Добавки каких элементов повышают коррозионные свойства сталей

Понятие «коррозионная стойкость стали» означает способность металла противостоять появлению ржавчины.
Скорость распространения коррозии зависит от многих факторов, в том числе от состава и технических характеристик стального сплава, а также качества окружающей среды.
Обычная сталь разрушается от коррозии за достаточно короткое время.
Одни из существующих методов применяют в процессе плавки. Другие используют в сборочных цехах, на конечной стадии изготовления металлоконструкций или их монтажа на строительной площадке.
Однако существуют различные способы, не только существенно повышающие коррозионную стойкость металла, но и придающие стальным конструкциям безусловную невосприимчивость к влажным и агрессивным воздействиям. Их можно разделить на две группы:
- Изменение химического состава стального сплава с введением легирующих добавок. В качестве таковых выступают элементы с положительным электрохимическим потенциалом или обладающие способностью к пассивации.
- Нанесение надежных защитных покрытий на готовые металлические изделия, конструкции, детали. Для этого используются различные способы и материалы: анодирование, пассивирование, окрашивание, эмалирование.
Легирование стали для повышения коррозионной стойкости
Металлургическая промышленность использует различные легирующие элементы, сообщающие стали коррозионную стойкость. При подборе состава особое внимание уделяется количеству углерода. Если этот показатель превышает 1,2 %, то металл существенно теряет прочностные показатели, становится менее пластичным. Сплавы с низким содержанием углерода, в химическом составе которых присутствуют хром, никель, молибден называются нержавеющими.
По требованиям ГОСТ 4553-71 в маркировке каждого типа стали четко обозначено, какие легирующие компоненты в ней присутствуют, а также их количественный показатель. Например, так:
Каждый легирующий элемент оказывает строго определенное влияние на технические характеристики стали:
- хром (Сг) повышает коррозионную стойкость, увеличивает прочностные качества, твердость;
- никель (Ni) повышает устойчивость к коррозии, улучшает пластические свойства металла;
- титан (Ti) положительно влияет на коррозионную стойкость стали, одновременно улучшая прочность, плотность и обрабатываемость металла;
- молибден (Mo) делает сталь особенно устойчивой не только к воздействию воды, но также кислот, щелочей, солевых растворов;
- вольфрам (W) делает металл более твердым и менее хрупким;
- кремний (Si) повышает коррозионную стойкость стали, делает ее магнитонепроницаемой, мало подверженной процессам окисления.
Стали, обладающие повышенной коррозионной стойкостью, носят название нержавеющих. Зависимо от процентного содержания и сочетания легирующих компонентов изменяется структура металла. В связи с этим стальной сплав может быть ферритным, мартенситным, аустенитным, ферритно-мартенситным, ферритно-аустенитным, аустенитно-мартенситным.
Легирующие элементы в стали
Легированные стали — это углеродистые стали, содержащие менее 1% углерода, однако с добавками других металлов в количествах достаточных, чтобы существенио изменить свойства стали. Наиболее важные легирующие элементы
Алюминий Вплоть до 1% алюминия в легированных сталях позволяет им, в процессе азотирования образовать более твердый, износоустойчивый наружный слой.
Хром. Присутствие небольшого количества хрома стабилизирует структуру твердых карбидов. Это улучшает отклик стали на термообработку. Присутствие большого количества хрома улучшает коррозионную стойкость и термостойкость стали (например, нержавеющая сталь). К сожалению, присутствие хрома в стали приводит к росту зернистости (см. никель).
Кобальт. Кобальт повышает критическую скорость закалки стали при tермобработке. Это позволяет инструментальным сталям работать при высоких температурах без разупрочнения (смягчающего отпуска). Кобальт — важный легирующий элемент в некоторых быстрорежущих (инструментальных) сталях
Медь. Вплоть до 0,5 % содержания меди улучшает коррозионную стойкость легированных сталей.
Свинец. Присутствие вплоть до 0,2 % свинца улучшает обрабатываемость сталей, однако за счет уменьшения прочности и вязкости.
Марганец. Этот легирующий элемент всегда присутствует в сталях до максимального содержания 1,5 % для нейтрализации вредного влияния примесей, остающихся после процессов её удаления. Он также способствует формированию устойчивых карбидов в подвергающихся закалке сталях. В больши количествах (вплоть до 12,5 %) марганец улучшает износоустойчивость сталей самопроизвольно формируя твердый наружный слой под воздействием истирания (самозакалка).
