Какие атомы обладают парамагнитными свойствами

Какие атомы обладают парамагнитными свойствами thumbnail

Все атомы так или иначе реагируют на магнитные поля, но реагируют по-разному в зависимости от конфигурации атомов, окружающих ядро. В зависимости от этой конфигурации элемент может быть диамагнитным, парамагнитным или ферромагнитным. Диамагнитные элементы, которые в некоторой степени фактически являются всеми ими, слабо отталкиваются магнитным полем, тогда как парамагнитные элементы слабо притягиваются и могут намагничиваться. Ферромагнитные материалы также обладают способностью намагничиваться, но в отличие от парамагнитных элементов, намагниченность является постоянной. И парамагнетизм, и ферромагнетизм сильнее, чем диамагнетизм, поэтому элементы, которые проявляют либо парамагнетизм, либо ферромагнетизм, больше не являются диамагнитами.

Только несколько элементов являются ферромагнитными при комнатной температуре. Они включают железо (Fe), никель (Ni), кобальт (Co), гадолиний (Gd) и, как недавно обнаружили ученые, рутений (Ru). Вы можете сделать постоянный магнит с любым из этих металлов, подвергая его воздействию магнитного поля. Список парамагнитных атомов намного длиннее. Парамагнитный элемент становится магнитным в присутствии магнитного поля, но он теряет свои магнитные свойства, как только вы удаляете поле. Причиной такого поведения является наличие одного или нескольких неспаренных электронов во внешней орбитальной оболочке.

Парамагнитные и диамагнитные элементы

Одним из наиболее важных открытий в науке за последние 200 лет является взаимосвязь электричества и магнетизма. Поскольку у каждого атома есть облако отрицательно заряженных электронов, у него есть потенциал для магнитных свойств, но от того, будет ли он отображать ферромагнетизм, парамагнетизм или диамагнетизм, зависит их конфигурация. Чтобы оценить это, необходимо понять, как электроны решают, какие орбиты занять вокруг ядра.

У электронов есть качество, называемое вращением, которое вы можете визуализировать как направление вращения, хотя оно более сложное, чем это. Электроны могут иметь «раскрутку» (которую вы можете визуализировать как вращение по часовой стрелке) или «раскрутку» (против часовой стрелки). Они располагаются на растущих, строго определенных расстояниях от ядра, называемого оболочками, и внутри каждой оболочки находятся подоболочки с дискретным числом орбиталей, которые могут быть заняты максимум двумя электронами, каждый из которых имеет противоположный спин. Два электрона, занимающие орбиталь, называются парными. Их вращения отменяются, и они не создают чистого магнитного момента. С другой стороны, один электрон, занимающий орбиталь, является неспаренным, и это приводит к суммарному магнитному моменту.

Диамагнитные элементы – это те, у которых нет неспаренных электронов. Эти элементы слабо противодействуют магнитному полю, которое ученые часто демонстрируют, левитируя диамагнитный материал, такой как пиролитический графит или лягушка (да, лягушка!), Над сильным электромагнитом. Парамагнитные элементы – это те, которые имеют неспаренные электроны. Они дают атому чистый магнитный дипольный момент, и когда поле приложено, атомы выравниваются с полем, и элемент становится магнитным. Когда вы удаляете поле, тепловая энергия вмешивается, чтобы рандомизировать выравнивание, и магнетизм теряется.
Вычисление того, является ли элемент парамагнитным или диамагнитным

Электроны заполняют оболочки вокруг ядра таким образом, чтобы минимизировать чистую энергию. Ученые обнаружили три правила, которым они следуют при этом, известные как принцип Ауфбрау, правило Хунда и принцип исключения Паули. Применяя эти правила, химики могут определить, сколько электронов занимает каждая из оболочек, окружающих ядро.

Чтобы определить, является ли элемент диамагнитным или парамагнитным, необходимо только посмотреть на валентные электроны, которые занимают самую внешнюю подоболочку. Если внешняя подоболочка содержит орбитали с неспаренными электронами, элемент является парамагнитным. В противном случае это диамагнит. Ученые идентифицируют подоболочки как s, p, d и f. При написании конфигурации электронов принято, что валентные электроны должны предшествовать благородному газу, который предшествует рассматриваемому элементу в периодической таблице. Благородные газы имеют полностью заполненные электронные орбитали, поэтому они инертны.

