Какие антигены и антитела содержатся в крови относящейся к i группе

[03-005]
Группа крови ABO

310 руб.

Группа крови ABO – это система, отражающая наличие или отсутствие антигенов на поверхности эритроцитов и антител в плазме крови. Определение группы крови имеет огромное значение при переливании крови и ее компонентов.

Синонимы русские

Группа крови, определение группы крови.

Синонимы английские

ABO Grouping, Blood Typing, Blood Group, Blood Type.

Метод исследования

Реакция агглютинации.

Какой биоматериал можно использовать для исследования?

Венозную кровь.

Как правильно подготовиться к исследованию?

  • Исключить из рациона жирную пищу за 24 часа до исследования.
  • Не курить в течение 30 минут до исследования.

Общая информация об исследовании

Группа крови АВO – это система, отражающая наличие или отсутствие антигенов на поверхности эритроцитов и антител в плазме крови. ABO (читается как “а-бэ-ноль”) является самой распространенной системой групп крови в России.

Эритроциты на своей поверхности несут сигнальные молекулы – антигены – агглютиногены. Двумя основными антигенами, встроенными в молекулу эритроцитов, являются А и В. Группы крови определяются на основании наличия или отсутствия этих антигенов. Кровь людей, у которых на эритроцитах присутствует антиген А, относится к второй группе – A (II), кровь тех, у кого на эритроцитах – антиген В, относится к третьей группе – B (III). Если на эритроцитах присутствуют и антигены А, и антигены В – это четвертая группа – AB (IV). Бывает и так, что в крови на эритроцитах не определяется ни одного из этих антигенов – тогда это первая группа – O (I).

В норме организм вырабатывает антитела против тех антигенов (А или В), которых нет на эритроцитах – это агглютинины находящиеся в плазме крови. То есть у лиц со второй группой крови – А(II) – на эритроцитах присутствуют антигены A, а в плазме будут содержаться антитела к антигенам В – обозначаются как анти-B (бета-агглютинин). Так как одноименные антигены (агглютиногены) на поверхности эритроцитов и агглютинины в плазме (A и альфа, B и бета) вступают друг с другом в реакцию и приводят к “склеиванию” эритроцитов, они не могут содержаться в крови у одного человека.

Открытие групповой системы ABO позволило понять, почему переливание крови иногда происходило удачно, а иногда вызывало тяжелые осложнения. Было сформулировано понятие совместимости групп крови. Например, если человеку со второй группой крови – А(II), которая содержит антитела к антигену В, перелить третью группу крови – B (III), произойдет реакция между антигенами и антителами, которая приведет к склеиванию и разрушению эритроцитов и может иметь тяжелые последствия вплоть до летального исхода. Поэтому группы крови при переливании обязательно должны быть совместимы.

Группа крови определяется по наличию или отсутствию склеивания эритроцитов с использованием сывороток, содержащих стандартные антигены и антитела.

В центрах переливания крови на пакетах с кровью или с ее компонентами, полученными от доноров, помечается “O (I)”, “A (II)”, “B (III)” или “AB (IV)”, что позволяет быстро найти кровь нужной группы, когда она требуется.

Для чего используется исследование?

Чтобы узнать, какую кровь можно безопасно переливать пациенту. Крайне важно убедиться, что донорская кровь совместима с кровью реципиента – человека, которому ее собираются переливать. Если в донорской крови или ее компонентах есть антитела к антигенам, содержащимся на эритроцитах реципиента, то может развиться тяжелая трансфузионная реакция, вызванная разрушением эритроцитов в сосудистом русле.

Когда назначается исследование?

  • Перед переливанием крови – как тем, кому оно требуется, так и донорам.

Переливание крови и ее компонентов чаще всего требуется в следующих ситуациях:

    • тяжелая анемия,
    • кровотечение, возникшее во время или после операции,
    • тяжелые травмы,
    • массивная кровопотеря любого происхождения,
    • онкологические заболевания и побочные эффекты химиотерапии,
    • нарушения свертываемости крови, в частности гемофилия.
  • Перед хирургическим вмешательством.

Что означают результаты?

Результаты показывают принадлежность крови человека к одной из четырех групп, в зависимости от наличия антигенов на эритроцитах и антител, присутствующих в крови.

Группа крови

Антитела

O (I)

α и β

A (II)

β

B (III)

α

AB (IV)

Антител α и β не будет



Также рекомендуется

  • Резус-фактор

Кто назначает исследование?

Терапевт, врач общей практики, гематолог, трансфузиолог, хирург.

Источник

Группы крови — это генетически наследуемые признаки, не изменяющиеся в течение жизни при естественных условиях. Группа крови представляет собой определённое сочетание поверхностных антигенов эритроцитов (агглютиногенов) системы АВ0.

Определение групповой принадлежности широко используется в клинической практике при переливании крови и её компонентов, в гинекологии и акушерстве при планировании и ведении беременности.

Система групп крови AB0 является основной системой, определяющей совместимость и несовместимость переливаемой крови, т. к. составляющие её антигены наиболее иммуногенны. Особенностью системы АВ0 является то, что в плазме у неиммунных людей имеются естественные антитела к отсутствующему на эритроцитах антигену. Систему группы крови АВ0 составляют два групповых эритроцитарных агглютиногена (А и В) и два соответствующих антитела – агглютинины плазмы альфа (анти-А) и бета (анти-В).

Различные сочетания антигенов и антител образуют 4 группы крови:

Группа 0 (I) — на эритроцитах отсутствуют групповые агглютиногены, в плазме присутствуют агглютинины альфа и бета;

Группа А (II) — эритроциты содержат только агглютиноген А, в плазме присутствует агглютинин бета;

Группа В (III) — эритроциты содержат только агглютиноген В, в плазме содержится агглютинин альфа;

Группа АВ (IV) — на эритроцитах присутствуют антигены А и В, плазма агглютининов не содержит.

Определение групп крови проводят путём идентификации специфических антигенов и антител (двойной метод или перекрёстная реакция).

Несовместимость крови наблюдается, если эритроциты одной крови несут агглютиногены (А или В), а в плазме другой крови содержатся соответствующие агглютинины (альфа- или бета), при этом происходит реакция агглютинации. Переливать эритроциты, плазму и особенно цельную кровь от донора к реципиенту нужно строго соблюдая групповую совместимость. Чтобы избежать несовместимости крови донора и реципиента, необходимо лабораторными методами точно определить их группы крови. Лучше всего переливать кровь, эритроциты и плазму той же группы, которая определена у реципиента. В экстренных случаях эритроциты группы 0, но не цельную кровь!, можно переливать реципиентам с другими группами крови; эритроциты группы А можно переливать реципиентам с группой крови А и АВ, а эритроциты от донора группы В — реципиентам группы В и АВ.

Групповые агглютиногены находятся в строме и оболочке эритроцитов. Антигены системы АВО выявляются не только на эритроцитах, но и на клетках других тканей или даже могут быть растворёнными в слюне и других жидкостях организма.

Резус-фактор – это антиген (белок), который находится на поверхности эритроцитов, красных кровяных телец. Около 85% людей имеют этот самый резус-фактор и, соответственно, являются резус-положительными. Остальные же 15%, у которых его нет, резус-отрицательны. Обычно отрицательный резус-фактор никаких неприятностей его хозяину не приносит. Особого внимания и ухода требуют лишь резус-отрицательные беременные женщины. Наличие или отсутствие резус-фактора не зависит от групповой принадлежности по системе АВ0 и не изменяется в течение жизни.

Источник

К настоящему времени установлено, что антигенная структура человеческой крови сложна, все форменные элементы крови и плазменные белки разных людей отличаются по своим антигенам. Уже известно около 500 антигенов крови, которые образуют свыше 40 различных антигенных систем.

Под антигенной системой понимают совокупность антигенов крови, которые наследуются (контролируются) аллельными генами.

Все антигены крови делят на клеточные и плазменные. Основное значение в трансфузиологии имеют клеточные антигены.

  1. КЛЕТОЧНЫЕ АНТИГЕНЫ

Клеточные антигены представляют собой сложные уг- леводно-белковые комплексы (гликопептиды), которые являются структурными компонентами мембраны клеток крови. От других компонентов клеточной мембраны они отличаются иммуногенностью и серологической активностью.

Иммуногенность — способность антигенов индуцировать выработку антител, если они попадают в организм, у которого эти антигены отсутствуют.

Серологическая активность — способность антигенов соединяться с одноименными антителами.

Молекула клеточных антигенов состоит из двух компонентов:

  • Гаптен (полисахаридная часть антигена, расположена в поверхностных слоях клеточной мембраны), определяющий серологическую активность.
  • Шлеппер (белковая часть антигена, расположенная во внутренних слоях мембраны), определяющий иммуногенность.

На поверхности гаптена имеются антигенные детерминанты (эпитопы) — молекулы углеводов, к которым присоединяются антитела. Известные антигены крови отличаются друг от друга эпитопами. Например, гаптены антигенов системы АВО имеют следующий набор углеводов: эпитопом антигена О является фукоза, антигена А — N-ацетилгалактозамин, антигена В — галактоза. С ними и соединяются групповые антитела.

Различают три вида клеточных антигенов:

  • эритроцитарные,
  • лейкоцитарные,
  • тромбоцитарные.
  1. ЭРИТРОЦИТАРНЫЕ АНТИГЕНЫ

Известно более 250 антигенов эритроцитов, образующих свыше 20 антигенных систем. Клиническое значение имеют 13 систем: АВО, резус- фактор (Rh-Hr), Келл (Kell), Даффи (Duffy), MNSs, Кидд (Kidd), Левис (Lewis), Лютеран (Lutheran), Р, Диего (Diego), Аубергер (Auberger), Дом- брок (Dombrock) и Ай (/).

Каждая антигенная система состоит из десятка и более антигенов. У человека в эритроцитах имеются одновременно антигены нескольких антигенных систем.

Основными в трансфузиологии являются антигенные системы АВО и Rh-фактора. Другие антигенные системы эритроцитов в настоящее время существенного значения в клинической трансфузиологии не имеют.

а)              Антигенная система АВО

Система АВО является основной серологической системой, определяющей совместимость или несовместимость переливаемой крови. Ее составляют два генетически детерминированных агглютиногена (антигена) — А и В и два агглютинина (антитела) — а и (3.

Агглютиногены А и В содержатся в строме эритроцитов, а агглютинины аир — в сыворотке крови. Агглютинин а является антителом по отношению к агглютиногену А, а агглютинин (3 — по отношению к агглютино- гену В. В эритроцитах и сыворотке крови одного человека не может быть одноименных агглютиногенов и агглютининов. При встрече одноименных антигенов и антител возникает реакция изогемагглютинации. Именно эта реакция является причиной несовместимости крови при гемотрансфузии.

В зависимости от сочетания в эритроцитах антигенов А и В (и соответственно в сыворотке антител аир) все люди разделяются на четыре группы.

б)              Антигенная система резус-фактора

Резус-фактор (Rh-фактор) был открыт К. Ландштейнером и А. С. Винером при помощи сыворотки кроликов, иммунизированных эритроцитами макак резус. Он встречается у 85% людей, а у 15% отсутствует.
В настоящее время известно, что система резус-фактора достаточна сложна и представлена 6 антигенами. Роль резус-фактора при гемотрансфузии, а также при беременности крайне велика. Ошибки, приводящие к развитию резус-конфликта, вызывают тяжелые осложнения, а иногда и смерть больного.

в)              Второстепенные антигенные системы

Второстепенные эритроцитарные групповые системы также представлены большим количеством антигенов. Знание этого множества систем имеет значение для решения некоторых вопросов в антропологии, для судебно-медицинских исследований, а также для предотвращения развития посттрансфузионных осложнений и предотвращения развития некоторых заболеваний у новорожденных.

Ниже представлены наиболее изученные антигенные системы эритроцитов.

Групповая система MNSs включает факторы М, N, S, s. Доказано наличие двух тесно сцепленных между собой генных локусов MN и Ss. В дальнейшем были выявлены другие многообразные варианты антигенов системы MNSs. По химической структуре MNSs являются гликопротеидами.

Система Р. Одновременно с антигенами М и N К. Ландштейнер и Ф. Левин (1927 г.) открыли в эритроцитах человека антиген Р. Изоантигены и изоантитела имеют определенное клиническое значение. Отмечены случаи ранних и поздних выкидышей, причиной которых явились изоантитела анти-Р. Описано несколько случаев посттрансфузионных осложнений, связанных с несовместимостью донора и реципиента по системе антигенов Р.

Групповая система Келл. Эта система представлена тремя парами антигенов. Наибольшей иммуногенной активностью обладают антигены Келл (К) и Челлано (к). Антигены системы Келл могут вызывать сенсибилизацию организма во время беременности и при переливании крови, служить причиной гемотрансфузионных осложнений и развития гемолитической болезни новорожденных.

Система Лютеран. В сыворотке крови пациента с красной волчанкой, перенесшего многократные гемотрансфузии, обнаружили смесь нескольких антител. Один из доноров по фамилии Лютеран имел в эритроцитах крови какой-то ранее неизвестный антиген, приведший к иммунизации реципиента. Антиген был обозначен буквами Lu а. Через несколько лет был открыт второй антиген этой системы Lu b. Частота их встречаемости Lu а — 0,1%, Lu b — 99,9%. Антитела анти- Lu b являются изоиммунными, что подтверждается и сообщениями о значении этих антител в происхождении гемолитической болезни новорожденных. Клиническое значение антигенов системы Лютеран невелико.

Система Кидд. Антигены и антитела системы Кидд имеют определенное практическое значение. Они могут быть причиной развития ге
молитической болезни новорожденных и посттрансфузионных осложнений при многократном переливании крови, несовместимой по антигенам этой системы. Частота встречаемости антигенов около 75%.

Система Диего. В 1953 г. в Венесуэле в семье Диего родился ребенок с признаками гемолитической болезни. При выяснении причины это- го заболевания у ребенка был обнаружен ранее неизвестный антиген, который был обозначен фактором Диего (Di). В 1955 г. проведенные исследования выявили, что антиген Диего является расовым признаком, характерным для народов монголоидной расы.

Система Даффи. Состоит из двух основных антигенов — Fy а и Fy b . Антитела анти-Fy а являются неполными антителами и проявляют свое действие только в непрямом антиглобулиновом тесте Кумбса. Позднее были обнаружены антигены Fy b, Fy х, Fy3, Fy4gt; Fy5. Частота встречаемости зависит от расовой принадлежности человека, что имеет большое значение для антропологов. В негроидных популяциях частота встречаемости фактора Fy а 10-25%, среди китайского населения, эскимосов, аборигенов Австралии почти 100%, у людей европеоидной расы — 60-82%.

Система Домброк. В 1973 г. были выявлены антигены Do а и Do b. Фактор Do а встречается в 55-60% случаев, а фактор Do b — в 85-90%. Такая частота встречаемости выдвигает эту серологическую систему крови на 5-е место по информативности в аспекте судебно-медицинского исключения отцовства (система резус, MNSs, АВО и Даффи). Ферментные группы эритроцитов. Начиная с 1963 г. стало известно значительное количество генетически полиморфных ферментных систем эритроцитов крови человека. Эти открытия сыграли значительную роль в развитии общей серологии групп крови человека, а также в аспекте судебно-медицинской экспертизы спорного отцовства. К ферментным системам эритроцитов относятся: фосфатглю- комутаза, аденозиндезаминаза, глутамат-пируват-трансаминаза, эстераза-Д и др.

