Какая форма графита обеспечивает наиболее высокие механические свойства

Какая форма графита обеспечивает наиболее высокие механические свойства thumbnail

Графитовые включения можно рассматривать как соответствующией формы пустоты в структуре чугуна. Около таких дефектов при нагружении концентрируются напряжения, значение которых тем больше, чем острее дефект. Отсюда следует, что графитовые включения пластинчатой формы в максимальной мере разупрочняют металл. Более благоприятна хлопьевидная форма, а оптимальной является шаровидная форма графита. Пластичность зависит от формы таким же образом. Относительное удлинение для серых чугунов составляет 0,5 %, для ковких – до 10 %, для высокопрочных – до 15%.

Наличие графита наиболее резко снижает сопротивление при жестких способах нагружения: удар; разрыв. Сопротивление сжатию снижается мало.

Положительные стороны наличия графита:

– графит улучшает обрабатываемость резанием, так как образуется ломкая стружка;

– чугун имеет лучшие антифрикционные свойства, по сравнению со сталью, так как наличие графита обеспечивает дополнительную смазку поверхностей трения;

– из-за микропустот, заполненных графитом, чугун хорошо гасит вибрации и имеет повышенную циклическую вязкость;

– детали из чугуна не чувствительны к внешним концентраторам напряжений (выточки, отверстия, переходы в сечениях);

– чугун значительно дешевле стали;

– производство изделий из чугуна литьем дешевле изготовления изделий из стальных заготовок обработкой резанием, а также литьем и обработкой давлением с последующей механической обработкой.

Серый чугун

Структура не оказывает влияние на пластичность, она остается чрезвычайно низкой. Но оказывает влияние на твердость. Механическая прочность в основном определяется количеством, формой и размерами включений графита. Мелкие, завихренной формы чешуйки графита меньше снижают прочность. Такая форма достигается путем модифицирования. В качестве модификаторов применяют алюминий, силикокальций, ферросилиций.

Серый чугун широко применяется в машиностроении, так как легко обрабатывается и обладает хорошими свойствами. В зависимости от прочности серый чугун подразделяют на 10 марок (ГОСТ 1412).

Серые чугуны при малом сопротивлении растяжению имеют достаточно высокое сопротивление сжатию.

Серые чугуны содержат углерода – 3,2…3,5 %; кремния – 1,9…2,5 %; марганца – 0,5…0,8 %; фосфора – 0,1…0,3 %; серы – < 0,12 %.

Структура металлической основы зависит от количества углерода и кремния. С увеличением содержания углерода и кремния увеличивается степень графитизации и склонность к образованию ферритовой структуры металлической основы. Это ведет к разупрочнению чугуна без повышения пластичности. Лучшими прочностными свойствами и износостойкостью обладают перлитные серые чугуны.

Учитывая малое сопротивление отливок из серого чугуна растягивающим и ударным нагрузкам, следует использовать этот материал для деталей, которые подвергаются сжимающим или изгибающим нагрузкам. В станкостроении это – базовые, корпусные детали, кронштейны, зубчатые колеса, направляющие; в автостроении – блоки цилиндров, поршневые кольца, распределительные валы, диски сцепления. Отливки из серого чугуна также используются в электромашиностроении, для изготовления товаров народного потребления.

Обозначаются индексом СЧ (серый чугун) и числом, которое показывает значение предела прочности, умноженное на 15.

Высокопрочный чугун с шаровидным графитом

Высокопрочные чугуны (ГОСТ 7293) могут иметь ферритную (ВЧ 35), феррито – перлитную (ВЧ45) и перлитную (ВЧ 80) металлическую основу. Получают эти чугуны из серых, в результате модифицирования магнием или цезием (добавляется 0,03…0,07 % от массы отливки). По сравнению с серыми чугунами, механические свойства повышаются, это вызвано отсутствием неравномерности в распределении напряжений из-за шаровидной формы графита.

Чугуны с перлитной металлической основой имеют высокие показатели прочности при меньшем значении пластичности. Соотношение пластичности и прочности ферритных чугунов – обратное.

Высокопрочные чугуны обладают высоким пределом текучести, что выше предела текучести стальных отливок. Также характерна достаточно высокая ударная вязкость и усталостная прочность, при перлитной основе.

