Какая частица имеет свойства электрона
Электро́н (от др.-греч. ἤλεκτρον «янтарь»[5]) — стабильная отрицательно заряженная элементарная частица. Считается фундаментальной (не имеющей, насколько это известно, составных частей) и является одной из основных структурных единиц вещества. Классифицируется как фермион (обладает спином, равным ½) и как лептон. Единственный (наравне со своей античастицей — позитроном) из известных заряженных лептонов, являющийся стабильным. Электроны образуют электронные оболочки атомов, строение которых определяет большинство оптических, электрических, магнитных, механических, химических свойств вещества[6]. Движение электронов обусловливает протекание электрического тока во многих проводниках (в частности, в металлах). В рациональной системе единиц комптоновская длина волны электрона является единицей длины, а масса электрона — единицей массы.
Свойства[править | править код]
Заряд электрона был впервые непосредственно измерен в экспериментах А. Ф. Иоффе (1911) и Р. Милликена (1912). Он равен −1,602176634⋅10−19Кл (точно)[2], или −4,803204712570263⋅10−10ед. заряда СГСЭ (точно) в системе СГСЭ, или −1,602176634⋅10−20 ед. СГСМ (точно) в системе СГСМ. В 2019 году основные единицы СИ были привязаны к фундаментальным константам; в частности, кулон привязан к элементарному электрическому заряду, поэтому численное значение заряда электрона по определению имеет абсолютную точность и указывается без погрешности[7]. Заряд электрона, взятый по абсолютной величине, служит единицей измерения электрического заряда других элементарных частиц.
кг[2] — масса электрона.
Кл[2] — заряд электрона.
Кл/кг[2] — удельный заряд электрона.
— спин электрона в единицах
В отличие от большинства других известных науке частиц, электрон стабилен (более точно, в пределах чувствительности эксперимента его время жизни не менее 6,6⋅1028 лет с 90%-й доверительной вероятностью[3]). Распад свободного электрона на нейтрино и фотоны запрещён законом сохранения электрического заряда, а распаду на другие элементарные частицы препятствует закон сохранения энергии.
Современная наука рассматривает электрон как фундаментальную элементарную частицу, не обладающую внутренней структурой и размерами[8]. Эксперименты по сверхточному определению магнитного момента электрона (Нобелевская премия 1989 года) показывают, что размеры электрона не превышают 10−20 см[9][10]. Проведённые до этого эксперименты по столкновению электронов высоких энергий давали более грубое ограничение на размеры: 10−17 см[11].
Внутренняя чётность электрона равна +1[12]. Электрон участвует в слабом, электромагнитном и гравитационном взаимодействиях. Примерами участия электрона в слабых взаимодействиях являются бета-распад и электронный захват. Он принадлежит к группе лептонов и является (вместе со своей античастицей, позитроном) легчайшим из заряженных лептонов и легчайшей элементарной частицей, имеющей электрический заряд. До открытия массы нейтрино электрон считался наиболее лёгкой из массивных частиц — его масса примерно в 1836 раз меньше массы протона. Спин электрона равен 1⁄2, и, таким образом, электрон относится к фермионам.
Как и любая заряженная частица со спином, электрон обладает магнитным моментом, причём магнитный момент делится на нормальную часть и аномальный магнитный момент (добавка примерно 0,116 %). Магнитный момент электрона μe = -9,2847647043(28)⋅10−24 Дж/Тл[2]. В 1989 году Г. Демельту была присуждена Нобелевская премия по физике за измерение магнитного момента электрона с точностью до 13 знаков после запятой[9][10].
Иногда к электронам относят как собственно электроны, так и позитроны (например, рассматривая их как общее электрон-позитронное поле, решение уравнения Дирака), особенно в тех задачах, когда их общие свойства более существенны, чем различия. При таком выборе терминов отрицательно заряженный электрон называют[13] негатроном[14], положительно заряженный — позитроном.
Находясь в периодическом потенциале кристалла, электрон рассматривается как квазичастица, эффективная масса которой может значительно отличаться от массы электрона в вакууме.
Свободный электрон не может поглотить фотон, хотя и может рассеять его (см. эффект Комптона).
Благодаря своей малой массе электроны вследствие туннельного эффекта с лёгкостью проникают через потенциальные барьеры высотой в несколько электрон-вольт и толщиной примерно до десятка атомных диаметров. Явлением туннельного эффекта для электронов объясняется то, что электрический ток может протекать между металлическим электродом и ионами раствора или между двумя металлами, находящимися в контакте, несмотря на то, что поверхность металла обычно покрыта слоями окисла или загрязнена[15].
Отношение электрического заряда к массе для электрона во много раз превышает аналогичное отношение для любой другой элементарной частицы или системы частиц. Электроны можно получать из твёрдых тел относительно легко по сравнению с любыми другими частицами. Эти два обстоятельства лежат в основе многочисленных применений электронов в электровакуумных приборах[16].
Этимология и история открытия[править | править код]
Название «электрон» происходит от греческого слова ἤλεκτρον, означающего «янтарь»: ещё в древней Греции естествоиспытателями проводились эксперименты — куски янтаря тёрли шерстью, после чего те начинали притягивать к себе мелкие предметы. Термин «электрон» как название фундаментальной неделимой единицы заряда в электрохимии был предложен[17]Дж. Дж. Стоуни в 1894 году (сама единица была введена им в 1874 году). Открытие электрона как частицы принадлежит Э. Вихерту[18][19] и Дж. Дж. Томсону, которые в 1897 году установили, что отношение заряда к массе для катодных лучей не зависит от материала источника.
Согласно гипотезе де Бройля (1924), электрон (как и все другие материальные микрообъекты) обладает не только корпускулярными, но и волновыми свойствами. Де-бройлевская длина волны электрона равна , где — постоянная Планка, — импульс электрона. В нерелятивистском случае она равна , где — скорость движения электрона, — масса электрона. В ультрарелятивистском случае она равна , где — скорость света, — энергия электрона.
В соответствии с этим электроны, подобно свету, могут испытывать интерференцию и дифракцию. Волновые свойства электронов были экспериментально обнаружены в 1927 году американскими физиками К. Дэвиссоном и Л. Джермером (Опыт Дэвиссона — Джермера) и независимо английским физиком Дж. П. Томсоном[20][21].
Открытие электрона и возможностей его применения в разнообразных технических устройствах привело к возникновению большого числа новых понятий современной физики.[22]
Использование[править | править код]
Эксперименты с трубкой Крукса впервые продемонстрировали природу электронов
В большинстве источников низкоэнергетичных электронов используются явления термоэлектронной эмиссии и фотоэлектронной эмиссии. Высокоэнергетичные, с энергией от нескольких кэВ до нескольких МэВ, электроны излучаются в процессах бета-распада и внутренней конверсии радиоактивных ядер. Электроны, излучаемые в бета-распаде, иногда называют бета-частицами или бета-лучами. Источниками электронов с более высокой энергией служат ускорители.
Движение электронов в металлах и полупроводниках позволяет легко переносить энергию и управлять ею. Это явление (электрический ток) является одной из основ современной цивилизации и используется практически повсеместно в промышленности, связи, информатике, электронике, в быту. Скорость дрейфа электронов в проводниках крайне мала (~0,1—1 мм/с), однако электрическое поле распространяется со скоростью света. В связи с этим ток во всей цепи устанавливается практически мгновенно.
Пучки электронов, ускоренные до больших энергий, например, в линейных ускорителях, являются одним из основных средств изучения строения атомных ядер и природы элементарных частиц. Более прозаическим применением электронных лучей являются телевизоры и мониторы с электронно-лучевыми трубками (ЭЛТ) — кинескопами. Электронный микроскоп также использует способность электронных пучков подчиняться законам электронной оптики. Ещё ускоренные электронные лучи применяются для создания рентгеновского излучения: при попадании электронного пучка в металлическую мишень происходит рассеяние электронов на электростатическом поле атомных ядер и электронов и генерация тормозного излучения. До изобретения транзисторов практически вся радиотехника и электроника были основаны на вакуумных электронных лампах, где применяется управление движением электронов в вакууме электрическими (иногда и магнитными) полями. Электровакуумные приборы (ЭВП) продолжают ограниченно использоваться и в наше время. Наиболее распространённые применения — магнетроны в генераторах микроволновых печей и вышеупомянутые электронно-лучевые трубки в телевизорах и мониторах.
Электронные пучки используются в устройствах для очистки дымовых газов[23] и в буровых установках для бурения скальных пород[24].
Электрон как квазичастица[править | править код]
Если электрон находится в периодическом потенциале, его движение рассматривается как движение квазичастицы[25]. Его состояния описываются квазиволновым вектором. Основной динамической характеристикой в случае квадратичного закона дисперсии является эффективная масса, которая может значительно отличаться от массы свободного электрона и в общем случае является тензором[26].
Электрон и Вселенная[править | править код]
Через сотую долю секунды после Большого взрыва Вселенная состояла из смеси электронов, позитронов, нейтрино, фотонов, протонов и нейтронов. На каждые протон и нейтрон приходилось примерно по миллиарду электронов, позитронов, нейтрино и фотонов. Примерно через 14 секунд после Большого взрыва, когда температура Вселенной снизилась до 3 млрд градусов, почти все электроны аннигилировали с позитронами[27].
Известно[28], что из каждых 100 нуклонов во Вселенной 87 являются протонами и 13 — нейтронами (последние в основном входят в состав ядер гелия). Для обеспечения общей нейтральности вещества число протонов и электронов должно быть одинаково. Плотность барионной (наблюдаемой оптическими методами) массы, которая состоит в основном из нуклонов, достаточно хорошо известна (один нуклон на 0,4 кубического метра)[29]. С учётом радиуса наблюдаемой Вселенной (13,7 млрд световых лет) можно подсчитать, что число электронов в этом объёме составляет ~1080, что сопоставимо с большими числами Дирака.
Электрический заряд электрона, постоянная Планка и скорость света определяют постоянную тонкой структуры, определяющую интенсивность электромагнитных взаимодействий:
.
Масса электрона, электрический заряд электрона и постоянная Планка определяют характерный размер атомов (боровский радиус):
см[30].
Радиоизлучение радиогалактик и пульсаров объясняется синхротронным излучением электронов в магнитных полях около этих объектов. Доля электронов с энергией, превышающей 1 ГэВ, в первичных космических лучах составляет около 1 % от общего потока[31].
Давление вырожденного электронного газа играет важную роль на заключительном этапе эволюции звёзд. Звёзды с массой меньше чандрасекаровского предела после охлаждения стабилизируются давлением вырожденного электронного газа и превращаются в белые карлики. В звёздах с большей массой атомные ядра захватывают электроны и распадаются на нейтроны (нейтронная звезда)[32]. Ядерные реакции с участием электронов и позитронов играют важную роль при взрывах сверхновых звёзд[33].
С электроном связаны несколько физических величин, имеющих размерность длины[34]:
Все электроны во Вселенной абсолютно одинаковы по своим свойствам. Если обозначить величину электрического заряда электрона как , то электрические заряды всех известных элементарных частиц, за исключением кварков, равны , а электрические заряды кварков равны . Масса электрона резко выделяется в распределении известных элементарных частиц по массам[35]. Классический радиус электрона почти равен радиусу действия ядерных сил[36][37][38]. Можно ли вывести величину электрического заряда электрона из других мировых констант (скорости света, постоянной Планка, гравитационной постоянной)[39]? Имеет ли смысл вопрос о размере электрона? Зависит ли размер электрона от условий опытов[40]? Ответы на эти вопросы пока неизвестны (см. Нерешённые проблемы современной физики).
Если бы масса электрона превышала разность масс нейтрона и протона, то химический состав Вселенной изменился бы коренным образом. В ней отсутствовал бы водород, а следовательно, звёзды в их обычном понимании, жизнь и разум. Поэтому, возможно, малая масса электрона обусловлена антропным принципом[41].
Если бы электрон имел целый спин, то принцип Паули бы для него не выполнялся. Как следствие, во всех атомах отсутствовали бы электронные оболочки, и все атомы были бы химически инертны. Во Вселенной отсутствовали бы молекулы, химические соединения и жизнь, подобная нашей.[источник не указан 790 дней]
Орбиталь[править | править код]
Для описания атомных и молекулярных многоэлектронных систем вместо точного решения уравнения Шрёдингера приходится обращаться к тем или иным приближениям, одним из которых является одноэлектронное, также называемое орбитальным. В его основе лежит представление о существовании индивидуальных состояний каждого электрона, которые представляют собой стационарные состояния движения электрона в некотором эффективном поле, создаваемом ядром (или ядрами) и всеми остальными электронами. Эти стационарные состояния описываются соответствующими одноэлектронными функциями[42] — орбиталями.
Электрон в произведениях искусства[править | править код]
- В. Брюсов посвятил электрону своё стихотворение «Мир электрона».
Примечания[править | править код]
- ↑ Иванов И. Удивительный мир внутри атомного ядра: Научно-популярная лекция для школьников. ФИАН, 11 сентября 2007 года.