  1. ЛЕЙКОЦИТАРНЫЕ АНТИГЕНЫ

В мембране лейкоцитов имеются антигены, аналогичные эритроци- тарным, а также специфические для этих клеток антигенные комплексы, которые называют лейкоцитарными антигенами. Впервые сведения

о              лейкоцитарных группах получил французский исследователь Ж. Доссе в 1954 г. Первым был выявлен антиген лейкоцитов, встречающийся у 50% европейского населения. Этот антиген был назван lt;lt;Мак». В настоящее время насчитывают около 70 антигенов лейкоцитов, которые разделяют на три группы:

  • Общие антигены лейкоцитов (HLA — Human Leucocyte Antigen).
  • Антигены полиморфно-ядерных лейкоцитов.
  • Антигены лимфоцитов.

а)              Система HLA

Система HLA имеет наибольшее клиническое значение. Она включает более 120 антигенов. Только по этой антигенной системе насчитывают 50 млн лейкоцитарных групп крови. HLA-антигены являются универсальной системой. Они содержатся в лимфоцитах, полиморфно-ядерных лейкоцитах (гранулоцитах), моноцитах, тромбоцитах, а также в клетках почек, легких, печени, костного мозга и других тканях и органах. В связи с этим эти антигены еще называют антигенами гистосовместимости.

По рекомендации ВОЗ используют следующую номенклатуру системы HLA:

  • HLA — Human Leucocyte Antigen — обозначение системы.
  • А, В, С, D — генные локусы или регионы системы.
  • 1, 2, 3 — количество обнаруженных аллелей внутри генного ло- куса системы HLA.
  • W — символ для обозначения недостаточно изученных антигенов.

Система HLA — наиболее сложная из всех известных систем антигенов. Генетически HLA-антигены принадлежат к четырем локусам (А, В, С, D), каждый из которых объединяет аллельные антигены. Иммунологическое исследование, позволяющее определить антигены гистосовместимости, называют тканевым типированием.

HLA-система имеет большое значение при трансплантации тканей. Аллоантигены системы HLA локусов А, В, С, D, а также агглютиногены классических групп крови системы АВО представляют собой единственно достоверно известные антигены гистосовместимости. Для предупреждения быстрого отторжения пересаженных органов и тканей необходимо, чтобы реципиент имел ту же, что и донор, группу крови системы АВО и не имел антител к аллоантигенам HLA-генных локусов А, В, С, D донорского организма.

HLA-антигены имеют значение также при переливании крови, лейкоцитов и тромбоцитов. Различие матери и плода по антигенам HLA-системы при повторных беременностях могут привести к выкидышу или гибели плода.

б)              Антигены полиморфно-ядерных лейкоцитов

Другой системой антигенов лейкоцитов являются антигены грануло- цитов (NA-NB). Эта система является органоспецифической. Антигены гранулоцитов обнаружены в полиморфно-ядерных лейкоцитах, клетках костного мозга. Известно три гранулоцитарных антигена NA-1, NA-2, NB-1. Они типируются с помощью изоиммунных сывороток агглютинирующего характера. Антитела против антигенов гранулоцитов имеют значение при беременности, вызывая кратковременную нейтропению новорожденных, они играют важную роль в развитии негемолитических транс – фузионных реакций, могут вызывать гипертермические посттрансфузион- ные реакции и укорочение жизни гранулоцитов донорской крови.
в)              Антигены лимфоцитов

Третью группу антигенов лейкоцитов составляют лимфоцитарные антигены, которые являются тканеспецифическими. К ним относятся антиген Ly и другие. Выделены 7 антигенов популяции В-лимфоцитов: HLA-DRwj…HLA-DRw7. Значение этих антигенов остается малоизученным.