Молибден. Этот легирующий элемент поднимает сопротивление ползучести сталей при высоких температурах; стабилизирует в них карбиды; улучшает характеристики режущих инструментов при высоких температурах и уменьшает восприимчивость хромоникелевых сталей к «отпускной хрупкости».
Никель. Присутствие никеля в легированных сталях способствует увеличению прочности и улучшению структуры. Он также улучшает коррознонную стойкость стали. К сожалению, никель имеет склонность разупрочнять сталь графитизируя любые присутсвующие карбиды. Так как никель и хром обладают противоположными свойствами, их часто используют в сочетании (хромо-никелевые стали). Их преимущества дополняют друг друга, в то время как их нежелательные воздействия взаимно уравновешиваются.
Фосфор. Это остаточный элемент после процессов удаления. Он может стать причиной непрочности стали, и обычно стремятся уменьшить его присутствие до уровня ниже 0,05 %. Тем не менее фосфор способен улучшить обрабатываемость, действуя как внутренняя смазка. В больших количествах он также улучшает текучесть литых сталей и чугуна.
Кремний. Присутствие кремния вплоть до 0,3 % улучшает текучесть литых сталей и чугунов, причем в отличие от фосфора без снижения прочности. Вплоть до 1% кремния улучшает термостойкость сталей. К сожалению, как и никель, фосфор — сильный графитизирующий элемент, и его никогда не добавляют в больших количествах в высокоуглеродистые стали. Кремний используется для улучшения магнитных свойств магнитно-мягких материалов, тех, которые используются для пластин трансформаторов и штампованных листов для изготовления статоров и роторов электромотора.
Сера. Сера также является остаточным элементом после процессов удаления. Ее присутствие сильно ослабляет сталь, и используются все возможности для ее удаления; кроме того, марганец всегда присутствует в сталях, чтобы сводить к нулю влияние остаточной серы. Однако сера иногда преднамеренно добавляется в низкоуглеродистые стали для улучшения их обрабатываемости, в тех случаях, когда допустимо уменьшение прочности компоненты (сульфидированные легкообрабатываемые (автоматные) стали).
Вольфрам. Присутствие вольфрама в легированных сталях способствует формированию очень твердых карбидов и, так же как и присутствие кобальта, повышает критическую скорость закалки стали при термообработке. Это позволяет вольфрамовым сталям (быстрорежущим сталям) сохранять свою твердость при высоких температурах. Вольфрамовые сплавы составляют основу высокопроизводительных инструментов и штамповой стали.
Ванадий. Этот элемент усиливает влияние других присутствующих легирующих элементов и сам оказывает на легированные стали множество самых разнообразных воздействий:
1. Его присутствие способствует формированию твердых карбидов.
2. Он стабилизирует мартенсит в закаленных сталях и таким образом улучшает прокаливаемость и увеличивает предельное критическое сечение стали.
3. Он уменьшает рост зернистости при термообработке и процессах горячей обработки.
4. Он увеличивает «твердость при высоких температурах» инструментальных сталей и игтамповой стали.
5. Он улучшает усталостную прочность сталей
- Модификация AD атрибутов >>
Классификация легированных сталей
По содержанию в составе стали углерода идет разделение на:
- низкоуглеродистые стали (до 0,25% углерода);
- среднеуглеродистые стали (до 0,25% до 0,65% углерода);
- высокоуглеродистые стали (более 0,65% углерода).
В зависимости от общего количества в их составе легирующих элементов, которые содержит легированная сталь, она может принадлежать к одной из трех категорий:
- низколегированная (не более 2,5%);
- среднелегированная (не более 10%);
- высоколегированная (от 10% до 50%).
Свойства, которыми обладают легированные стали, определяет и их внутренняя структура. Поэтому признаку классификация легированных сталей подразумевает разделение на следующие классы:
- доэвтектоидные — в составе присутствует избыточный феррит;
- эвтектоидные — сталь имеет перлитную структуру;
- заэвтектоидные — в их структуре присутствует вторичные карбиды;
- ледебуритные — в структуре присутствует первичные карбиды.
По своему практическому применению легированные конструкционные стали могут быть: конструкционные (подразделяются на машиностроительные или строительные), инструментальные, а также стали с особыми свойствами.
Назначение конструкционных легированных сталей:
- Машиностроительные — служат для производства деталей всевозможных механизмов, корпусных конструкции и тому подобного. Отличаются тем, что в подавляющем большинстве случаев проходят термическую обработку.
- Строительные — чаще всего используются при изготовлении сварных металлоконструкций и термической обработке подвергаются в редких случаях.