Высокопрочные чугуны содержат: углерода – 3,2…3,8 %, кремния – 1,9…2,6 %, марганца – 0,6…0,8 %, фосфора – до 0,12 %, серы – до 0,3 %.

Эти чугуны обладают высокой жидкотекучестью, линейная усадка – около 1%. Литейные напряжения в отливках несколько выше, чем для серого чугуна. Из-за высокого модуля упругости достаточно высокая обрабатываемость резанием. Обладают удовлетворительной свариваемостью.

Из высокопрочного чугуна изготовляют тонкостенные отливки (поршневые кольца), шаботы ковочных молотов, станины и рамы прессов и прокатных станов, изложницы, резцедержатели, планшайбы.

Отливки коленчатых валов массой до 2..3 т, взамен кованых валов из стали, обладают более высокой циклической вязкостью, малочувствительны к внешним концентраторам напряжения, обладают лучшими антифрикционными свойствами и значительно дешевле.

Обозначаются индексом ВЧ (высокопрочный чугун) и числом, которое показывает значение предела прочности, умноженное на 100.

Ковкий чугун

Получают отжигом белого доэвтектического чугуна.

Хорошие свойства у отливок обеспечиваются, если в процессе кристаллизации и охлаждения отливок в форме не происходит процесс графитизации. Чтобы предотвратить графитизацию, чугуны должны иметь пониженное содержание углерода и кремния.

Читайте также:  Какими свойствами обладают вещества между молекулами которых образуется водородная связь

Ковкие чугуны содержат: углерода – 2,4…3,0 %, кремния – 0,8…1,4 %, марганца – 0,3…1,0 %, фосфора – до 0,2 %, серы – до 0,1 %.

Формирование окончательной структуры и свойств отливок происходит в процессе отжига. Отливки выдерживаются в печи при температуре 950…1000 оС в течении 15…20 часов. Происходит разложение цементита.

Структура после выдержки состоит из аустенита и графита (углерод отжига). При медленном охлаждении в интервале 760…720 оС, происходит разложение цементита, входящего в состав перлита, и структура после отжига состоит из феррита и углерода отжига (получается ферритный ковкий чугун).

При относительно быстром охлаждении вторая стадия полностью устраняется, и получается перлитный ковкий чугун.

Структура отожженного чугуна состоит из перлита, феррита и графита отжига (получается феррито-перлитный ковкий чугун)

Отжиг является длительной 70…80 часов и дорогостоящей операцией. В последнее время, в результате усовершенствований, длительность сократилась до 40 часов.

Различают 7 марок ковкого чугуна: три с ферритной (КЧ 30 – 6) и четыре с перлитной (КЧ 65 – 3) основой (ГОСТ 1215).

По механическим и технологическим свойствам ковкий чугун занимает промежуточное положение между серым чугуном и сталью. Недостатком ковкого чугуна по сравнению с высокопрочным является ограничение толщины стенок для отливки и необходимость отжига.

Отливки из ковкого чугуна применяют для деталей, работающих при ударных и вибрационных нагрузках.

Из ферритных чугунов изготавливают картеры редукторов, ступицы, крюки, скобы, хомутики, муфты, фланцы.

Из перлитных чугунов, характеризующихся высокой прочностью, достаточной пластичностью, изготавливают вилки карданных валов, звенья и ролики цепей конвейера, тормозные колодки.

Обозначаются индексом КЧ (высокопрочный чугун) и двумя числами, первое из которых показывает значение предела прочности, умноженное на 100, а второе – относительное удлинение – КЧ 30 – 6.

Отбеленные и другие чугуны

Отбеленные – отливки, поверхность которых состоит из белого чугуна, а внутри серый или высокопрочный чугун.

В составе чугуна 2,8…3,6 % углерода, и пониженное содержание кремния – 0,5…0,8 %.

Имеют высокую поверхностную твердость (950…1000 НВ) и очень высокую износостойкость. Используются для изготовления прокатных валов, вагонных колес с отбеленным ободом, шаров для шаровых мельниц.

Для изготовления деталей, работающих в условиях абразивного износа, используются белые чугуны, легированные хромом, хромом и марганцем, хромом и никелем. Отливки из такого чугуна отличаются высокой твердостью и износостойкостью.

Для деталей, работающих в условиях износа при высоких температурах, используют высокохромистые и хромоникелевые чугуны. Жаростойкость достигается легированием чугунов кремнием (5…6 %) и алюминием (1…2 %). Коррозионная стойкость увеличивается легированием хромом, никелем, кремнием.

Для чугунов также можно применять термическую обработку.

Тесты для самоконтроля



Источник

Графит имеет гексагональную слоистую решетку с небольшой энергией связи между атомами в разных слоях (силы Ван-дер-Ваальса), вследствие чего он обладает очень низкими твердостью, прочностью и пластичностью, значительно более низкими, чем у металлической основы. Графитные включения фактически представляют собой своеобразные трещины или пустоты, заполненные графитом. Чугун в связи с этим можно рассматривать как сталь, испещренную большим количеством таких трещин и пустот (графитных включений), ослабляющих металлическую основу. Чем больше графитных включений, чем они грубее, тем больше они разобщают металлическую основу и тем ниже механические свойства чугуна.

Графитные включения в чугунах имеют пластинчатую, вермикулярную, шаровидную или хлопьевидную форму (рис. 7.2).

Пластинчатый графит, играющий роль острых трещин и надрезов, является резким концентратором напряжений. Под действием нормальных напряжений по концам таких графитных включений легко формируются очаги разруше-

Рис. 7.2. Структуры чугунов с разной металлической основой и формой графитовых включений

ния. По этой причине чугуны с пластинчатым графитом имеют самую низкую прочность при растяжении и изгибе.

Вермикулярный графит отличается от пластинчатого значительно меньшими размерами частиц – это очень мелкие и тонкие прожилки со скругленными концами. Скругленные графитные включения выполняют роль уже не трещин, а пустот и являются менее резкими концентраторами напряжений.

Наименьшая концентрация напряжений отмечается в чугунах с шаровидным графитом. Такие чугуны имеют самую высокую прочность при растяжении и изгибе.

Чугуны с хлопьевидным графитом уступают им по своим прочностным характеристикам, но превосходят чугуны с пластинчатым графитом.

Таким образом, прочность чугунов с графитом определяется строением металлической основы и формой графитных включений. При меньшей степени графитизации (например, в ферритно-перлитном и особенно в перлитном чугунах по сравнению с ферритным) количество (объем) и размеры графитных включений будут меньше.

Уровень пластичности чугунов определяется формой графита (табл. 7.2). Самую низкую пластичность имеет чугун с пластинчатым графитом.

Читайте также:  Какие свойства характеризуют связь системы с внешней средой

Таблица 7.2

Влияние формы графитных включений на пластичность чугунов

Графит

Пластинчатый

Вермикулярный

Хлопьевидный

Шаровидный

Относительное удлинение δ, %

<0,5

1…3

3…12

2…17

Чугуны с графитом широко применяются в промышленности. Наличие графита в структуре, определяющее низкую прочность чугунов, придает им ряд высоких технологических и эксплуатационных свойств:

  • – графит улучшает литейные свойства, уменьшая усадку чугунов при кристаллизации (см. 11.2.1);
  • – мягкий и хрупкий графит улучшает обрабатываемость чугунов резанием, способствуя образованию стружки надлома (стружка ломается на графитовых включениях);
  • – графит обеспечивает чугунам хорошие антифрикционные свойства, он играет роль смазки в парах трения;
  • – графит гасит вибрации и резонансные колебания;
  • – чугуны с графитом мало чувствительны к надрезам и другим дефектам поверхности деталей, поскольку подобные дефекты в виде графитных включений уже имеются в самом чугуне.

Источник

В промышленности широкое применение нашли чугуны с графитом. Чугуны — литейные сплавы, их используют для производства отливок. Чугуны обладают хорошей жидкотекучестью, а также малой усадкой за счет наличия в структуре свободного углерода — графита (см. разд. 18.1), температура их затвердевания ниже, чем у сталей.

Процесс образования графита в чугунах называется графитизацией. Образование графита может происходить при его непосредственном выделении из жидкой фазы при очень медленном охлаждении, когда степень переохлаждения не превышает 5 °С (при более быстром охлаждении образуется цементит), или в результате распада цементита при длительных выдержках.

Цементит (Ц) распадается на свободный углерод в виде графита (Г) и твердый раствор углерода в железе:

• при температуре свыше 727 °С — на аустенит (А) и графит (Г):

• при температуре ниже 727 °С — на феррит (Ф) и графит (Г):

В зависимости от формы графитовых включений различают несколько видов чугунов (рис. 13.1, а):

  • • серые — графит имеет пластинчатую форму;
  • • высокопрочные — форма графита шаровидная (глобулярная);
  • • ковкие — графит имеет хлопьевидную форму.

Распад цементита может проходить полностью или частично. При неполном распаде цементита он присутствует в структуре наряду с графитом. В зависимости от количества углерода, связанного в цементите (Ссвяз), меняется структура металлической основы чугуна:

  • • при ССВяз до 0,02 % — матрица ферритная. Это чугуны на ферритной основе, их структура феррит + графит;
  • • при Ссвяз = 0,8 % структура матрицы —- перлит. Это перлитные чугуны со структурой перлит + графит;
  • • при Ссвяз от 0,02 до 0,8 % ферритно-перлитовые — чугуны, со структурой феррит + перлит + графит.

Таким образом, по структурному признаку различают девять видов чугу- нов: три по форме графита — серый, высокопрочный и ковкий, причем каждый из них может иметь ферритную, ферритно-перлитную или перлитную матрицу (рис. 13.1). Твердость и прочность перлита выше, чем феррита. Поэтому наибольшей прочностью и износостойкостью обладают чугуны (с одинаковой формой графита) на перлитной основе, наименьшей — на ферритовой.

Серый чугун получил название по виду излома, имеющего серый цвет. Серые чугуны получают непосредственно литьем. Это доэвтектические чугуны, содержащие 2,4.. .3,8 % углерода, 1.. .4 % кремния (графитизатор), 1,25… 1,4 % марганца (повышает прочность).

Структура металлической основы определяется химическим составом чугуна и скоростью охлаждения отливки (рис. 13.1, б, в). Увеличение в чугуне содержания кремния и углерода способствует более полной графитизации. Аналогично влияние замедленного охлаждения. Графитизация — процесс диффузионный, поэтому он развивается тем полнее, чем дольше отливка находится при высоких температурах, т. е. чем медленнее она охлаждается. Скорость охлаждения отливки определяется ее сечением — чем больше сечение (толщина), тем больше время охлаждения.

Серые чугуны обладают меньшей прочностью, чем ковкие и высокопрочные. Чем крупнее пластинки графита (они играют роль трещин) и менее равномерно они распределены по объему, тем ниже прочность чугуна при растяжении. Минимальной прочностью обладает серый чугун на ферритовой основе. Вместе с тем включения графита не оказывают практического влияния на прочность при сжатии (при сжатии трещины закрываются). Предел прочности при сжатии в 3-5 раз больше, чем при растяжении (примерно такой же, как у низкоуглеродистой стали, например, Ст. 3).

Вместе с тем наличие в структуре свободного графита определяет ряд преимуществ чугуна перед сталью:

  • • лучшая обрабатываемость резанием; обеспечивается хорошее стружкоот- деление — стружка при обработке чугуна сыпучая, а не сливная, как у стали;
  • • более высокие антифрикционные свойства благодаря смазывающему действию графита;
  • • наличие демпфирующих свойств, поскольку графитовые включения гасят вибрации;

Рис. 13.1. Структуры чугунов с графитом: а — по форме графита и металлической основе; б — по химическому составу; в — по скорости охлаждения; I — белый чугун; II — отбеленный чугун;

Читайте также:  Какое из приведенных веществ проявляет амфотерные свойства

III — перлитный чугун; VI — перлито-ферритный; V — ферритный

• практически отсутствие чувствительности к поверхностным дефектам (надрезам и т. п.);

Серые чугуны обозначаются буквами СЧ (серый чугун) и цифрами, которые указывают предел прочности при растяжении в кгс/мм2. Например, СЧ20 — серый чугун с пределом прочности при растяжении 20 кгс/мм2 (200 МПа).

Серые чугуны применяют для изготовления отливок станин, поршней цилиндров, зубчатых колес и др.; ферритные (СЧ10, СЧ15) и ферритно-перлитные (СЧ20, СЧ25), обладающие меньшей прочностью, — для менее нагруженных деталей; перлитные (СЧ30, СЧ35) — для более нагруженных.

Серый чугун с повышенным содержанием фосфора (до 1,6%), обладающий хорошей жидкотекучестью, используют при производстве художественного литья.

Высокопрочный чугун получают при модифицировании магнием или церием перед его заливкой в формы. Под воздействием магния графит приобретает шаровидную (глобулярную) форму. Шаровидная форма графита обеспечивает высокие механические свойства чугуна (прочность на растяжение и пластичность). Это объясняется тем, что шаровидный графит значительно меньше, чем пластинчатый, ослабляет металлическую основу. Среди всех чугунов максимальная прочность у высокопрочного на перлитной основе.

Маркируют чугуны буквами ВЧ — высокопрочный чугун и цифрами, которые указывают предел прочности при растяжении в кгс/мм2. Например, ВЧ60 — высокопрочный чугун с пределом прочности при растяжении 60 кгс/мм2 (600 МПа).

Наибольшую прочность имеют чугуны на перлитной основе (ВЧ80, ВЧ60), она снижается у чугунов с ферритно-перлитной основой (ВЧ50, ВЧ45) и минимальна у чугунов с ферритной основой (ВЧ42, ВЧ38).

В целях получения особых свойств (жаростойкости, антифрикционнности, коррозионной стойкости) высокопрочные чугуны легируют хромом, никелем, молибденом, титаном, алюминием.

Высокопрочные чугуны эффективно заменяют сталь. Из них изготавливают валки прокатных станов, коленчатые валы автомобилей и др.

Ковкий чугун получают из белого чугуна путем графитизирующего отжига. Его проводят в две стадии (рис. 13.2), что обеспечивает необходимый распад цементита.

Рис. 13.2. Режим отжига белого чугуна для получения ковкого чугуна

Первая стадия отжига заключается в нагреве отливок до температуры

950… 1000 °С и длительной изотермической выдержке при этой температуре (10… 15 ч). При этом цементит распадется на аустенит и графит (Ц —? А -ь Г). Затем осуществляется медленное охлаждение (5… 12 ч) до температуры, лежащей немного ниже линии PSK (см. рис. 10.1), в процессе которого происходит выделение из аустенита вторичного цементита (линия SE на диаграмме Fe — Fe3C, см. рис. 10.1) и его распад (Ц —» А + Г) с образованием хлопьевидного графита.

Вторая стадия отжига—изотермическая выдержка при температуре немного ниже температуры эвтектоидного превращения в течение 25.. .30 ч. При этом происходит эвтектоидное превращение аустенита в перлит (А —» П[Ф + Ц]) и распад цементита, входящего в перлит, на феррит и графит (Ц —> Ф + Г).

В результате такого отжига, когда распался весь цементит, получают ковкий ферритный чугун (излом бархатисто-черный). При сокращении выдержки на второй стадии графитизация происходит не до конца, и получают ковкий феррито-перлитный чугун, а если исключить вторую стадию, — ковкий перлитный чугун (излом светлый).

Хлопьевидный графит ослабляет металлическую основу в меньшей степени, чем пластинчатый. Отсутствие литейных напряжений, которые полностью устраняются во время отжига, обусловливает высокие механические свойства ковких чугунов. Они, уступая высокопрочным чугунам в прочности, существенно превосходят по прочности серые чугуны, а по пластичности — серые чугуны. Именно благодаря своей высокой (для чугунов) пластичности они получили название — ковкие. Однако, это название является условным. Пластичность ковких чугунов недостаточна для проведения пластической деформации. Ковкие чугуны не куют.

Маркируют ковкие чугуны буквами КЧ — ковкий чугун и цифрами. Первые цифры это предел прочности при растяжении (кгс/мм2), вторые — относительное удлинение (%). Например: КЧ45-6 означает — ковкий чугун, с пределом прочности при растяжении а„ = 45 кгс/мм2 (450 МПа) и относительным удлинением при испытаниях на растяжение 5 = 6%.

Из ковкого чугуна можно получить заготовки только небольших размеров — толщиной не более 40.. .50 мм. Это связано с тем, что получение крупногабаритных отливок из белого чугуна невозможно (при их замедленном охлаждении будет происходить графитизация), а именно отжигом белого чугуна получают ковкий.

Из ковких чугунов изготавливают детали относительно небольших размеров, работающие при статических и динамических нагрузках (картер заднего моста, чашки дифференциала, тормозные колодки, ступицы колес для автомобилей и др.).

Источник