителя. Градиенткрутизна нарастания силы раздражителя.
    Ответная реакция ткани зависит от градиента раздражителя до определенных пределов. Аккомодация – приспособление ткани к медленно нарастающему по силе раздражителю. При медленном увеличении силы раздражителя может не быть ответной реакции. Механизм аккомодации: под действием медленно нарастающего по силе раздражителя развивается натриевая инактивация и, как следствие, постоянное повышение порога раздражения.
    Вывод:
    1) в зависимости от силы, длительности и градиента раздражителя наблюдается разная ответная реакция ткани;
    2) эта зависимость не беспредельна.

    Источник

    Ткань — сложившаяся в процессе развития совокупность клеток и межклеточного вещества, имеющих сходное строение, происхождение и функции.

    Ткани животных, в отличие от тканей растений, содержат много межклеточного вещества.

    Существуют 4 основных типа животных тканей: эпителиальная (покровная), мышечная, соединительная, нервная.

    эпителиальная ткань (эпителий)

    Клетки эпителия — эпителиоциты — лежат на тонкой базальной мембране, они лишены кровеносных сосудов, их питание осуществляется за счет лежащей под базальной мембраной соединительной ткани.

    В покровном эпителии много нервных окончаний, передающих в центральную нервную систему сигналы о различных раздражениях.

    видыособенности функциинахождение

    покровный

    клетки мелкие, постоянно делятся – высокая способность к регенерации;

    клетка соединены с помощью плотных контактов;

    очень мало межклеточного вещества

    клетки ориентированы в пространстве (есть базальная и апекальная часть)

    отделяет внутреннюю среду от внешней;

    защитная;

    всасывание и выделение продуктов обмена;

    регенерация

    кожные покровы;

    слизистые оболочки полостей, сосудов и внутренних органов;

    серозные оболочки

    железистый

    секреторные клетки — гландулоциты:

    экзокринные — выделяют свой секрет во внешнюю среду или просвет органа;

    эндокринные — выделяют свой секрет непосредственно в кровоток.

    секреторная

    в железах кожи, кишечнике, слюнных железах, железах внутренней секреции и др.

    Классификация по строению:

    Однослойный эпителий: один слой клеток, прикрепленных к базальной мембране.

    • однорядный: клетки одинаковой формы, ядра всех клеток лежат на одном уровне;

    • многорядный: клетки разной формы, ядра клеток лежат на разных уровнях.

    Однослойный плоский эпителий (эндотелий и мезотелий).

    Эндотелий выстилает изнутри кровеносные, лимфатические сосуды, полости сердца. 
    Эндотелиальные клетки плоские, бедны органеллами.

    Функция:

    1. обменная функция (обмен веществ и транспорт веществ)

    2. создают условия для кровотока.

    При нарушении эпителия образуются тромбы.

    Мезотелий выстилает все серозные оболочки.

    Клетки плоские, многогранные, связанных между собой неровными краями; имеют одно, реже два уплощенных ядра. На поверхности клеток — короткие микроворсинки (функция: выделение, всасывание, разграничение).

    Функция:

    1. обеспечивает свободное скольжение внутренних органов относительно друг друга;

    2. выделяет на свою поверхность слизистый секрет;

    3. предотвращает образование соединительнотканных спаек;

    4. хорошо регенерируют за счет митоза.

    реснитчатый (мерцательный) эпителий

    Однослойный многорядный реснитчатый эпителий выстилает воздухоносные пути. Под базальной мембраной лежит  соединительная ткань, богатая кровеносными сосудами.

    Включает несколько видов клеток:

    • клетки с мерцательными ресничками, которые полностью погружены в слизь.

    • бокаловидные клетки — это одноклеточные слизистые железы (вырабатывают слизистый секрет на поверхность эпителия)

    • эндокринные клетки (вырабатывают гормоны)

    • стволовые (вставочные) клетки

    Мерцательные реснички совершают колебательные движения и перемещают слизистую плёнку по воздухоносным путям к внешней среде.