  1. ТРОМБОЦИТАРНЫЕ АНТИГЕНЫ

В мембране тромбоцитов имеются антигены, аналогичные эритроци- тарным и лейкоцитарным (HLA), а также свойственные только этим клеткам крови — тромбоцитарные антигены. Известны антигенные системы Zw, PL, Ко. В настоящее время особого клинического значения не имеют.

  1. ПЛАЗМЕННЫЕ АНТИГЕНЫ

Плазменные (сывороточные) антигены представляют собой определенные комплексы аминокислот или углеводов на поверхности молекул белков плазмы (сыворотки) крови.

Антигенные различия, свойственные белкам плазмы крови, объединяют в 10 антигенных систем (Нр, Gc, Tf, Iny, Gm и др.). Наиболее сложной из них и клинически значимой является антигенная система Gm (включает 25 антигенов), присущая иммуноглобулинам. Различия людей по антигенам плазменных белков создают плазменные (сывороточные) группы крови.

  1. ПОНЯТИЕ

0 ГРУППЕ КРОВИ

ГРУППА КРОВИ — это сочетание нормальных иммунологических и генетических признаков крови, которое наследственно детерминировано и является биологическим свойством каждого индивидуума.

Согласно современным данным иммуногематологии можно следующим образом сформулировать понятие «группа крови».

Группы крови передаются по наследству, формируются на 3-4 месяце внутриутробного развития и остаются неизменными в течение всей жизни. Считается, что у человека группа крови включает несколько десятков антигенов в различных сочетаниях. Этих сочетаний — групп крови — реально может быть несколько миллиардов. Практически они одинаковы лишь у однояйцевых близнецов, имеющих один и тот же генотип.

Такое понятие о группе крови является наиболее общим.

В практической медицине термин «группа крови», как правило, отражает сочетание эритроцитарных антигенов системы АВО и резус-фак- тора и соответствующих антител в сыворотке крови.

  1. ГРУППОВЫЕ АНТИТЕЛА

Для каждого известного антигена обнаружены одноименные антитела (анти-А, анти-В, анти-резус, анти-Келл и т. д.). Групповые антитела крови — не такое постоянное свойство организма человека, как антигены. Лишь в групповой системе АВО антитела являются нормальным врожденным свойством плазмы крови. Эти антитела (агглютинины а и Ь) постоянно присутствуют в плазме крови человека, определенным образом сочетаясь с агглютиногенами (антигенами) эритроцитов.

Групповые антитела бывают врожденными (например, агглютинины а и Р) и изоиммунными, образующимися в ответ на поступление чужеродных групповых антигенов (например, антитела системы Rh-фактора).

Врожденные антитела являются так называемыми полными антителами — агглютининами, вызывающими агглютинацию (склеивание) эритроцитов, содержащих соответствующий антиген. Они относятся к Холодовым антителам, так как лучше проявляют свое действие in vitro при низких температурах и слабее реагируют при высокой температуре.

йзоиммунные антитела являются неполными. Они с трудом поддаются абсорбции и не разрушаются при нагревании. Эти антитела являются тепловыми (наиболее активны при температуре 37°С и выше) и агглютинируют клетки крови только в коллоидной среде.

Неполные антитела относятся к классу Ig G, а полные — к Ig М.

Групповые антитела класса Ig G имеют молекулярную массу порядка 150-160 тыс. Дальтон и наибольший размер 25 нм. Молекула этого белка содержит 4 цепочки аминокислот, участки молекулы между концами цепей являются активными центрами (паратопами, антидетерминантами), которыми они соединяются с антигенными детерминантами, расположенными на клетках крови. Так как активных центров у этих антител два, то каждое антитело связывает два эпитопа.

Групповые антитела класса Ig М имеют аналогичную структуру, только у них другие цепи аминокислот. Молекулярная масса этих антител 900 тыс. — 1 млн Дальтон, наибольший размер — 100 нм. Антитела класса М имеют 10 активных центров, поэтому они могут соединяться одновременно с антигенными детерминантами большего числа клеток крови, чем антитела класса Ig G.

    Источник