Классификация машиностроительных легированных сталей выглядит следующим образом.
- Жаропрочные стали активно используются для производства деталей, предназначенных для работы в сфере энергетики (например, комплектующие паровых турбин), а также из них делают особо ответственный крепеж. В качестве легирующих добавок в них используют хром, молибден, ванадий. Жаропрочные относятся к среднеуглеродистым, среднелегированным, перлитным сталям.
- Улучшаемые (из категорий среднеуглеродистых, низко- и среднелегированных) стали, при производстве которых используют закалку, применяются для изготовления сильно нагруженных деталей, испытывающих нагрузки переменного характера. Отличаются чувствительностью к концентрации напряжения в рабочей детали.
- Цементуемые (из категорий низкоуглеродистых, низко- и среднелегированных) стали, как можно понять по названию, подвергаются цементации и следующей после нее закалке. Их применяют для изготовления всевозможных шестерен, валов и других похожих по назначению деталей.
Зависимость толщины цементованного слоя от температуры и времени обработки
Классификация строительных легированных сталей подразумевает их разделение на следующие виды:
- Массовая — низколегированные стали в виде труб, фасонного и листового проката.
- Мостостроительная — для автомобильных и ж/д мостов.
- Судостроительная хладостойкая, нормальная и повышенной прочности — хорошо противостоит хрупкому разрушению.
- Судостроительная хладостойкая высокой прочности — для сварных конструкций, которым предстоит работать в условиях низких температур.
- Для горячей воды и пара — допускается рабочая температура до 600 градусов.
- Низкоопущенные высокой прочности — применяются в авиации, чувствительны к концентрации напряжений.
- Повышенной прочности с применением карбонитритного упрочнения, создающим мелкозернистую структуру стали.
- Высокой прочности с применением карбонитритного упрочнения.
- Упрочненные прокаткой при температуре 700-850 градусов.
Применение инструментальных легированных сталей
Инструментальная легированная сталь широко используется при производстве разнообразного инструмента. Но помимо явного превосходства над углеродистой сталью в плане твердости и прочности, у легированной стали есть и слабая сторона — более высокая хрупкость. Поэтому для инструмента, который активно подвергается ударным нагрузкам, такие стали не всегда подходят. Тем не менее при производстве огромного перечня режущего, ударно-штампового, измерительного и прочего инструмента именно инструментальные легированные стали остаются незаменимыми.
Отдельно можно отметить быстрорежущую сталь, отличительными особенностями которой являются крайне высокая твердость и красностойкость до температуры 600 градусов. Такая сталь способна выдерживать нагрев при высокой скорости резания, что позволяет увеличить скорость работы металлообрабатывающего оборудования и продлить срок его службы.
К отдельной категории относятся легированные конструкционные стали, наделенные особыми свойствами: нержавеющие, с улучшенными электрическими и магнитными характеристиками. От того, какие элементы, а также в каких количествах преимущественно содержатся в них, они могут быть хромистыми, никелевыми, хромоникельмолибденовыми. Также они делятся на трех-, четырех- и более компонентные по числу содержащихся в них легирующих добавок.
Маркировка легированных сплавов и основные марки
В мировой практике используется несколько документов, регламентирующих маркировку легированных сталей. Но в любом случае они все предполагают использование буквенно-цифровых обозначений.
Стандарты стран СНГ
При обозначении легированной конструкционной стали процентная величина массовой доли углерода маркируется первыми двумя цифрами без использования буквенного обозначения. Далее в порядке уменьшения указываются легирующие компоненты и их доля в сплаве в среднем эквиваленте. Буквенные обозначения химических элементов указаны в таблице 1. Легирующие присадки, количество которых менее 1,0% указываются только в расшифрованной номенклатуре, так как обозначение тогда бы приняло очень громоздкий вид.
Учитывая обширный сортамент, также марка стали может включать дополнительные симвноменклатуре, так как обозначение тогда бы приняло очень громоздкий вид.олы, более расширенно описывающие свойства или особенности: А – автоматные, Е – магнитные, Ж – нержавеющие, Р – режущие, Х – хромистые, Ш – шарикоподшипниковые, Э — электротехнические, Я – хромоникелевые. Также маркировка может предполагать исключения от общих правил обозначения. Так в зависимости от химического состава конструкционные сплавы разделяют на качественные и высококачественные. Например, в конце маркировки буква «А» указывает, что сплав является особо чистым в части содержания фосфора и серы, а буква «Ш» относит их к высококачественным.