- ↑ 1 2 3 4 5 6 7 8 9 10 Fundamental Physical Constants — Complete Listing. CODATA. NIST.
- ↑ 1 2 Agostini M. et al. (Borexino Coll.). Test of Electric Charge Conservation with Borexino (англ.) // Physical Review Letters. — 2015. — Vol. 115, iss. 23. — P. 231802. — doi:10.1103/PhysRevLett.115.231802. — arXiv:1509.01223.
- ↑ Back H. O. et al. (Borexino Coll.). Search for electron decay mode e → γ + ν with prototype of Borexino detector (англ.) // Phys. Lett. B. — 2002. — Vol. 525, iss. 1—2. — P. 29—40. — doi:10.1016/S0370-2693(01)01440-X. — Bibcode: 2002PhLB..525…29B.
- ↑ Также то же, что и электрум: «янтарного цвета сплав золота (80 %) с серебром (20 %)» (Черных П. Я. Историко-этимологический словарь).
- ↑ Ельяшевич М. А. Атом // Физическая энциклопедия : [в 5 т.] / Гл. ред. А. М. Прохоров. — М.: Советская энциклопедия, 1988. — Т. 1: Ааронова — Бома эффект — Длинные линии. — С. 146—151. — 707 с. — 100 000 экз.
- ↑ Единица заряда СГСЭ (франклин или статкулон) определена как Кл = (2 997 924 580)−1 Кл (точно), где c — числовое значение скорости света в вакууме в единицах СИ (м/с), по определению равное 2 997 924 580. Единица заряда СГСМ, которую иногда называют абкулон, определена как 10 Кл. Поэтому элементарный заряд, выраженный в единицах заряда СГСЭ и СГСМ, также имеет точное значение.
- ↑ Наумов А. И. Физика атомного ядра и элементарных частиц. — М.: Просвещение, 1984. — С. 82. — 30 000 экз.
- ↑ 1 2 Демельт Х. Эксперименты с покоящейся изолированной субатомной частицей. [(Нобелевская лекция)] (рус.) // Успехи физических наук. — Российская академия наук, 1990. — Т. 160, вып. 12. — С. 129—139.
- ↑ 1 2 Nobel lecture, December, 8, 1989, Hans D. Dehmelt Experiments with an isolated subatomic particle at rest
- ↑ Смондырев М. А. Квантовая электродинамика на малых расстояниях (рус.) // Природа. — Наука, 1980. — № 9. — С. 74—77.
- ↑ Широков, 1972, с. 67.
- ↑ По предложению Карла Андерсона, открывшего позитрон в 1932 году.
- ↑ Beuermann K. P. et al. Cosmic-Ray Negatron and Positron Spectra Between 12 and 220 MeV // Phys. Rev. Lett.. — 1969. — Vol. 22. — P. 412—415. — doi:10.1103/PhysRevLett.22.412.
Ejiri H. Difference between Log ft Values of Negatron Decays and Positron Decays from Odd-Odd Nuclei to Even-Even Nuclei // J. Phys. Soc. Jpn.. — 1967. — Vol. 22. — P. 360—367. — doi:10.1143/JPSJ.22.360.
Из статьи Skibo J. G., Ramaty R. Primary and Secondary Cosmic Ray Positrons and Electrons // 23rd International Cosmic Ray Conference. — 1993. — Vol. 2. — P. 132—135. — Bibcode: 1993ICRC….2..132S.: «Hereafter, the term electron will refer to positrons and negatrons». - ↑ Мотт Н., Снеддон И. Волновая механика и её применения. — М: Наука, 1966. — С. 30. — 9400 экз.
- ↑ Спроул Р. Современная физика. — М.: Наука, 1974. — С. 18. — 34 000 экз.
- ↑ Stoney G. J. Of the ‘Electron,’ or Atom of Electricity] (англ.) // Philosophical Magazine. Series 5. — 1894. — Vol. 38. — P. 418—420.
- ↑ Wiechert E. Über das Wesen der Elektrizität (нем.) // Schriften der Physikalisch-Ökonomischen Gesellschaft zu Königsberg in Preußen. — 7 Jan. 1897. — Bd. 38, H. 1. — S. 3—12.