    Для какой ткани характерно свойство сократимости

    Многорядный реснитчатый эпителий:

    1 — мерцательная клетка, 2 — реснички, 3 — базальные зерна, образующие сплошную линию, 4 — секрет в бокаловидной клетке, 5 — ядро бокаловидной клетки, 6 — вставочная клетка, 7 — базальная мембрана.

    Многослойный эпителий: несколько слоев клеток, к базальной мембране прикреплен только самый глубокий слой.

    • ороговевающий: образует наружный слой кожи (эпидермис)

    • неороговевающий

    • переходный (уроэпителий): в органах, которые меняют форму — мочевой пузырь, аллантоис и др. При изменении объёма органа толщина и строение эпителия также изменяется. Эпителий способен выделять секрет, защищающий его клетки от воздействия мочи.

    многослойный плоский неороговевающий эпителий

    Развивается из эктодермы.

    Выстилает роговицу, ротовую полость, преддверие анального отверстия и влагалище.

    Клетки располагаются в несколько слоёв:

    • Слой стволовых клеток — на базальной мембране. Они делятся и превращаются в шиповатые клетки.

    • Слой шиповатых клеток (полигональной формы с выростами и шипами). Они постепенно уплощаются.

    • Поверхностный слой плоских клеток, которые с поверхности отторгаются во внешнюю среду.

    Многослойный плоский ороговевающий эпителий — эпидермис кожных покровов.

    В толстой коже (ладонные поверхности), которая постоянно испытывает нагрузку, эпидермис содержит 5 слоёв:

    1 — базальный слой — содержит стволовые клетки, дифференцированные цилиндрические и пигментные клетки (меланоциты).

    2 — шиповатый слой — клетки неправильной формы с многочисленными выростами; содержат тонофибриллы — нитчатые образования, придающее коже механическую прочность;

    3 — зернистый слой — клетки ромбовидной формы; в них начинается процесс ороговения;

    4 — блестящий слой — клетки становятся плоскими, они постепенно утрачивают внутриклеточную структуру;

    5 — роговой слой — содержит роговые чешуйки, которые полностью утратили строение клеток, содержат белок кератин. 

    В тонкой коже, которая не испытывает нагрузки, отсутствует блестящий слой.

    Для какой ткани характерно свойство сократимости

    По форме эпителиоциты бывают плоские, кубические, призматические, цилиндрические и т.п.

    Для какой ткани характерно свойство сократимости           

    Строение покровного эпителия

          А – однослойный  плоский эпителий;

          Б – однослойный кубический эпителий;

          В – однослойный столбчатый эпителий;

          Г – реснитчатый эпителий;

          Д – переходный эпителий;

          Е – неороговевающий многослойный плоский эпителий.

    мышечная ткань

    Виды мышечной ткани:

    Для какой ткани характерно свойство сократимости

    Гладкая мышечная ткань

    Состоит из одноядерных клеток — миоцитов веретеновидной формы.

    Свойства: сокращается ритмично, медленно и на протяжении длительного времени, способна при этом развивать большую силу без значительных затрат энергии и без утомления. Является непроизвольной (то есть ее деятельность не управляется по воле человека). 

    Входит в состав стенок внутренних органов: кровеносных и лимфатических сосудов, мочевыводящих путей, пищеварительного тракта (сокращение стенок желудка и кишечника).

    Эти клетки имеют тонкие миофибриллы, которые тянутся от одного конца клетки к другому. Гладкие мышечные клетки объединяются в пучки, состоящие из 10 — 12 клеток. Это объединение возникает благодаря особенностям иннервации гладкой мускулатуры и облегчает прохождение нервного импульса на всю группу гладких мышечных клеток. 

    У низших многоклеточных животных из гладкой мышечной ткани состоят все мышцы. У позвоночных животных гладкая мышечная ткань входит в состав внутренних органов (кроме сердца).