Маркировка легированных сталей для речного и морского судостроения часто осуществляется в соответствии с ГОСТ 5521-86 и требованиями Международной ассоциации классификационных обществ. Это означает, что такие сплавы классифицируют на категории A, B, D и Е с учетом предела текучести, показателям прочности, хрупкости и сопротивления ударным нагрузкам.
Европейские стандарты
EN 10027 определяет порядок обозначения всех сталей. Легированные сплавы имеют маркировку 1.20ХХ – 1.89ХХ, где первая цифра определяет, что данный материал относится к сталям, вторая и третья цифра определяют номер группы сталей и две последние — порядковый номер сплава в этой группе. Например, категория инструментальных сталей идентифицируется как 1.20ХХ – 1.28ХХ, а нержавеющих как 1.40ХХ – 1.45ХХ.
Североамериканские стандарты ASTM/ASME и AISI
В США действует наиболее обширная система маркировки сталей. Например, маркировка ASTM предполагает обозначение основных химических элементов, предел прочности и форму проката. В системе AISI используют 4 цифры, где первые две указывают номер группы, две последующие – процентное количество углерода. Буквенные символы демонстрируют наличие соответствующих присадок.
Таблица коррозийной стойкости деталей проточной части насосов для основных промышленных сред
Главная ⇒ Справочник по насосам и насосному оборудованию ⇒ Таблица коррозийной стойкости деталей проточной части насосов Скорость коррозии (мм/год):
В.С.
— весьма стойкие до 0.01,
С.
— стойкие от 0.1 до 1.0,
О.С.
— относительно стойкие от 1.0 до 3
Исполнение материала проточной части (Х-?):
Д
— хромистый чугун типа ЧХ28 или хромистая сталь типа 20Х13Л,
К
— хромоникелевая сталь типа 12Х18Н10Т,
Е
— хромоникельмолибденовая сталь типа 12Х18Н12М3ТЛ,
И
— хромоникельмолибденомедистая сталь типа ОХМ28МДТ,
Т
— титан и его сплавы,
Л
— кремнистый чугун типа ЧС-15 (ферросилид)
Аналоги импортных сталей:
AISI 304
— аналог 08Х18Н10
AISI 316
— аналог 08Х17Н13М2
AISI 321
— аналог 08Х18Н12Т
AISI 420
— аналог 20Х13
ХИМИЧЕСКИЕ РЕАГЕНТЫ | Х-Л | Х-К | X-Е | Х-И | Х-Т | Х-Д | ||
Наименование | Концентрация [%] | Температура [°С] | ||||||
Азотная кислота | 1-80 | 20 | B.C. | B.C. | B.C. | B.C. | B.C. | ВС. |
90-20 | С. | С. | С. | С. | С. | С. | С. | |
1-80 | 60 | О.С. | ВС. | B.C. | ВС. | B.C. | С. | |
1-40 | Кипения | С. | С. | С. | С. | B.C. | О.С | |
50-80 | Кипения | О.С. | О.С. | О.С. | О.С. | С. | — | |
90 | 82 | — | О.С. | О.С. | С. | С. | — | |
Серная кислота | 01-1:2:3:5 | 30 | B.C. | С. | B.C. | B.C. | С. | — |
10 | 30 | B.C. | О.С. | С. | B.C. | — | — | |
20-50 | 30 | ВС. | — | С. | B.C. | — | — | |
60-70 | 30 | B.C. | — | О.С. | B.C. | С. | С. | |
80-98 | 30 | B.C. | С. | B.C. | B.C. | С. | С. | |
3:5 | 50 | С. | — | B.C. | B.C. | С. | — | |
0.1 -0.5 | 50 | С. | — | С. | B.C. | B.C. | — | |
1,2 | 50 | С. | О.С. | B.C. | B.C. | С. | — | |
10 | 50 | С. | — | О.С. | B.C | — | — | |
20 -80 | 50-70 | С. | — | — | С. | — | — | |
0.5-3 | 80 | С. | — | О.С. | С. | — | — | |
85-98 | 85 | С. | О.С. | С. | С. | О.С. | С. | |
5-10 | 75 | — | — | — | С. | — | — | |
85-98 | 100 | — | — | — | О.С. | — | — | |
Фосфорная кислота | 1 -90 | 20-50 | B.C. | B.C. | B.C. | В.С. | — | С. |
1-50 | 85 | С. | С. | В.С. | B.C. | — | С. | |
60—90 | 85 | С. | О.С. | С. | С. | — | С. | |
1-50 | 100 | С. | О.С. | О.С | С. | С. | — | |
60-80 | 100 | С. | — | О.С. | С. | — | — | |