Wiechert E. Experimentelles über die Kathodenstrahlen (нем.) // Schriften der Physikalisch-Ökonomischen Gesellschaft zu Königsberg in Preußen. — 7 Jan. 1897. — Bd. 38, H. 1. — S. 12—16. - ↑ Быков Г. В. К истории открытия электрона // Вопросы истории естествознания и техники. — 1963. — Вып. 15. — С. 25—29.
- ↑ Thomson G. P. The Septuagenarian Electron (англ.) // Phys. Today. — 1967. — Vol. 20, iss. 5. — P. 55.; Пер. с англ.: Томсон Г. П. Семидесятилетний электрон (рус.) // Успехи физических наук. — Российская академия наук, 1968. — Т. 94, вып. 2. — С. 361—370. — doi:10.3367/UFNr.0094.196802f.0361.
- ↑ Томсон Г. П. Ранний этап изучения дифракции электронов (рус.) // Успехи физических наук. — Российская академия наук, 1969. — Т. 99, вып. 11. — С. 455—468. — doi:10.3367/UFNr.0099.196911d.0455.
- ↑ Робертсон Б. Современная физика в прикладных науках. — М., Мир, 1985. — с. 25
- ↑ Екатерина Зубкова. БИНТИ Ускорители для очистки дымовых газов электростанций (рус.) // Наука и жизнь. — 2017. — № 10. — С. 40—41.
- ↑ Екатерина Зубкова. БИНТИ Пробурить скважину к глубинному теплу (рус.) // Наука и жизнь. — 2017. — № 10. — С. 41.
- ↑ Киттель Ч. Квантовая теория твердых тел. — М.-Л.: Наука, 1967. — С. 103.
- ↑ Давыдов А. С. Теория твердого тела. — М.: Мир, 1979. — С. 122.
- ↑ Вайнберг С. Первые три минуты. — М.: Эксмо, 2011. — 208 с. — ISBN 978-5-699-46169-1.
- ↑ Boyd R. N. Big bang nucleosynthesis (англ.) // Nuclear Physics A. — 2001. — Vol. 693, no. 1—2. — P. 249—257. — doi:10.1016/S0375-9474(00)00707-7.
- ↑ Astrophysical Constants and Parameters
- ↑ Смородинский Я. А. Законы и парадоксы элементарных частиц // Физика наших дней. Сборник. — М.: Знание, 1972. — С. 90—91.
- ↑ Дорман Л. И. Экспериментальные и теоретические основы астрофизики космических лучей. — М.: Наука, 1975. — 464 с.
- ↑ Широков, 1972, с. 552.
- ↑ Широков, 1972, с. 558.
- ↑ Щёлкин К. И. Физика микромира. — М.: Атомиздат, 1965. — 230 с.
- ↑ Розенталь И. Л., Архангельская И. В. Геометрия, динамика, Вселенная. — М.: Едиториал УРСС, 2003. — С. 175. — ISBN 5-354-00413-6.
- ↑ Вайскопф В. Физика в двадцатом столетии. — М.: Атомиздат, 1977. — С. 103.
- ↑ Бор Н. Дискуссии с Эйнштейном о проблемах теории познания в атомной физике // Атомная физика и человеческое познание. — М.: ИЛ, 1961. — С. 92.
- ↑ Розенфельд Л. Квантовая электродинамика // Нильс Бор и развитие физики. — М.: ИЛ, 1958. — С. 115.
- ↑ Иваненко Д. Д. Элементарные частицы // Очерки развития основных физических идей. — М.: АН СССР, 1959. — С. 427. — 5000 экз.
- ↑ Пономарев Л. И. По ту сторону кванта. — М.: Молодая гвардия, 1971. — С. 43.
- ↑ Новиков И. Д. Как взорвалась Вселенная. — М.: Наука, 1988. — 141 с. — ISBN 5-02-013881-9.
- ↑ Дмитриев, Электрон глазами химика, 1986, с. 65.
Литература[править | править код]
- Все известные свойства электрона систематизированы в обзоре Particle Data Group [1] (англ.).
- Бронштейн М. П. Атомы и электроны. — М.: Наука. — 1980. — 152 с., Библиотечка «Квант», вып. 1. Тир. 150000 экз.
- Дмитриев И.С. Электрон глазами химика / 2-е изд., испр.. — Л.: Химия, 1986. — 225 с.
- Широков Ю. М., Юдин Н. П. Ядерная физика. — М.: Наука, 1972. — 670 с.
- Буравихин В. А., Егоров В. А. Биография электрона. — М.: Знание, 1985. — 136 с.
Источник