    Для какой ткани характерно свойство сократимости

    Поперечно-полосатая скелетная мышечная ткань

    Состоит из длинных нитевидных  многоядерных миоцитов.

    Свойства: высокая скорость сокращения и расслабления; характеризуется произвольным сокращением (сокращение в ответ на импульсы, идущие из коры больших полушарий). Скорость сокращения этой ткани в 10 — 25 раз выше, чем в гладкой мышечной ткани.

    Входит в состав скелетных мышц, а также стенки глотки, верхней части пищевода, образует язык, глазодвигательные мышцы.

    Мышечное волокно поперечно-полосатой ткани покрыто оболочкой — сарколеммой. Под оболочкой находится цитоплазма с большим количеством ядер, расположенных по периферии цитоплазмы, и сократительными нитями — миофибриллами.  Миофибриллы состоят из белков: актина (тонкие нити) и миозина (толстые нити).

    При сокращении мышечного волокна происходит возбуждение сократимых белков, тонкие протофибриллы скользят по толстым. Актин реагирует с миозином, и возникает единая актомиозиновая система.

    Для какой ткани характерно свойство сократимости

    Поперечно-полосатая сердечная мышечная ткань

    Состоит из многоядерных кардиомиоцитов, имеющих поперечную исчерченность цитоплазмы. Кардиомиоциты разветвлены и образуют между собой соединения — вставочные диски, в которых объединяется их цитоплазма.

    Свойство: автоматия — способность ритмично сокращаться и расслабляться под действием возбуждения, возникающего в самих клетках. Эта ткань является непроизвольной.

    Образует миокард сердца.

    Для какой ткани характерно свойство сократимости

    соединительная ткань

    Выполняет вспомогательная роль во всех органах.

    Составляя 60-90 % от их массы.

    Функция: опорная, защитная, трофическая, терморегуляция.

    К соединительной ткани относят костную, хрящевую, жировую, кровь и лимфу. Поэтому соединительная ткань — единственная ткань, которая присутствует в организме в 4-х видах — волокнистом (связки), твёрдом (кости), гелеобразном (хрящи) и жидком (кровь и лимфа). 

    Общими свойствами всех соединительных тканей является происхождение из мезенхимы, а также выполнение опорных функций и структурное сходство.

    Для какой ткани характерно свойство сократимости

       1                                 2                        3                            4                             5

    1 — рыхлая соединительная ткань, 2 — плотная соединительная ткань, 3 — хрящ, 4 — кость, 5 — кровь.

    Состав соединительной ткани:

    • межклеточное вещество;

    • клетки различного типа (фибробласты, хондробласты, остеобласты, тучные клетки, макрофаги);

    • волокнистые структуры.

      Соединительная ткань:

    1. собственно соединительная ткань
      рыхлую волокнистую соединительную ткань: во всех органах: рыхлая сеть волокон и клеток;
      плотную неоформленную соединительную ткань: неправильно расположенные пучки волокон;
      плотную оформленную соединительную ткань: параллельные пучки волокон (сухожилия, связки);

    2. скелетная ткань: костная, хрящевая, цемент и дентин зуба.

      Костная ткань.

    3. соединительная ткань со специфическими свойствами: жировая, слизистая, пигментная, ретикулярная.

    Для какой ткани характерно свойство сократимости

    Нервная ткань

    Состоит из нейронов.  

    Нейрон — нервная клетка, структурно-функциональные единицы нервной системы. 

    Для какой ткани характерно свойство сократимости

    В состав нейрона входят:

    дендриты — отростки, воспринимающие раздражения

    аксон — отросток, передающий нервные сигналы от тела другим клеткам.

    Дендритов у нейрона может быть много, аксон только один.

    Функция:  осуществляет связь организма с окружающей средой; обеспечивает взаимодействие тканей, органов и систем органов организма.

    Источник