Свыше 85 | 100 | С. | — | — | С. | — | — | |
Соляная кислота | 0,2-0,5 | 20-50 | B.C. | О.С. | В.С. | B.C. | B.C. | — |
1-3 | 20 | С. | — | В.С. | В.С. | С. | — | |
1-3 | 60 | С. | — | — | О.С. | О.С. | — | |
5 | 20 | С. | — | С. | В.С. | С. | — | |
5 | 60 | — | — | — | О.С. | — | — | |
10 | 20 | С. | — | О.С. | О.С. | О.С. | — | |
10 | 60 | — | — | — | О.С | — | — | |
20-37 | 20 | О.С | — | — | О.C. | — | — | |
26-37 | 60 | — | — | — | — | — | — | |
Щавелевая кислота | 0,5-10 | 20 | В.С. | В.С. | В.С. | В.С. | С. | В.С. |
0,5-10 | 50 | С. | О.С. | В.С. | В.С. | — | О.С. | |
10-80 | 80 | С. | — | О.С. | — | — | — | |
Уксусная кислота | 1-80 | 20-80 | В.С. | В.С. | В.С. | B.C. | С. | В.С. |
1-80 | Свыше 80 | С. | О.С. | С. | B.C. | В.С. | С. | |
Смесь серной и уксусной кислоты | 2-25 | 80 | С. | О.С. | О.С. | С. | — | — |
10-90 | 20 | B.C. | С. | В.С. | B.C. | — | — | |
Едкий натр | 10-90 | 20-90 | В.С. | В.С. | В.С. | В.С. | B.C | С. |
10-90 | 100-120 | О.С. | О.С | С. | В.С. | С. | О.С. | |
Известь хлорная | Насыщенный | 40 | С. | О.С. | С. | С. | В.С. | С. |
Смесь азотной и серной кислоты | 50-50 | 60 | B.C. | В.С. | В.С. | B.C | С. | — |
95 | — | О.С. | О.С. | С. | — | — | ||
50-10 | 85 | — | О.С. | B.C. | B.C. | С. | — | |
25-70 | 60 | B.C. | В.С. | В.С. | В.С. | О.С. | — | |
95 | — | С. | С. | B.C. | — | — | ||
25-2 | 40 | B.C. | B.C. | B.C. | B.C. | С. | — | |
Смесь серной и фосфорной кислоты | 1-30 | 20 | B.C. | С. | B.C. | В.С. | — | — |
2-40 | 80 | С. | — | С. | С. | — | — | |
Железо хлорное | 1 | 20 | С. | С. | С. | С. | B.C. | С |
5-75 | 20 | — | — | — | О.С. | B.C. | — |
Источник
Влияние легирующих элементов на свойства металлургических сплавов изучено по-настоящему хорошо. Благодаря этому введение в сталь различных добавок позволяет получать композиции с уникальными технологическими характеристиками.
1 Группы легирующих элементов и их обозначение
Компоненты, используемые для улучшения свойств сталей, разбивают по степени применимости на три подвида:
- Никель – обозначение в готовом сплаве – Н, молибден – М;
- Марганец – Г, хром – Х, кремний – С, бор – Р;
- Ванадий – Ф, ниобий – Б, титан – Т, цирконий – Ц, вольфрам – В.
К третьему подвиду относят и остальные элементы для легирования – азот (обозначение – А), медь (Д), алюминий (Ю), кобальт (К), бор (Р), фосфор (П), углерод (У), селен (Е). Отметим, что подобное деление обусловлено в основном экономическими соображениями, а не сугубо физическими.
Элементы для легирования стального сплава
По характеру воздействия добавок на модификации (полиморфные), наблюдаемые в сталях, все легирующие элементы делят на два типа. К первому относят компоненты, которые при любых температурах способны стабилизировать аустенит (в основном это марганец и никель). Вторая группа включает в себя элементы, которые при определенном своем содержании могут поддерживать ферритную структуру сплава (алюминий, молибден, хром, кремний, вольфрам и другие).
По механизму влияния на свойства и структуру сталей добавки причисляют к одному из трех типов:
- Легирующие элементы, способные создавать карбиды углерода при реакции с последним (бор, молибден, титан, цирконий).
- Добавки, обеспечивающие полиморфные превращения (альфа-железо в гамма-железо).
- Химэлементы, при использовании которых получаются интерметаллические соединения (ниобий, вольфрам).
