Какая функциональная группировка придает аминокислоте кислые свойства

Какая функциональная группировка придает аминокислоте кислые свойства thumbnail

Опубликовано 8 месяцев назад по предмету
Химия
от emailmuhamedx9

  1. Ответ

    Ответ дан
    janislav

    Правильный вариант  ответа :   Б) 

Не тот ответ, который вам нужен?

Найди нужный

Самые новые вопросы

Математика – 8 месяцев назад

Сколько здесь прямоугольников

История – 1 год назад

Какое управление было в древнейшем риме? как звали первого и последнего из царей рима?

Литература – 1 год назад

Уроки французского ответе на вопрос : расскажите о герое по следующему примерному плану: 1.почему мальчик оказался в райцентре ? 2.как он чувствовал себя на новом месте? 3.почему он не убежал в деревню? 4.какие отношения сложились у него с товарищами? 5.почему он ввязался в игру за деньги? 6.как характеризуют его отношения с учительницей ? ответе на эти вопросы пожалуйста ! сочините сочинение пожалуйста

Русский язык – 1 год назад

Помогите решить тест по русскому языку тест по русскому языку «местоимение. разряды местоимений» для 6 класса
1. укажите личное местоимение:
1) некто
2) вас
3) ни с кем
4) собой
2. укажите относительное местоимение:
1) кто-либо
2) некоторый
3) кто
4) нам
3. укажите вопросительное местоимение:
1) кем-нибудь
2) кем
3) себе
4) никакой
4. укажите определительное местоимение:
1) наш
2) который
3) некий
4) каждый
5. укажите возвратное местоимение:
1) свой
2) чей
3) сам
4) себя
6. найдите указательное местоимение:
1) твой
2) какой
3) тот
4) их
7. найдите притяжательное местоимение:
1) самый
2) моего
3) иной
4) ничей
8. укажите неопределённое местоимение:
1) весь
2) какой-нибудь
3) любой
4) этот
9. укажите вопросительное местоимение:
1) сколько
2) кое-что
3) она
4) нами
10. в каком варианте ответа выделенное слово является притяжательным местоимением?
1) увидел их
2) её нет дома
3) её тетрадь
4) их не спросили

Русский язык – 1 год назад

Переделай союзное предложение в предложение с бессоюзной связью.
1. океан с гулом ходил за стеной чёрными горами, и вьюга крепко свистала в отяжелевших снастях, а пароход весь дрожал.
2. множество темноватых тучек, с неясно обрисованными краями, расползались по бледно-голубому небу, а довольно крепкий ветер мчался сухой непрерывной струёй, не разгоняя зноя
3. поезд ушёл быстро, и его огни скоро исчезли, а через минуту уже не было слышно шума

Русский язык – 1 год назад

помогите прошу!перепиши предложения, расставляя недостающие знаки препинания. объясни, что соединяет союз и. если в предложении один союз и, то во втором выпадающем списке отметь «прочерк».пример:«я шёл пешком и,/поражённый прелестью природы/, часто останавливался».союз и соединяет однородные члены.ночь уже ложилась на горы (1) и туман сырой (2) и холодный начал бродить по ущельям.союз и соединяет:1) части сложного предложенияоднородные члены,2) однородные членычасти сложного предложения—.поэт — трубач зовущий войско в битву (1) и прежде всех идущий в битву сам (ю. янонис).союз и соединяет:1) части сложного предложенияоднородные члены,2) ​

Физика – 1 год назад

Вокруг прямого проводника с током (смотри рисунок) существует магнитное поле. определи направление линий этого магнитного поля в точках a и b.обрати внимание, что точки a и b находятся с разных сторон от проводника (точка a — снизу, а точка b — сверху). рисунок ниже выбери и отметь правильный ответ среди предложенных.1. в точке a — «от нас», в точке b — «к нам» 2. в точке a — «к нам», в точке b — «от нас» 3. в обеих точках «от нас»4. в обеих точках «к нам»контрольная работа по физике.прошу,не наугад важно

Информация

Посетители, находящиеся в группе Гости, не могут оставлять комментарии к данной публикации.

Источник

Аминокислоты относятся к гетерофункциональным соединениям, т.е. вещества, проявляющим свойства двух классов соединений. В неорганической химии такие соединения называют амфотерными.

ФИЗИЧЕСКИЕ СВОЙСТВА АМИНОКИСЛОТ

По физическим свойствам аминокислоты резко отличаются от соответствующих кислот и оснований. Все они кристаллические вещества, лучше растворяются в воде, чем в органических растворителях, имеют достаточно высокие температуры плавления; многие из них имеют сладкий вкус. Эти свойства отчётливо указывают на солеобразный характер этих соединений.

ХИМИЧЕСКИЕ СВОЙСТВА АМИНОКИСЛОТ

Особенности физических и химических свойств аминокислот обусловлены их строением — присутствием одновременно двух противоположных по свойствам функциональных групп: кислотной и основной. $alpha$-аминокислоты являются амфотерными электролитами. Имея как минимум две диссоциирующие и противоположно заряженные группировки, аминокислоты в растворах с нейтральным значением рН практически всегда находятся в виде биполярных ионов, или цвиттер-ионов, в которых противоположные заряды пространственно разделены, например $H_3^+N—CH_2—CH_2—COO^-$. 

Именно амфотерность аминокислот обуславливает их наиболее характерные свойства.

1. Кислотные свойства аминокислот проявляются по карбоксильной группе в их способности взаимодействовать, например, с щелочами:

Какая функциональная группировка придает аминокислоте кислые свойства

или вступать в реакцию этерификации со спиртами с образованием сложных эфиров:

Какая функциональная группировка придает аминокислоте кислые свойства

2. Основные свойства аминокислот проявляются по аминогруппе в их способности взаимодействовать с кислотами, образуя комплексные ионы по донорно-акцепторному механизму:

Какая функциональная группировка придает аминокислоте кислые свойства

3. Амфотерность аминокислот проявляется также в их способности  образовывать в растворе в результате диссоциации биполярный ион —  внутреннюю соль, а самое главное, за счет амфотерности аминокислоты могут вступать друг с другом в реакции поликонденсации. образуя полипептиды и белки:

Какая функциональная группировка придает аминокислоте кислые свойства

КАЧЕСТВЕННЫЕ (ЦВЕТНЫЕ) РЕАКЦИИ НА АМИНОКИСЛОТЫ И БЕЛКИ

Качественные цветные реакции можно подразделить на два типа: универсальные и специфические. К универсальным реакциям относятся те, которые дают окрашивание в присутствии любых белков.

Какая функциональная группировка придает аминокислоте кислые свойства

Специфические реакции доказывают наличие какой-то определенной аминокислоты. Все качественные реакции можно наблюдать на примере раствора яичного белка, представляющего собой многокомпонентную смесь аминокислот:

Какая функциональная группировка придает аминокислоте кислые свойства

УНИВЕРСАЛЬНЫЕ ЦВЕТНЫЕ РЕАКЦИИ

1Биуретовая реакция –  универсальная реакция на все белки и пептиды, так как является реакцией на пептидную связь. Представляет собой взаимодействие щелочного раствора биурета  ($(H_2NC(O))_2NH$ с раствором сульфата меди в присутствии гидроксида натрия (реактив Фелинга)

Какая функциональная группировка придает аминокислоте кислые свойства

В реакцию, подобную биуретовой, вступают многие вещества, содержащие в молекуле не менее двух амидных группировок, амиды и имиды аминокислот и некоторые другие соединения. Продукты реакции в этом случае имеют фиолетовую или синюю окраску.

Какая функциональная группировка придает аминокислоте кислые свойстваКакая функциональная группировка придает аминокислоте кислые свойства

В условиях биуретовой реакции белки дают фиолетовую окраску, что используется для их качественного и количественного анализа. Биуретовая реакция обусловлена присутствием в белках пептидных связей, которые в щелочной среде образуют с сульфатом меди (ІІ) окрашенные солеобразные комплексы меди. 

2. Нингидриновая реакция – цветная реакция на α-аминокислоты, которую осуществляют нагреванием последних в избытке щелочного раствора нингидрина (гидрата 1,2,3-индантриона). 

Какая функциональная группировка придает аминокислоте кислые свойства

Какая функциональная группировка придает аминокислоте кислые свойства

Образующееся в результате реакции соединение (дикетогидринимин – на рисунке самый левый продукт реакции) имеет фиолетово-синюю окраску. Данную используют для колориметрического количественного определения $alpha$-аминокислот, в том числе в автоматических аминокислотных анализаторах. 

СПЕЦИФИЧЕСКИЕ ЦВЕТНЫЕ РЕАКЦИИ

1. Реакция  Щульца-Распайли (аналогично проводится реакция Адамкевича, только с добавлением глиоксиловой кислоты) – является специфической реакцией на аминокислоту триптофан – взаимодействие раствора яичного белка с 10% раствором сахарозы и  равным объемом концентрированной $H_2SO_4$. На границе двух жидкостей образуется красно-фиолетовое кольцо (при нагревании на водяной бане реакция идет быстрее – главное не смешивать жидкости).

Какая функциональная группировка придает аминокислоте кислые свойстваКакая функциональная группировка придает аминокислоте кислые свойства

2Реакция Милона – используется для обнаружения тирозина, в составе которого имеется фенольный гидроксил. При добавлении к раствору белка реактива Милона (раствор $HgNO_3$ и $Hg(NO_3)_2$ в разбавленной азотной кислоты $HNO_3$, содержащей примесь азотистой кислоты $HNO_2$) образуется осадок, сначала окрашенный в розовый, а затем в пурпурно-красный цвет. Нагревание до $50^circ C$ ускоряет эту реакцию.

Какая функциональная группировка придает аминокислоте кислые свойстваКакая функциональная группировка придает аминокислоте кислые свойства

3. Ксантопротеиновая реакция – является специфической реакцией и используется для обнаружения $alpha$-аминокислот, содержащих в радикале ароматический цикл, например фенилаланина. Для ее осуществления к раствору белка прибавляют концентрированную азотную кислоту $HNO_3$ до тех пор, пока не прекратится образование осадка, который при нагревании окрашивается в желтый цвет. Окраска возникает в результате нитрования ароматических колец аминокислотных остатков белка (тирозина и триптофана). При добавлении к охлажденной жидкости избытка щелочи появляется оранжевое окрашивание, обусловленное образованием солей нитроновых кислот.

Какая функциональная группировка придает аминокислоте кислые свойстваКакая функциональная группировка придает аминокислоте кислые свойстваКакая функциональная группировка придает аминокислоте кислые свойства

4. Реакция Фоля на серосодержащие аминокислоты (цистеин, метионин) – взаимодействие раствора яичного белка с 30% раствором NaOH и 5% раствором уксуснокислого свинца – $Pb(CH_3COO)_2$. При длительном нагревании жидкость буреет, выпадает черный осадок сульфида свинца. 

Какая функциональная группировка придает аминокислоте кислые свойстваКакая функциональная группировка придает аминокислоте кислые свойства

Источник

Аминокислоты классифицируют по следующим структурным признакам.

I. Классификация по взаимному положения функциональных групп

В зависимости от взаимного расположения амино- и карбоксильной групп аминокислоты подразделяют на α- , b- , g- , d- , e- и т. д.

Какая функциональная группировка придает аминокислоте кислые свойства

Какая функциональная группировка придает аминокислоте кислые свойства

Греческая буква при атоме углерода обозначает его удаленность от карбоксильной группы.

II. Классификация по строению бокового радикала (функциональным группам)

Алифатические аминокислоты

Моноаминомонокарбоновые кислоты: глицин, аланин, валин, изолейцин, лейцин.

Оксимоноаминокарбоновые кислоты (содержат-ОН-группу): серин, треонин.

Моноаминодикарбоновые кислоты (содержат СООН-группу): аспартат, глутамат (за счёт второй карбоксильной группы несут в растворе отрицательный заряд).

Амиды моноаминодикарбоновых кислоты (содержат NH2СО-группу): аспарагин, глутамин.

Диаминомонокарбоновые кислоты (содержат NH2-группу): лизин, аргинин (за счёт второй аминогруппы несут в растворе положительный заряд).

Серусодержащие кислоты: цистеин, метионин.

Ароматические аминокислоты: фенилаланин, тирозин, триптофан.

Гетероциклические аминокислоты: триптофан, гистидин, пролин.

Иминокислоты: пролин.

Важнейшие α–аминокислоты

III. Классификация по полярности бокового радикала (по Ленинджеру)

Выделяют четыре класса аминокислот, содержащих радикалы следующих типов.

Какая функциональная группировка придает аминокислоте кислые свойства

Гидрофобные аминокислоты располагаются внутри молекулы белка, тогда как гидрофильные – на внешней поверхности, что делает гидрофильными и хорошо растворимыми в воде молекулы белка.

Благодаря этому свойству белки хорошо связывают воду, удерживая жидкость в крови, в межклеточном пространстве и внутри клеток.

1. Неполярные (гидрофобные)

К неполярным (гидрофобным) относятся аминокислоты с неполярными  R-группами и одна серусодержащая аминокислота:

— алифатические: аланин, валин, лейцин, изолейцин

— ароматические: фенилаланин, триптофан.

— серусодержащие: метионин

— иминокислота: пролин.

Какая функциональная группировка придает аминокислоте кислые свойства

Какая функциональная группировка придает аминокислоте кислые свойства

2. Полярные незаряженные

Полярные незаряженные аминокислоты по сравнению с неполярными лучше растворяются в воде, более гидрофильны, так как их функциональные группы образуют водородные связи с молекулами воды.

К ним относятся аминокислоты, содержащие:

— полярную ОН-группу (оксиаминокислоты): серин, треонин  и тирозин

—  HS-группу: цистеин

— амидную  группу: глутамин,  аспарагин

— и глицин (R-группа глицина, представленная одним атомом водорода, слишком мала, чтобы компенсировать сильную полярность a-аминогруппы и a-карбоксильной группы).

Какая функциональная группировка придает аминокислоте кислые свойства

Какая функциональная группировка придает аминокислоте кислые свойства

3. Заряженные отрицательно при рН-7 (кислые)

Аспарагиновая и глутаминовая кислоты относятся к отрицательно заряженным аминокислотам.Какая функциональная группировка придает аминокислоте кислые свойства

Они содержат по две карбоксильные и по одной аминогруппе, поэтому в ионизированном состоянии их молекулы будут иметь суммарный отрицательный заряд:

4. Заряженные положительно при рН-7 (основные)

К положительно заряженным аминокислотам принадлежат лизин, гистидин и аргинин.Какая функциональная группировка придает аминокислоте кислые свойства

В ионизированном виде они имеют суммарный положительный заряд:

В зависимости от характера радикалов природные аминокислоты также подразделяются на нейтральные, кислые и основные. К нейтральным относятся неполярные и полярные незаряженные, к кислым – отрицательно заряженные, к основным – положительно заряженные.

IV. Классификация по кислотно-основным свойствам

В зависимости от количества функциональных групп различают кислые, нейтральные и основные аминокислоты.

Основные

Аминокислоты, в которых число аминогрупп превышает число карбоксильных групп, называют основными аминокислотами: лизин, аргинин, гистидин:

Кислые

Если в аминокислотах имеется избыток кислотных групп, их называют кислыми аминокислотами: аспарагиновая и глутаминовая кислоты:

Все остальные аминокислоты относятся к нейтральным.

V. По числу функциональных групп

Аминокислоты по числу функциональных групп можно разделить моноаминомонокарбоновые, моноаминодикарбоновые, диаминомонокарбоновые:

Какая функциональная группировка придает аминокислоте кислые свойства 

VI.Биологическая классификация (по способности синтезироваться в организме человека и животных)

Заменимые аминокислоты – десять из 20 аминокислот, входящих в состав белков, могут синтезироваться в организме человека. К ним относятся: глицин (гликокол), аланин, серин, цистеин, тирозин, аспарагиновая и глутаминовая кислоты, аспарагин, глутамин, пролин.

Незаменимые аминокислоты (8 аминокислот) – не могут синтезироваться в организме человека и животных и должны поступать в организм в составе белковой пищи.

Абсолютно незаменимых аминокислот восемь: валин, изолейцин, лейцин, треонин, метионин, лизин, фенилаланин, триптофан.

Незаменимые аминокислоты входят часто в состав пищевых добавок, используются в качестве лекарственных препаратов.

Условно незаменимые (2 аминокислоты) — синтезируются в организме, но в недостаточном количестве, поэтому частично должны поступать с пищей. Такими аминокислотами являются  гистидин, аргинин.

Для детей также незаменимыми являются гистидин и аргинин.

Какая функциональная группировка придает аминокислоте кислые свойства

Для человека одинаково важны оба типа аминокислот: и заменимые, и незаменимые. Большая часть аминокислот идет на построение собственных белков организма, но без незаменимых аминокислот организм существовать не сможет.

При недостатке каких-либо аминокислот в организме человека в течение непродолжительного времени могут разрушаться белки соединительной ткани, крови, печени и мышц, а полученный из них «строительный материал» — аминокислоты идут на поддержание нормальной работы наиболее важных органов — сердца и мозга.

Дефицит аминокислот приводит к ухудшению аппетита, задержке роста и развития, жировой дистрофии печени и другим тяжелым нарушениям.

При этом наблюдается снижение аппетита, ухудшение состояния кожи, выпадение волос, мышечная слабость, быстрая утомляемость, снижение иммунитета, анемия.

Избыток аминокислот может вызвать развитие тяжелых заболеваний, особенно у детей и в юношеском возрасте. Наиболее токсичными являются метионин (провоцирует риск развития инфаркта и инсульта), тирозин (может спровоцировать развитие артериальной гипертонии, привести к нарушению работы щитовидной железы) и гистидин (может способствовать возникновению дефицита меди в организме и привести к заболеваниям суставов, ранней седине, тяжелым анемиям).

В условиях нормального функционирования организма, когда присутствует достаточное количество витаминов (В6, В12, фолиевой кислоты) и антиоксидантов (витамины А, Е, С и селен), избыток аминокислот не наносит вред организму.

Продукты с повышенным содержанием отдельных незаменимых аминокислот 

Качество некоторых пищевых белков относительно белков женского молока

Аминокислоты

Источник

Цель: расширить знания о функциях белков в живой клетке; научить учащихся выявлять причины происходящих в клетке процессов, используя свои знания о функциях в ней белков.

Оборудование: таблицы по общей биологии, модель первичной структуры белка.

Ход урока

I. Проверка знаний учащихся.

Карточка для работы у доски.

Запишите номера вопросов, против них – правильные ответы.

  1. Какие органические вещества в клетке на первом месте по массе?
  2. Какие элементы входят в состав простых белков?
  3. Сколько аминокислот образует все многообразие белков?
  4. Сколько аминокислот являются незаменимыми для человека?
  5. Какие белки называются неполноценными?
  6. Какая функциональная группировка придает аминокислоте кислые, какое – щелочные свойства?
  7. В результате какой реакции образуется пептидная связь?
  8. Между какими группировками аминокислот образуется пептидная связь?
  9. Какие связи стабилизируют вторичную структуру белков ?
  10. Какую структуру имеет молекула гемоглобина?

Тесты классу.

Тест 1. Какие органические вещества в клетке на первом месте по массе?

  1. углеводы.
  2. белки
  3. липиды.
  4. нуклеиновые кислоты.

Тест 2. Какие элементы входят в состав простых белков?

  1. углерод…
  2. водород
  3. кислород
  4. сера
  5. фосфор
  6. азот
  7. железо
  8. хлор.

Тест 3. Сколько аминокислот образует все многообразие белков?

  1. 170
  2. 26
  3. 20
  4. 10

Тест 4. Сколько аминокислот являются незаменимыми для человека?

  1. таких аминокислот нет.
  2. 20
  3. 10
  4. 7

Тест 5. Какие белки называются неполноценными?

  1. В которых отсутствуют некоторые аминокислоты.
  2. В которых отсутствуют некоторые незаменимые аминокислоты.
  3. В которых отсутствуют некоторые заменимые аминокислоты.
  4. Все известные белки являются полноценными.

Тест 6. Какая функциональная группировка придает аминокислоте кислые, какое –щелочные свойства?

  1. Кислые – радикал, щелочные – аминогруппа.
  2. Кислые – аминогруппа, щелочные – радикал.
  3. Кислые – карбоксильная группа, щелочные – радикал.
  4. Кислые – карбоксильная группа, щелочные – аминогруппа.

Тест 7. В результате какой реакции образуется пептидная связь?

  1. Реакция гидролиза.
  2. Реакция гидратации.
  3. Реакции конденсации.
  4. Все вышеперечисленные реакции могут привести к образованию пептидной связи.

Тест 8. Между какими группировками аминокислот образуется пептидная связь?

  1. Между карбоксильными группами соседних аминокислот.
  2. Между аминогруппами соседних аминокислот.
  3. Между аминогруппой одной аминокислоты и радикалом другой.
  4. Между аминогруппой одной аминокислоты и карбоксильной группой другой.

Тест 9. Какие связи стабилизируют вторичную структуру белков ?

  1. ковалентные
  2. водородные
  3. ионные
  4. такие связи отсутствуют

Тест 10. Какую структуру имеют молекула гемоглобина?

  1. первичную
  2. вторичную
  3. третичную
  4. четвертичную

II. Изучение нового материала.

1. Свойства белков.

У человека более 10 000 видов разных белков.

Свойства белков:

  1. Денатурация (утрата трехмерной конформации без изменения первичной структуры ). Ренатурация.
  2. Нерастворимые белки (кератин, фиброин) и растворимые белки (альбумины, фибринген).
  3. Малоактивные и химически высокоактивные.
  4. Устойчивые и крайне неустойчивые.
  5. Фибриаллярные и глобулярные.
  6. Нейтральные (альбумины, глобулины), основные (гистоны), кислые (казеин)
  7. Инактивация при замерзании.

2. Функции белков в клетке и организме.

1. Строительная.

2. Каталическая (ферментативная).

Напомним некоторые особенности функционирования ферментов:

а) ферменты ускоряют протекание реакции только одного вида, то есть обладают специфичностью действия;
б) ферменты конкретного организма действуют в узких температурных пределах;
в) ферменты эффективно работают при строго определенных показателях среды. Например, в разных участках пищеварительного тракта она может быть слабощелочной, щелочной или кислой.

Ферментативный белок соединятся реагирующими веществами, ускоряет их превращения ения и выходит из реакции неизменным.

3. Регуляторная.

Осуществляется с помощью гормонов. Многие гормоны являются белками. Рассмотрим их действия на некоторых конкретных примерах.

Пример 1

Пример 2

Ослабленное функционирование поджелудочной железы может привести к нарушению (замедлению) процесса превращения глюкозы в гликоген, вследствие чего возникает серьезное заболевание – сахарный диабет.

4. Двигательная функция белка проявляется при работе мускулатуры человека и животных. В мышечных клетках имеются специальные сократительные белки, обеспечивающие специфическое функционирование этих клеток.

5. Транспортная функция белка проявляется в переносе кислорода и углекислого газа с помощью белка глобина.

6. Защитная функция белка заключается в выработке белков – антител, уничтожающих возбудителей болезней, попавших в организм.

Защитная функция белка приносит… человеку не только пользу. Могут возникнуть серьезные проблемы при пересадке органов и тканей от одного человека другому. Пересаженный орган воспринимается иммунной системой нового «хозяина» этого органа как чужеродный белок. Воздействие антител приводит к отторжению пересаженного органа со всеми вытекающими отсюда последствиями.

Аналогичные проблемы могут возникнуть при беременности, в том случае, если мать будущего ребенка является резус-отрицательной, а отец имеет резус-положительную кровь. В том случае может возникнуть серьёзный конфликт между материнским организмом и организмом развивающего плода.

Напомним, что ген резус-положительности доминирует над геном резус-отрицательности.

Следствием указанного выше конфликта являются задержка и нарушение процесса развития плода, в ряде случаев – его гибель. Связи с ответным воздействием антител плода на чужеродный белок материнского организма женщина испытывает симптомы обостренно протекающего токсикоза беременности.

Защитные функции могут быть могут быть ослаблены либо с помощью медицинских средств (когда это необходимо),либо в результате негативного воздействия природных факторов(ухудшение условий жизни организма, агрессия вируса СПИДа) (см. схему).

7. Энергетическая функция белка проявляется в выделении свободной энергии при последовательном расщеплении полипептидной молекулы

Биологическую роль, которую играют белки в живой клетке и организме, трудно переоценить. Вероятно, жизнь на нашей планете действительно можно рассматривать как способ существования белковых тел, осуществляющих обмен веществом и энергией с внешней средой.

III. Закрепление.

«Свойства и функции белков. »

Тест 1. Что образуется при окислении 1 г белка?

  1. Вода
  2. Углекислый газ.
  3. Аммиак.
  4. 17,6 кДж энергии.
  5. Мочевина.
  6. 38,9 кДж энергии.

Тест 2. В пробирке с пероксидом водорода поместили кусочек варенной колбасы, хлеба, моркови, рубленного яйца. В одной из пробирок выделялся кислород. В какой?

  1. С кусочком вареной колбасы.
  2. С кусочком хлебы.
  3. С кусочком моркови.
  4. С кусочком рубленного яйца.

Тест 3. Какие суждения верны?

  1. Ферменты специфичны, каждый фермент обеспечивает раекции одного типа.
  2. Ферменты универсальны и могут катализировать реакции разных типов.
  3. Каталическая активность ферментов не зависит от рН и температуры.
  4. 4. Каталическая активность ферментов напрямую зависит от рН и температуры.

Тест 4. Какие суждения верны?

  1. Фермент – ключ, субстрат – замок, согласно теории Фишера.
  2. Фермент – замок, субстрат – ключ, согласно теории Фишера.
  3. После каталитической реакции фермент и субстрат распадаются, образуя продукты реакции.
  4. После каталитической реакции фермент остается неизменным, субстрат распадается, образуя продукты реакции.

Тест 5. Какие суждения верны?

  1. Витамины являются кофакторами ферментов.
  2. Все белки являются биологическими катализаторами, ферментов.
  3. При замерзании происходит необратимая денатурация ферментов.
  4. Ренатурация – утрата трехмерной конфигурации белка без изменения первичной структуры

Тест 6. Какая функциональная группировка придает аминокислоте кислые, какое –щелочные свойства?

  1. Кислые – радикал, щелочные – аминогруппа.
  2. Кислые – аминогруппа, щелочные – радикал.
  3. Кислые – карбоксильная группа, щелочные – радикал.
  4. Кислые – карбоксильная группа, щелочные – аминогруппа.

Тест 7. В результате какой реакции образуется пептидная связь?

  1. Реакция гидролиза.
  2. Реакция гидратации.
  3. Реакции конденсации.
  4. Все вышеперечисленные реакции могут привести к образованию пептидной связи.

Тест 8. Между какими группировками аминокислот образуется пептидная связь?

  1. Между карбоксильными группами соседних аминокислот.
  2. Между аминогруппами соседних аминокислот.
  3. Между аминогруппой одной аминокислоты и радикалом другой.
  4. Между аминогруппой одной аминокислоты и карбоксильной группой другой.

Тест 9. Какие связи стабилизируют вторичную структуру белков?

  1. ковалентные
  2. водородные
  3. ионные
  4. такие связи отсутствуют.

Тест 10. Какие связи стабилизируют третичную структуру белков?

  1. ковалентные
  2. водородные
  3. ионные
  4. гидрофильно-гидрофобное взаимодействие.

На дом: стр. 94-99, вопросы в конце параграфа.

Источник