Например, электронная конфигурация для магния (Mg) составляет [Ne] 3s2. Внешняя подоболочка содержит два электрона, но они непарные, поэтому магний является парамагнитным. С другой стороны, электронная конфигурация цинка (Zn) имеет вид [Ar] 4s23d10. В его внешней оболочке нет неспаренных электронов, поэтому цинк является диамагнитным.

Список парамагнитных атомов

Вы можете рассчитать магнитные свойства каждого элемента, записав их электронные конфигурации, но, к счастью, вам это не нужно. Химики уже создали таблицу парамагнитных элементов. Они заключаются в следующем:

    Литий (Li)
    Кислород (O)
    Натрий (Na)
    Магний (Mg)
    Алюминий (Al)
    Калий (К)
    Кальций (Ca)
    Скандий (Sc)
    Титан (Ti)
    Ванадий (V)
    Марганец (Mn)
    Рубидий (Rb)
    Стронций (Sr)
    Иттрий (Y)
    Цирконий (Zr)
    Ниобий (Nb)
    Молибден (Мб)
    Технеций (Tc)
    Рутений (Ru) (недавно обнаружен ферромагнитный)
    Родий (Rh)
    Палладий (Pd)
    Цезий (Cs)
    Барий (Ба)
    Лантан (Ла)
    Церий (Ce)
    Празеодим (Pr)
    Неодим (Nd)
    Самарий (см)
    Европий (ЕС)
    Тербий (Tb)
    Диспрозий (Dy)
    Гольмий (Хо)
    Эрбий (Er)
    Тулия (тм)
    Иттербий (Yb)
    Лютеция (Лу)
    Гафний (Hf)
    Тантал (Та)
    Вольфрам (W)
    Рений (Ре)
    Осмий (Os)
    Иридий (Ir)
    Платина (Pt)
    Торий (Th)
    Протактиний (Па)
    Уран (U)
    Плутоний (Пу)
    Америций (A)

Читайте также:  Каким свойством обладают акции

Парамагнитные Соединения

Когда атомы объединяются, образуя соединения, некоторые из этих соединений могут также проявлять парамагнетизм по той же причине, что и элементы. Если на орбиталях соединения существует один или несколько неспаренных электронов, соединение будет парамагнитным. Примеры включают молекулярный кислород (O2), оксид железа (FeO) и оксид азота (NO). В случае с кислородом этот парамагнетизм можно отобразить с помощью сильного электромагнита. Если вы наливаете жидкий кислород между полюсами такого магнита, кислород будет накапливаться вокруг полюсов, поскольку он испаряется, создавая облако газообразного кислорода. Попробуйте тот же эксперимент с жидким азотом (N2), который не является парамагнитным, и такое облако не образуется.

Если вы хотите составить список парамагнитных соединений, вам придется изучить электронные конфигурации. Поскольку именно неспаренные электроны во внешних валентных оболочках придают парамагнитные качества, соединения с такими электронами могли бы составить список. Хотя это не всегда так. В случае молекулы кислорода существует четное число валентных электронов, но каждый из них занимает более низкое энергетическое состояние, чтобы минимизировать общее энергетическое состояние молекулы. Вместо пары электронов на более высокой орбитали, есть два неспаренных электрона на более низких орбиталях, что делает молекулу парамагнитной.

Источник

Все вещества в зависимости от выраженности магнитных свойств делятся на сильномагнитные и слабомагнитные. Магнетики можно разделить по видам механизма, вызывающего намагничивание.

Что такое диамагнетики

Диамагнетики являются слабомагнитными веществами: они не магнитятся, если на них не действует магнитное поле.

Определение 1

Если парамагнетики внести во внешнее магнитное поле, то в их атомах начинается движение электронов, порождающее ориентированный круговой ток.

Этот ток обладает собственным магнитным моментом ρm.

Круговой ток, в свою очередь, порождает магнитную индукцию, дополнительную по отношению к внешним полям. Вектор этой индукции направлен против внешнего поля. Силу воздействия внешнего поля можно найти так:

Любое вещество может проявлять свойство диамагнетизма. