Какая информация содержится в гене
Геном человека — совокупность наследственного материала, заключённого в клетке человека. Человеческий геном состоит из 23 пар хромосом, находящихся в ядре, а также митохондриальной ДНК. Двадцать две аутосомы, две половые хромосомы Х и Y, а также митохондриальная ДНК человека содержат вместе примерно 3,1 млрд пар оснований[1].
В ходе выполнения проекта «Геном человека» была определена последовательность ДНК всех хромосом и митохондриальной ДНК. В настоящее время эти данные активно используются по всему миру в биомедицинских исследованиях. Полное секвенирование выявило, что человеческий геном содержит 20—25 тыс. активных генов[2], что значительно меньше, чем ожидалось в начале проекта (порядка 100 тыс.) — то есть только 1,5 % всего генетического материала кодирует белки или функциональные РНК. Остальная часть является некодирующей ДНК, которую часто называют мусорной ДНК[3], но которая, как оказалось, играет важную роль в регуляции активности генов[4][5].
Особенности[править | править код]
Хромосомы[править | править код]
Геном человека состоит из 23 пар хромосом (всего 46 хромосом). Каждая хромосома содержит сотни генов, разделённых межгенным пространством. Межгенное пространство содержит регуляторные участки и ничего не кодирующую ДНК.
В геноме присутствует 23 пары хромосом: 22 пары аутосомных хромосом, а также пара половых хромосом X и Y. У человека мужской пол является гетерогаметным и определяется наличием Y-хромосомы. Нормальные диплоидные соматические клетки имеют 46 хромосом[6][7].
Гены[править | править код]
Предварительные оценки предполагали наличие в геноме человека более 100 тысяч генов. По результатам проекта «Геном человека» количество генов, а точнее открытых рамок считывания, составило около 28 000 генов. В связи с усовершенствованием методов поиска (предсказания) генов предполагается дальнейшее уменьшение числа генов.
Число генов у человека лишь ненамного больше, чем у более простых организмов, например, круглого червя Caenorhabditis elegans или мухи Drosophila melanogaster. Так происходит из-за того, что в человеческом геноме широко представлен альтернативный сплайсинг. Альтернативный сплайсинг позволяет получить несколько различных белковых цепочек с одного гена. В результате человеческий протеом оказывается значительно больше протеома рассмотренных организмов. Большинство человеческих генов имеют множественные экзоны, и интроны часто оказываются значительно более длинными, чем граничные экзоны в гене.
Гены неравномерно распределены по хромосомам. Каждая хромосома содержит богатые и бедные генами участки. Эти участки коррелируют с хромосомными бендами (полосы поперёк хромосомы, которые видно в микроскоп) и с CG-богатыми участками. В настоящий момент значимость такого неравномерного распределения генов не вполне изучена.
Кроме генов, кодирующих белки, человеческий геном содержит тысячи РНК-генов, кодирующих транспортные РНК (tRNA), рибосомные РНК, микроРНК и прочие РНК, не кодирующие белок.
Регуляторные последовательности[править | править код]
В человеческом геноме найдено множество различных последовательностей, отвечающих за регуляцию генов. Под регуляцией понимается контроль экспрессии гена (процесс построения матричной РНК по участку молекулы ДНК). Обычно это короткие последовательности, находящиеся либо рядом с геном, либо внутри гена. Иногда они находятся на значительном расстоянии от гена (энхансеры). Систематизация этих последовательностей, понимание механизмов работы, а также вопросы взаимной регуляции группы генов группой соответствующих ферментов на текущий момент находятся только на начальной стадии изучения. Взаимная регуляция групп генов описывается с помощью сетей регуляции генов. Изучение этих вопросов находится на стыке нескольких дисциплин: прикладной математики, высокопроизводительных вычислений и молекулярной биологии. Знания появляются из сравнений геномов различных организмов и благодаря достижениям в области организации искусственной транскрипции гена в лабораторных условиях.
Идентификация регуляторных последовательностей в человеческом геноме частично была произведена на основе эволюционной консервативности (свойства сохранения важных фрагментов хромосомной последовательности, которые отвечают примерно одной и той же функции). Согласно данным молекулярных часов, эволюционные линии человека и мыши разделились около 100 миллионов лет назад[8]. Для двух геномов компьютерными методами были выявлены консервативные последовательности (последовательности, идентичные или очень слабо отличающиеся в сравниваемых геномах) в некодирующей части и оказалось, что они активно участвуют в механизмах регуляции генов у обоих организмов[9].
Другой подход получения регуляторных последовательностей основан на сравнении генов человека и рыбы фугу. Последовательности генов и регуляторные последовательности у человека и рыбы фугу существенно схожи, однако геном рыбы фугу содержит в 8 раз меньший объём «мусорной ДНК». Такая «компактность» рыбьего генома позволяет значительно легче искать регуляторные последовательности для генов[10].
Прочие объекты в геноме[править | править код]
Кодирующие белок последовательности (множество последовательностей составляющих экзоны) составляют менее чем 1,5 % генома[3]. Не учитывая известные регуляторные последовательности, в человеческом геноме содержится масса объектов, которые выглядят как нечто важное, но функция которых, если она вообще существует, пока не выяснена. Эти объекты занимают до 97 % всего объёма человеческого генома. К таким объектам относятся:
- повторы
- тандемные повторы
- сателлитная ДНК
- минисателлиты
- микросателлиты
- диспергированные повторы
- SINEs (short interspersed nuclear elements)
- LINEs (long interspersed nuclear elements)
- тандемные повторы
- транспозоны
- ретротранспозоны
- LTR-ы (long terminal repeat)
- Ty1-copia
- Ty3-gypsy
- Не-LTR-ы
- LTR-ы (long terminal repeat)
- ДНК-транспозоны
- ретротранспозоны
- псевдогены
Представленная классификация не является исчерпывающей. Большая часть объектов вообще не классифицирована мировой научной общественностью на текущий момент[когда?].
Соответствующие последовательности, скорее всего, являются эволюционным артефактом. В современной версии генома их функция выключена, и эти участки генома многие называют мусорной ДНК. Однако есть масса свидетельств в пользу того, что эти объекты обладают некоторой функцией, которая пока неясна.
Псевдогены[править | править код]
Эксперименты с ДНК-микрочипами показали, что много участков генома, не являющихся генами, вовлечены в процесс транскрипции[11].
Вирусы[править | править код]
Около 1 % в геноме человека занимают встроенные гены ретровирусов (эндогенные ретровирусы). Эти гены обычно не приносят пользы хозяину, но существуют и исключения. Так, около 43 млн лет назад в геном предков обезьян и человека попали ретровирусные гены, служившие для построения оболочки вируса. У человека и обезьян эти гены участвуют в работе плаценты[12]. Большинство ретровирусов встроились в геном предков человека свыше 25 млн лет назад. Среди более молодых человеческих эндогенных ретровирусов полезных на настоящий момент не обнаружено[13][14].
Информационное содержание генома человека[править | править код]
Азотистые основания в ДНК (аденин, тимин, гуанин, цитозин) соответствуют 4 различным логическим состояниям, что эквивалентно 2 битам информации[15]. Таким образом, геном человека содержит более 6 гигабит информации в каждой цепи, что эквивалентно 800 мегабайтам и сопоставимо с количеством информации на компакт-диске[16]. Логика хранения данных в парных основаниях аналогична системе виртуализации данных RAID 1.
См. также[править | править код]
- Гаплогруппы
- Проект «Геном человека»
Примечания[править | править код]
- ↑ Talking glossary of genetic terms: genome (англ.). National Human Genome Research Institute. Дата обращения: 1 ноября 2012. Архивировано 4 ноября 2012 года.
- ↑
International Human Genome Sequencing Consortium. Finishing the euchromatic sequence of the human genome. (англ.) // Nature. — 2004. — Vol. 431, no. 7011. — P. 931—945. — doi:10.1038/nature03001. — PMID 15496913. - ↑ 1 2 International Human Genome Sequencing Consortium. Initial sequencing and analysis of the human genome. (англ.) // Nature. — 2001. — Vol. 409, no. 6822. — P. 860—921. — doi:10.1038/35057062. — PMID 11237011.
- ↑ «Мусорная» ДНК помогает включать гены.
- ↑ «Мусорная» ДНК играет важнейшую роль в поддержании целостности генома.
- ↑ Tjio J. H., Levan A. The chromosome number of man (англ.) // Hereditas (англ.)русск.. — 1956. — Vol. 42. — P. 1—6. — doi:10.1111/j.1601-5223.1956.tb03010.x. — PMID 345813. Первая работа с точно установленным числом хромосом у человека.
- ↑ Human Chromosome Number, здесь рассказана история подсчёта хромосом у человека
- ↑
Nei M., Xu P., Glazko G. Estimation of divergence times from multiprotein sequences for a few mammalian species and several distantly related organisms. (англ.) // Proceedings of the National Academy of Sciences of the United States of America. — 2001. — Vol. 98, no. 5. — P. 2497—2502. — doi:10.1073/pnas.051611498. — PMID 11226267. - ↑
Loots G., Locksley R., Blankespoor C., Wang Z., Miller W., Rubin E., Frazer K. Identification of a coordinate regulator of interleukins 4, 13, and 5 by cross-species sequence comparisons. (англ.) // Science. — 2000. — Vol. 288, no. 5463. — P. 136—140. — doi:10.1126/science.288.5463.136. — PMID 10753117.
Summary - ↑
Meunier, Monique Genoscope and Whitehead announce a high sequence coverage of the Tetraodon nigroviridis genome (англ.) (недоступная ссылка). Genoscope. Дата обращения: 12 сентября 2006. Архивировано 20 августа 2002 года. - ↑
Claverie J. Fewer genes, more noncoding RNA. (англ.) // Science. — 2005. — Vol. 309, no. 5740. — P. 1529—1530. — doi:10.1126/science.1116800. — PMID 16141064. - ↑ Предки человека заимствовали полезные гены у вирусов
- ↑ Eugene D. Sverdlov. Retroviruses and primate evolution // BioEssays. — Vol. 22, № 2. — P. 161—171. — doi:10.1002/(SICI)1521-1878(200002)22:2<161::AID-BIES7>3.0.CO;2-X. — PMID 10655035.
- ↑ Anders L Kjeldbjerg, Palle Villesen, Lars Aagaard, Finn Skou Pedersen. Gene conversion and purifying selection of a placenta-specific ERV-V envelope gene during simian evolution // BMC Evolutionary Biology. — 2008. — Vol. 8. — P. 266. — doi:10.1186/1471-2148-8-266. — PMID 18826608.
- ↑ Деньгуб В. М., Смирнов В. Г. Единицы величин. Словарь-справочник. — М.: Издательство стандартов, 1990. — С. 25. — 240 с. — ISBN 5-7050-0118-5.
- ↑ How much information does human DNA store? – Quora
Список литературы[править | править код]
- Тарантул В. З. Геном человека. Энциклопедия, написанная четырьмя буквами. — Языки славянской культуры, 2003. — 396 с. — ISBN 5-94457-108-X.
- Ридли Мэтт. Геном: автобиография вида в 23 главах. — М.: Эксмо, 2008. — 432 с. — ISBN 5-699-30682-4
Ссылки[править | править код]
- Всеобщая декларация о геноме человека и правах человека ЮНЕСКО, 1997
- Lindblad-Toh K. et al. Genome sequence, comparative analysis and haplotype structure of the domestic dog. (англ.) // Nature. — 2005. — Vol. 438, no. 7069. — P. 803—819. — doi:10.1038/nature04338. — PMID 16341006.
- The National Human Genome Research Institute
- The National Office of Public Health Genomics
Источник
Сайт предоставляет справочную информацию. Адекватная диагностика и лечение болезни возможны под наблюдением добросовестного врача. У любых препаратов есть противопоказания. Необходима консультация специалиста, а также подробное изучение инструкции!
Все мы знаем, что облик человека, некоторые привычки и, даже, заболевания передаются по наследству. Вся эта информация о живом существе закодирована в генах. Так как же эти пресловутые гены выглядят, как они функционируют и где находятся?
Итак, носителем всех генов любого человека или животного является ДНК. Данное соединение было открыто в 1869 году Иоганном Фридрихом Мишером.Химически ДНК – это дезоксирибонуклеиновая кислота. Что же это означает? Каким образом эта кислота несет в себе генетический код всего живого на нашей планете?
Начнем с того, что рассмотрим, где располагается ДНК. В клетке человека имеется множество органоидов, которые выполняют различные функции. ДНК располагается в ядре. Ядро – это маленькая органелла, которая окружена специальной мембраной, и в которой хранится весь генетический материал – ДНК.
Каково строение молекулы ДНК?
Прежде всего, рассмотрим, что представляет собой ДНК. ДНК – это очень длинная молекула, состоящая из структурных элементов – нуклеотидов. Имеется 4 вида нуклеотидов – это аденин (А), тимин (Т), гуанин (Г) и цитозин (Ц). Цепочка нуклеотидов схематически выглядит следующим образом: ГГААТЦТААГ.… Вот такая последовательность нуклеотидов и есть цепочка ДНК.
Впервые структура ДНК была расшифрована в 1953 году Джеймсом Уотсоном и Френсисом Криком.
В одной молекуле ДНК имеется две цепочки нуклеотидов, которые спирально закручены вокруг друг друга. Как же эти нуклеотидные цепочки держатся рядом и закручиваются в спираль? Данный феномен обусловлен свойством комплементарности. Комплементарность означает, что друг напротив друга в двух цепочках могут находиться только определенные нуклеотиды (комплементарные). Так, напротив аденина всегда стоит тимин, а напротив гуанина всегда только цитозин. Таким образом, гуанин комплементарен с цитозином, а аденин – с тимином.Такие пары нуклеотидов, стоящие напротив друг друга в разных цепочках также называются комплементарными.
Схематически можно изобразить следующим образом:
Г — Ц
Т — А
Т — А
Ц — Г
Эти комплементарные пары А — Т и Г — Ц образуют химическую связь между нуклеотидами пары, причем связьмежду Г и Ц более прочная чем между А и Т. Связь образуется строго между комплементарными основаниями, то есть образование связи между не комплементарными Г и А – невозможно.
«Упаковка» ДНК, как цепочка ДНК становится хромосомой?
Почему же эти нуклеотидные цепочки ДНК еще и закручиваются вокруг друг друга? Зачем это нужно? Дело в том, что количество нуклеотидов огромно и нужно очень много места, чтобы разместить такие длинные цепочки. По этой причине происходит спиральное закручивание двух нитей ДНК вокруг друга. Данное явление носит название спирализации. В результате спирализации цепочки ДНК укорачиваются в 5-6 раз.
Некоторые молекулы ДНК активно используются организмом, а другие используются редко. Такие редко используемые молекулы ДНК помимо спирализации подвергается еще более компактной «упаковке». Такая компактная упаковка называется суперспирализацией и укорачивает нить ДНК в 25-30 раз!
Как происходит упаковка спиралей ДНК?
Для суперспирализации используются гистоновые белки, которые имеют вид и структуру стержня или катушки для ниток. На эти «катушки» – гистоновые белки наматываются спирализованные нити ДНК. Таким образом, длинная нить становится очень компактно упакованной и занимает очень мало места.
При необходимости использовать ту или иную молекулу ДНК происходит процесс «раскручивания», то есть нить ДНК «сматывается» с «катушки» – гистонового белка (если была на нее накручена) и раскручивается из спирали в две параллельные цепи. А когда молекула ДНК находится в таком раскрученном состоянии, то с нее можно считать необходимую генетическую информацию. Причем считывание генетической информации происходит только с раскрученных нитей ДНК!
Совокупность суперспирализованных хромосом называется гетерохроматин, а хромосом, доступных для считывания информации – эухроматин.