Правильное легирование сталей подразумевает введение в их состав тех или иных добавок в строго рассчитанных количествах. При этом оптимальных результатов металлурги достигают в случае, когда “насыщение” сплавов производится комплексно.
2 Какие свойства сплавов позволяют улучшить легирующие добавки?
Легирование дает возможность снизить деформируемость изделий, производимых из различных марок стали, снизить порог хладоломкости сплавов, свести к минимуму риск появления в них трещин, значительно уменьшить скорость закалки и при этом повысить:
- прокаливаемость;
- ударную вязкость;
- текучесть;
- сужение (относительное);
- коррозионную стойкость.
Все легирующие добавки (кроме кобальта), повышают прокаливаемость сталей и уменьшают (зачастую весьма существенно) критическую скорость закалки. Достигается это за счет увеличения устойчивости аустенита в сплавах.
Образующие карбиды элементы способны замещать атомы железа в цементите. За счет этого карбидные фазы становятся более устойчивыми. При выделении карбидов из твердых растворов наблюдается явление дисперсионного упрочнения сталей. Другими словами – сплав получает дополнительную твердость.
Дисперсионное упрочнение сталей
Также карбидообразующие добавки делают процесс коагуляции дисперсных частиц в сталях более медленным и препятствуют (при нагреве) росту аустенитных зерен. Благодаря таким легирующим компонентам сплавы становятся намного прочнее.
Аустенитную структуру улучшают любыми легирующими добавками, кроме углерода и азота.
Насыщенный добавками аустенит получает высокий показатель теплового расширения, становится парамагнитным, у него снижается предел текучести. Композиции с подобными свойствами незаменимы для выпуска немагнитных и нержавеющих сталей. Аустенитные сплавы, кроме того, прекрасно упрочняются при грамотно проведенной холодной деформации.
Стали, имеющие ферритную структуру, при легировании также обретают добавочную прочность. Максимальное влияние на этот показатель оказывает хром и марганец. Обратите внимание! Прочностные характеристики сплавов увеличиваются при снижении геометрических параметров ферритных зерен.
3 Влияние конкретных химических элементов на свойства стали – коротко об основном
Давайте посмотрим, какие именно характеристики готовых сплавов способны улучшить те или иные добавки:
- Вольфрам создает карбиды, которые повышают красностойкость и показатели твердости стали. Также он облегчает процесс отпуска готовой продукции, снижая хрупкость стали.
- Кобальт увеличивает магнитный потенциал металла, его ударостойкость и жаропрочность.
- Никель повышает прокаливаемость, прочность, коррозионную стойкость, пластичность сталей и делает их более ударопрочными, снижает предел хладноломкости.
- Титан придает сплавам высокую плотность и прочностные свойства, делает металл коррозионностойким. Стали с такой добавкой хорошо обрабатываются специальным инструментом на металлорежущих агрегатах.
- Цирконий вводят в сплавы, когда необходимо получить в них зерна со строго определенными размерами.
- Марганец делает металл устойчивым к износу, повышает его твердость, удароустойчивость. При этом пластичные свойства сталей остаются на прежнем уровне, что важно. Заметим – марганца нужно вводить не менее 1 %. Тогда влияние этого элемента на эксплуатационные показатели сплава будет ощутимым.
- Медь делает металлургические композиции стойкими к ржавлению.
- Ванадий измельчает зерно сплава, делает его прочным и очень твердым.
- Ниобий вводят для снижения явлений коррозии в сварных изделиях, а также для повышения кислотостойкой стальных конструкций.
- Алюминий увеличивает окалийность и жаропрочность.
- Неодим и церий используют для сталей с заданной заранее величиной зерна, сплавов с малым содержанием серы. Эти элементы также снижают пористость металла.
- Молибден повышает прочность сплавов на растяжение, их упругость и красностойкость. Кроме того, эта легирующая добавка делает стали стойкими к окислению при высоких температурах.
Влияние химических элементов на свойства стали
Больше влияние на характеристики сталей оказывает кремний. Он повышает окалийность и упругость металла. Если кремния содержится около 1,5 %, сталь становится вязкой и при этом очень прочной. А при его добавке более 1,5 % сплавы обретают свойства магнитопроницаемости и электросопротивления.
Грамотно выполненное легирование сталей обеспечивает их особыми свойствами. И современные металлургические предприятия активно используют этот процесс для выпуска широкой номенклатуры сплавов с высокими технологическими характеристиками.
Рейтинг:
Загрузка…
0 Комментариев
Источник