Какая функциональная группа придает аминокислоте щелочные свойства

Какая функциональная группа придает аминокислоте щелочные свойства thumbnail

Аминокислоты – органические бифункциональные соединения, в состав которых входят карбоксильные группы –СООН и аминогруппы –NH2.

Природные аминокислоты можно разделить на следующие основные группы:

1) Алифатические предельные аминокислоты (глицин, аланин)NH2-CH2-COOH глицин

NH2-CH(CH3)-COOH аланин

2) Серосодержащие аминокислоты (цистеин)

цистеин

3) Аминокислоты с алифатической гидроксильной группой (серин)NH2-CH(CH2OH)-COOH серин
4) Ароматические аминокислоты (фенилаланин, тирозин)

фенилаланин

Какая функциональная группа придает аминокислоте щелочные свойства

тирозин

5) Аминокислоты с двумя карбоксильными группами (глутаминовая кислота)HOOC-CH(NH2)-CH2-CH2-COOH

глутаминовая кислота

6) Аминокислоты с двумя аминогруппами (лизин)CH2(NH2)-CH2-CH2-CH2-CH(NH2)-COOH

лизин

  • Для природных α-аминокислот R-CH(NH2)COOH применяются тривиальные названия: глицин, аланин, серин и т. д.
  • По систематической номенклатуре названия аминокислот образуются из названий соответствующих кислот прибавлением приставки амино- и указанием места расположения аминогруппы по отношению к карбоксильной группе:
  • Часто используется также другой способ построения названий аминокислот, согласно которому к тривиальному названию карбоновой кислоты добавляется приставка амино- с указанием положения аминогруппы буквой греческого алфавита.

Аминокислоты – твердые кристаллические вещества с высокой температурой плавления. Хорошо растворимы в воде, водные растворы хорошо проводят электрический ток.

  • Замещение галогена на аминогруппу в соответствующих галогензамещенных кислотах:
  • Восстановление нитрозамещенных карбоновых кислот (применяется для получения ароматических аминокислот):

Какая функциональная группа придает аминокислоте щелочные свойства

При растворении аминокислот в воде карбоксильная группа отщепляет ион водорода, который может присоединиться к аминогруппе. При этом образуется внутренняя соль, молекула которой представляет собой биполярный ион:

1. Кислотно-основные свойства аминокислот

 Аминокислоты — это амфотерные соединения.

Они содержат в составе молекулы две функциональные группы противоположного характера: аминогруппу с основными свойствами и карбоксильную группу с кислотными свойствами.

Водные растворы аминокислот имеют нейтральную, щелочную или кислую среду в зависимости от количества функциональных групп.

Так, глутаминовая кислота образует кислый раствор (две группы -СООН, одна -NH2), лизин — щелочной (одна группа -СООН, две -NH2).

1.1. Взаимодействие с металлами и щелочами

Как кислоты (по карбоксильной группе), аминокислоты могут реагировать с металлами, щелочами, образуя соли:

1.2. Взаимодействие с кислотами

По аминогруппе аминокислоты реагируют с основаниями:

2. Взаимодействие с азотистой кислотой

Аминокислоты способны реагировать с азотистой кислотой.

Например, глицин взаимодействует с азотистой кислотой:

3. Взаимодействие с аминами

Аминокислоты способны реагировать с аминами, образуя соли или амиды.

4. Этерификация

Аминокислоты могут реагировать со спиртами в присутствии газообразного хлороводорода, превращаясь в сложный эфир:

Например, глицин взаимодействует с этиловым спиртом:

5. Декарбоксилирование

Протекает при нагревании аминокислот с щелочами или при нагревании.

Например, глицин взаимодействует с гидроксидом бария при нагревании:

Например, глицин разлагается при нагревании:

6. Межмолекулярное взаимодействие аминокислот

 При взаимодействии аминокислот образуются пептиды.  При взаимодействии двух α-аминокислот образуется дипептид.

Например, глицин реагирует с аланином с образованием дипептида (глицилаланин):

Какая функциональная группа придает аминокислоте щелочные свойства

Фрагменты молекул аминокислот, образующие пептидную цепь, называются аминокислотными остатками, а связь CO–NH — пептидной связью.

Источник

Определение

Белки — это неразветвленные (линейные) гетерополимеры, мономерами (то есть структурными единицами) которых являются аминокислоты.

Входящие в состав белков аминокислоты имеют сходное, но не совсем одинаковое строение:

Рис. 1Какая функциональная группа придает аминокислоте щелочные свойства

Как видно из формулы, молекула аминокислоты состоит из двух частей. Та часть, которая на рисунке находится на желтом фоне (то есть все, кроме радикала — R), одинакова у всех аминокислот, входящих в состав белков. Эта общая часть содержит аминогруппу (–NH$_2$) и карбоксильную группу (–COOH), присоединенные к одному и тому же атому углерода. Такие аминокислоты, в которых аминогруппа присоединена к тому же атому углерода ($alpha$-атому, согласно номенклатуре карбоновых кислот), что и карбоксильная группа, называются $alpha$-аминокислотами.

Та часть молекулы аминокислоты, которая изображена в формуле в виде буквы R, называется боковым радикалом. Боковой радикал у различных аминокислот имеет разную структуру. В качестве структурных элементов (мономеров) в составе белков обнаруживаются 20 различных аминокислот (см. таблицу), таким образом, в белках встречаются 20 различных по структуре боковых цепей. Как видно из таблицы, самым простым боковым радикалом является атом водорода (аминокислота глицин).

Карбоксильная группа свободной аминокислоты может при нейтральных значениях рН диссоциировать, отдавая в раствор протон ($mathrm{H^+}$) и приобретая отрицательный заряд.

Аминогруппа свободной аминокислоты может присоединять протон и приобретать положительный заряд, подобно тому как аммиак превращается в ион аммония. Поэтому при нейтральных рН аминокислоты находятся в состоянии цвиттер-иона — иона (от нем. zwitter – двойной), одна часть которого имеет положительный, а другая часть — отрицательный заряд. 

Читайте также:  Какие закономерности наблюдаются в изменении свойства

Цвиттер-ион:

Какая функциональная группа придает аминокислоте щелочные свойства

Зависимость заряда аминокислот от среды

В кислой среде ионизована в основном аминогруппа аминокислоты, в щелочной — карбоксильная, поэтому заряд свободной аминокислоты в целом зависит от рН:

Какая функциональная группа придает аминокислоте щелочные свойства

Классификация радикалов аминокислот

Радикалы аминокислот очень разнообразны по своей химической структуре. Радикалы аминокислот классифицируют в соответствии с их полярностью и строением. Это деление достаточно условно, но оно основано главным образом на тех химических свойствах аминокислот, которые являются определяющими для формирования структуры белка.

Некоторые радикалы аминокислот в нейтральной среде могут приобретать полный (заряженные радикалы) или частичный (полярные радикалы) заряд. За счет притяжения разноименных и отталкивания одноименных зарядов (электростатическое взаимодействие) заряженные радикалы могут взаимодействовать с другими заряженными или полярными радикалами в той же белковой молекуле, а также в других белковых молекулах при белок-белковом взаимодействии или с низкомолекулярными веществами. По этой причине наличие и расположение заряженных и полярных радикалов оказывает огромное влияние на пространственную структуру белка и его взаимодействие с другими белками и иными молекулами (взаимодействия фермент-субстрат, рецептор-лиганд) (см. уровни структуры белка; ферменты).

Классификация радикалов:

1) Заряженные радикалы.

Некоторые аминокислоты могут содержать амино- и карбоксильные группы в составе бокового радикала. Они приобретают заряд таким же образом, как и амино- и карбоксильная группа свободной аминокислоты.  При нейтральных значениях рН  боковые радикалы, содержащие карбоксильную группу  (радикалы аспарагиновой  и глутаминовой кислот) заряжены отрицательно, а радикалы, содержащие аминогруппу (радикалы лизина, аргинина и гистидина), заряжены положительно. 

2) Неполярные, или гидрофобные радикалы.

Не несут заряда, не взаимодействуют с водой и другими полярными молекулами. В структуре белка, как правило, группируются в гидрофобное ядро внутри молекулы, минимизируя контакт с водой.К ним относятся: глицин, аланин, валин, лейцин, изолейцин, метионин, фенилаланин, триптофан и пролин.

В зависимости от структуры могут быть, в свою очередь, подразделены на:

а) циклические радикалы (фенилаланин, триптофан). Радикал триптофана при этом является гетероциклической структурой (содержит в цикле азот);

б) нециклические гидрофобные радикалы (глицин, аланин, валин, лейцин, изолейцин, пролин, метионин).

3) Полярные радикалы. Шесть аминокислот (аспарагин, глутамин, серин, треонин, тирозин и цистеин) содержат незаряженные, но полярные группировки ($mathrm{–OH, –CONH_2, –SH}$), которые приобретают частичные заряды и являются гидрофильными. 

Также в отдельную группу могут быть выделены серосодержащие аминокислоты (цистеин, метионин), ароматические аминокислоты (фенилаланин, тирозин и триптофан).

Какая функциональная группа придает аминокислоте щелочные свойства

Таблица

Структура боковых радикалов аминокислот, входящих в состав белков. Радикалы представлены в том виде, который они имеют при рН 7,2.

Для удобства записи белковых последовательностей используются трехбуквенные или однобуквенные сокращенные обозначения аминокислот, указанные в таблице.

Аминокислота

Боковой радикал

Тип радикала

Глицин (Гли, Gly, G)

$mathrm{–H}$

гидрофобный

Аспарагиновая кислота (Асп, Asp, D)

$mathrm{–CH_2–COO^-}$

отрицательно заряжен

Глутаминовая кислота (Глу, Glu, E)

$mathrm{–CH_2–CH_2–COO^–}$

отрицательно заряжен

Лизин (Лиз, Lys, K)

$mathrm{–CH_2–CH_2–CH_2–CH_2–NH_3^+}$

положительно заряжен

Аргинин (Арг, Arg, R)

Какая функциональная группа придает аминокислоте щелочные свойства

положительно заряжен

Гистидин (Гис, His, H)

 N частично протонирован:

положительно заряжен
(хотя и не 100% молекул, в отличие от лизина и аргинина)

Фенилаланин (Фен, Phe, F)

гидрофобный

Тирозин (Тир, Tyr, Y)

Какая функциональная группа придает аминокислоте щелочные свойства

полярный

Триптофан (Трп, Trp, W)

гидрофобный

Аланин (Ала, Ala, A)

$mathrm{–CH_3}$

гидрофобный

Валин (Вал, Val, V)

гидрофобный

Лейцин (Лей, Leu, L)

гидрофобный

Изолейцин (Иле, Ile, I)

гидрофобный

Пролин* (Про, Pr, P)

Какая функциональная группа придает аминокислоте щелочные свойства

гидрофобный

Метионин (Мет, Met, M)

гидрофобный

Серин (Сер, Ser, S)

$mathrm{–CH_2–OH}$

полярный

Треонин (Тре, Thr, T) 

полярный

Аспарагин (Асн, Asn, N)

полярный

Глутамин (Глн, Gln, Q)

полярный

Цистеин (Цис, Cys, C)

$mathrm{–CH_2–SH}$

полярный

*Обратите внимание, что пролин — циклическая аминокислота. Он не соответствует стандартной общей формуле аминокислот, поэтому его формула приведена целиком, а не только радикал. Строго говоря, с химической точки зрения это не амино-, а иминокислота, т. к. азот находится в кольце. Но традиции, его описывают в числе белковых аминокислот.

Оптическая изомерия аминокислот

Еще одна важная особенность белков заключается в том, что в их состав входят только L-аминокислоты. Из структурной формулы, представленной на рис. 1, видно, что у всех аминокислот (кроме глицина) к $alpha$-атому углерода присоединены 4 разных заместителя (группировки $mathrm{–NH_2, –COOH, –H, –R}$). Такой атом углерода называется хиральным (от греческого слова «хиро» — рука), поскольку представляет собой центр асимметрии относительно правой и левой стороны.

Читайте также:  Какое свойство характерно для живых тел природы в отличие

Какая функциональная группа придает аминокислоте щелочные свойства

Из рисунка выше видно, что существуют 2 способа присоединения группировок к этому атому: такой вариант, как указан на рисунке слева (это L-изомер), и вариант справа (D-изомер). Эти две молекулы представляют собой зеркальные отражения друг друга, то есть вещества с разным порядком  присоединения двух группировок  — $mathrm{–NH_2,  –H}$  — к асимметричному атому углерода. Молекулу аминокислоты, изображенную на рисунке слева, называют L-аминокислотой, а молекулу справа —  D-аминокислотой. В природных белках встречаются только L-аминокислоты. В природе такие D-аминокислоты встречаются, но они никогда не входят в состав белков, а являются частью других соединений, например, они обнаруживаются в составе некоторых антибиотиков. L- и D-изомеры являютсямежду собой оптическими изомерами.

Подробнее об этом можно прочитать в теме «Хиральность и оптическая изомерия биомолекул».

пептидная связь

При взаимодействии карбоксильной группы одной аминокислоты с аминогруппой другой возникает ковалентная связь, которая называется пептидной связью. Схематично процесс образования пептидной связи можно записать так:

Какая функциональная группа придает аминокислоте щелочные свойства

Образовавшееся соединение называется пептидом. Если пептид состоит из двух аминокислот, его называют дипептидом, из трех — трипептидом, из четырех — тетрапептидом и т. д.

Данная реакция является обратимой, обратная реакция представляет собой гидролиз пептида (расщепление путем присоединения воды). Следует отметить, что данная схема не отражает процесс биосинтеза белка на рибосомах, так как в нем участвуют не свободные аминокислоты, а их остатки, присоединенные к транспортным РНК (тРНК).

В организме встречается значительное количество коротких пептидов, выполняющих разнообразные функции, чаще всего регуляторные. Пептид, содержащий более 40–50 аминокислотных остатков, обычно называют полипептидом, или белком. Таким образом, разница между белком и пептидом заключается в том, что пептидом обычно называют низкомолекулярное соединение, а белком — высокомолекулярное. Молекулы белка могут содержать сотни и даже тысячи аминокислотных остатков: молекулярная масса белков колеблется в пределах от нескольких тысяч до сотен тысяч и даже миллионов дальтон. При наличии 20 различных аминокислот, являющихся мономерами белка, количество вариантов расположения аминокислотных остатков в одной полипептидной цепи составляет $mathrm{20^n}$, где n — это общее количество аминокислот в цепи. Таким образом, число вариантов расположения аминокислот в белке огромно, и оно возрастает с увеличением количества аминокислот, входящих в состав определенного белка.

НЕЗАМЕНИМЫЕ АМИНОКИСЛОТЫ

Для большинства животных и человека незаменимыми являются 8 аминокислот: валин, изолейцин, лейцин, треонин, метионин, лизин, фенилаланин, триптофан. Эти аминокислоты не синтезируются в организме человека и должны поступать в достаточном количестве с пищей. Две аминокислоты — аргинин и гистидин — относят к условно незаменимым, они образуются в организме человека, но в небольшом количестве, и большую часть потребности в этих аминокислотах человек должен покрывать за счет пищевых источников. Особенно важно поступление достаточного количества незаменимых и условно незаменимых аминокислот для детей и подростков в период формирования и активного роста организма. Более богаты этими аминокислотами животные белки, хотя определенные сочетания растительных источников белка, таких как бобовые, орехи, семечки, могут обеспечить полноценное поступление всех аминокислот, но все же чисто растительную диету сложно сбалансировать, к тому же при этом необходим дополнительный прием витамина $В_{12}$, железа и некоторых других жизненно важных веществ.

нестандартные аминокислоты

Некоторые аминокислоты хотя и не входят в список встречающихся во всех живых организмах 20 аминокислот, обнаружены в составе белков.

Существуют два типа нестандартных аминокислот:

  1. Те, которые могут включаться в состав белков во время их синтеза на рибосомах — N-формилметионинселеноцистеин и пирролизин, которые входят в состав белков при считывании стоп-кодона специализированными тРНК.
    а) N-формилметионин вместо метионина играет роль инициаторной аминокислоты у бактерий, то есть является первой аминокислотой, с которой начинается биосинтез белка. Для эукариот и архей он не характерен.

  2. Какая функциональная группа придает аминокислоте щелочные свойства
    б) селеноцистеин (обозначается Sec или U) — 21-я белковая аминокислота, аналог цистеина с заменой атома серы на атом селена. Входит в состав активных центров многих ферментов, например глутатионпероксидазы. Селенсодержащие белки называются селенопротеинами. Селенопротеин Р является наиболее обычным селенопротеином плазмы крови.
    Селеноцистеин кодируется терминирующим кодоном UGA при условии, что за ним следует особая  последовательность нуклеотидов, вызывающая включение селеноцистеина вместо остановки трансляции.

    Какая функциональная группа придает аминокислоте щелочные свойства

    в) пирролизин — это природная аминокислота, кодируемая генами некоторых метаногенных архей, которая входит в состав некоторых ферментов метаболизма метана.

  3. Какая функциональная группа придает аминокислоте щелочные свойства
    20 стандартных аминокислот + 3 вышеназванные аминокислоты вместе составляют 23 протеиногенные (белковые) аминокислоты.

  4. Те аминокислоты, которые включаются в состав белков в результате их посттрансляционной модификации, то есть дополнительных ферментативных реакций, нерибосомально. Это 4-гидроксипролин, 5-гидроксилизин, десмозин, N-метиллизин, цитруллин и многие другие, а также D-изомеры стандартных аминокислот.

Читайте также:  Какие свойства организмов обусловливают различия между особями одного и того же вида

НЕБЕЛКОВЫЕ АМИНОКИСЛОТЫ

В клетках и многоклеточных организмах помимо аминокислот, включающихся в состав белков, присутствует множество аминокислот, выполняющих другие функции. Прежде всего это не альфа-аминокислоты, то есть те, у которых между карбоксильной и аминогруппой присутствует более 1 атома С. В качестве примера можно привести гамма-аминомасляную кислоту (ГАМК, GABA), которая является тормозным медиатором в центральной нервной системе.

Какая функциональная группа придает аминокислоте щелочные свойства

Источник

Опубликовано 7 месяцев назад по предмету
Химия
от emailmuhamedx9

  1. Ответ

    Ответ дан
    janislav

    Правильный вариант  ответа :   Б) 

Не тот ответ, который вам нужен?

Найди нужный

Самые новые вопросы

Математика – 7 месяцев назад

Сколько здесь прямоугольников

История – 1 год назад

Какое управление было в древнейшем риме? как звали первого и последнего из царей рима?

Литература – 1 год назад

Уроки французского ответе на вопрос : расскажите о герое по следующему примерному плану: 1.почему мальчик оказался в райцентре ? 2.как он чувствовал себя на новом месте? 3.почему он не убежал в деревню? 4.какие отношения сложились у него с товарищами? 5.почему он ввязался в игру за деньги? 6.как характеризуют его отношения с учительницей ? ответе на эти вопросы пожалуйста ! сочините сочинение пожалуйста

Русский язык – 1 год назад

Помогите решить тест по русскому языку тест по русскому языку «местоимение. разряды местоимений» для 6 класса
1. укажите личное местоимение:
1) некто
2) вас
3) ни с кем
4) собой
2. укажите относительное местоимение:
1) кто-либо
2) некоторый
3) кто
4) нам
3. укажите вопросительное местоимение:
1) кем-нибудь
2) кем
3) себе
4) никакой
4. укажите определительное местоимение:
1) наш
2) который
3) некий
4) каждый
5. укажите возвратное местоимение:
1) свой
2) чей
3) сам
4) себя
6. найдите указательное местоимение:
1) твой
2) какой
3) тот
4) их
7. найдите притяжательное местоимение:
1) самый
2) моего
3) иной
4) ничей
8. укажите неопределённое местоимение:
1) весь
2) какой-нибудь
3) любой
4) этот
9. укажите вопросительное местоимение:
1) сколько
2) кое-что
3) она
4) нами
10. в каком варианте ответа выделенное слово является притяжательным местоимением?
1) увидел их
2) её нет дома
3) её тетрадь
4) их не спросили

Русский язык – 1 год назад

Переделай союзное предложение в предложение с бессоюзной связью.
1. океан с гулом ходил за стеной чёрными горами, и вьюга крепко свистала в отяжелевших снастях, а пароход весь дрожал.
2. множество темноватых тучек, с неясно обрисованными краями, расползались по бледно-голубому небу, а довольно крепкий ветер мчался сухой непрерывной струёй, не разгоняя зноя
3. поезд ушёл быстро, и его огни скоро исчезли, а через минуту уже не было слышно шума

Русский язык – 1 год назад

помогите прошу!перепиши предложения, расставляя недостающие знаки препинания. объясни, что соединяет союз и. если в предложении один союз и, то во втором выпадающем списке отметь «прочерк».пример:«я шёл пешком и,/поражённый прелестью природы/, часто останавливался».союз и соединяет однородные члены.ночь уже ложилась на горы (1) и туман сырой (2) и холодный начал бродить по ущельям.союз и соединяет:1) части сложного предложенияоднородные члены,2) однородные членычасти сложного предложения—.поэт — трубач зовущий войско в битву (1) и прежде всех идущий в битву сам (ю. янонис).союз и соединяет:1) части сложного предложенияоднородные члены,2) ​

Физика – 1 год назад

Вокруг прямого проводника с током (смотри рисунок) существует магнитное поле. определи направление линий этого магнитного поля в точках a и b.обрати внимание, что точки a и b находятся с разных сторон от проводника (точка a — снизу, а точка b — сверху). рисунок ниже выбери и отметь правильный ответ среди предложенных.1. в точке a — «от нас», в точке b — «к нам» 2. в точке a — «к нам», в точке b — «от нас» 3. в обеих точках «от нас»4. в обеих точках «к нам»контрольная работа по физике.прошу,не наугад важно

Информация

Посетители, находящиеся в группе Гости, не могут оставлять комментарии к данной публикации.

Источник