Что такое гены, какова их связь с ДНК?
Теперь давайте рассмотрим, что же такое гены. Известно, что есть гены, определяющие группу крови, цвет глаз, волос, кожи и множество других свойств нашего организма. Ген – это строго определенный участок ДНК, состоящий из определенного количества нуклеотидов, расположенных в строго определенной комбинации. Расположение в строго определенном участке ДНК означает, что конкретному гену отведено его место, и поменять это место невозможно. Уместно провести такое сравнение: человек живет на определенной улице, в определенном доме и квартире, и самовольно человек не может переселиться в другой дом, квартиру или на другую улицу. Определенное количество нуклеотидов в гене означает, что каждый ген имеет конкретное число нуклеотидов и их не может стать больше или меньше. Например, ген, кодирующий выработку инсулина, состоит из 60 пар нуклеотидов; ген, кодирующий выработку гормона окситоцина – из 370 пар нуклеотидов.
Строгая последовательность нуклеотидов является уникальной для каждого гена и строго определенной. Например, последовательность ААТТААТА – это фрагмент гена, кодирующего выработку инсулина. Для того чтобы получить инсулин, используется именно такая последовательность, для получения, например, адреналина, используется другая комбинация нуклеотидов. Важно понимать, что только определенная комбинация нуклеотидов кодирует определенный «продукт» (адреналин, инсулин и т.д.). Такая вот уникальная комбинация определенного числа нуклеотидов, стоящая на «своем месте» – это и есть ген.
Помимо генов в цепи ДНК расположены, так называемые «некодирующие последовательности». Такие некодирующие последовательности нуклеотидов регулируют работу генов, помогают спирализации хромосом, отмечают точку начала и конца гена. Однако, на сегодняшний день, роль большинства некодирующих последовательностей остается невыясненной.
Что такое хромосома? Половые хромосомы
Совокупность генов индивидуума называется геномом. Естественно, весь геном невозможно уложить в одну ДНК. Геном разбит на 46 пар молекул ДНК. Одна пара молекул ДНК называется хромосома. Так вот именно этих хромосом у человека имеется 46 штук. Каждая хромосома несет строго определенный набор генов, например, в 18 хромосоме заложены гены, кодирующие цвет глаз и т.д.Хромосомы различаются друг от друга по длине и форме. Самые распространенные формы в виде Х или Y, но имеются также и другие. У человека имеются по две хромосомы одинаковой формы, которые называются парными (парами). В связи с такими различиями все парные хромосомы пронумерованы – их имеется 23 пары. Это означает, что имеется пара хромосом №1, пара №2, №3 и т.д. Каждый ген ответственный за определенный признак находится в одной и той же хромосоме. В современных руководствах для специалистов может указываться локализация гена, например, следующим образом: 22 хромосома, длинное плечо.
В чем заключаются различия хромосом?
Как же еще различаются между собой хромосомы? Что означает термин длинное плечо? Возьмем хромосомы формы Х. Пересечение нитей ДНК может происходить строго посередине (Х), а может происходить и не центрально. Когда такое пересечение нитей ДНК происходит не центрально, то относительно точки перекреста одни концы длиннее, другие, соответственно, короче. Такие длинные концы принято называть длинным плечом хромосомы, а короткие – соответственно – коротким плечом. У хромосом формы Y большую часть занимают длинные плечи, а короткие совсем небольшие (на схематичном изображении они даже не указываются).
Размер хромосом колеблется: самыми крупными являются хромосомы пар №1 и №3, самыми маленькими хромосомы пар № 17, №19.
Помимо форм и размеров хромосомы различаются по выполняемым функциям. Из 23 пар, 22 пары являются соматическими и 1 пара – половые. Что это значит? Соматические хромосомы определяют все внешние признаки индивидуума, особенности его поведенческих реакций, наследственный психотип, то есть все черты и особенности каждого конкретного человека. А пара половых хромосом определяет пол человека: мужчина или женщина. Существует две разновидности половых хромосом человека – это Х (икс) и У (игрек). Если они сочетаются как ХХ (икс – икс) – это женщина, а если ХУ (икс – игрек) – перед нами мужчина.
Наследственные болезни и повреждения хромосом
Однако случаются «поломки» генома, тогда у людей выявляются генетические заболевания. Например, когда в 21 паре хромосом вместо двух присутствует три хромосомы, человек рождается с синдромом Дауна.
Существует множество более мелких «поломок» генетического материала, которые не ведут к возникновению болезни, а наоборот, придают хорошие свойства. Все «поломки» генетического материала называются мутациями. Мутации, ведущие к болезням или ухудшению свойств организма, считают отрицательными, а мутации, ведущие к образованию новых полезных свойств, считают положительными.
Однако, применительно к большинству болезней, которыми сегодня страдают люди, передается по наследству не заболевание, а лишь предрасположенность. Например, у отца ребенка сахар усваивается медленно. Это не означает, что ребенок родится с сахарным диабетом, но у ребенка будет иметься предрасположенность. Это означает, если ребенок будет злоупотреблять сладостями и мучными изделиями, то у него разовьется сахарный диабет.
На сегодняшний день развивается так называемая предикативная медицина. В рамках данной медицинской практики у человека выявляются предрасположенности (на основе выявления соответствующих генов), а затем ему даются рекомендации – какой диеты придерживаться, как правильно чередовать режим труда и отдыха, чтобы не заболеть.
Как прочитать информацию, закодированную в ДНК?
А как же можно прочитать информацию, содержащуюся в ДНК? Как использует ее собственный организм? Сама ДНК представляет собой некую матрицу, но не простую, а закодированную. Чтобы прочесть информацию с матрицы ДНК, она сначала переносится на специальный переносчик – РНК. РНК – это химически рибонуклеиновая кислота. Отличается от ДНК тем, что может проходить через мембрану ядра в клетку, а ДНК лишена такой способности (она может находиться только в ядре). Закодированная информация же используется в самой клетке. Итак, РНК – это переносчик кодированной информации из ядра в клетку.
Как происходит синтез РНК, как при помощи РНК синтезируется белок?
Нити ДНК, с которых нужно «считать» информацию, раскручиваются, к ним подходит специальный фермент – «строитель» и синтезирует параллельно нити ДНК комплементарную цепочку РНК. Молекула РНК также состоит из 4 видов нуклеотидов – аденина (А), урацила (У), гуанина (Г) и цитозина (Ц). При этом комплементарными являются следующие пары: аденин – урацил, гуанин – цитозин. Как видно, в отличие от ДНК, в РНК используется урацил вместо тимина. То есть фермент-«строитель» работает следующим образом: если в нити ДНК он видит А, то к нити РНК присоединяет У, если Г – то присоединяет Ц и т.д. Таким образом, с каждого активного гена при транскрипции формируется шаблон – копия РНК, способная проходить через мембрану ядра.
Как происходит синтез белка закодированного определенным геном?
Покинув ядро, РНК попадает в цитоплазму. Уже в цитоплазме РНК может быть, как матрица встроена в специальные ферментные системы (рибосомы), которые могут синтезировать, руководствуясь информацией РНК соответствующую последовательность аминокислот белка. Как известно, молекула белка состоит из аминокислот. Как же рибосоме удается узнать, какую именно аминокислоту надо присоединить к растущей белковой цепи? Делается это на основе триплетного кода. Триплетный код означает, что последовательность в три нуклеотида цепочки РНК (триплет, например, ГГУ) кодируют одну аминокислоту (в данном случае глицин). Каждую аминокислоту кодирует определенный триплет. И так, рибосома «прочитывает» триплет, определяет какую аминокислоту надо присоединить следующей по мере считывания информации в РНК. Когда цепочка аминокислот сформирована, она принимает определенную пространственную форму и становится белком, способным осуществлять возложенные на него ферментные, строительные, гормональные и другие функции.
Белок для любого живого организма является продуктом гена. Именно белками определяются все разнообразные свойства, качества и внешние проявления генов.
Автор: Наседкина А.К.
Источник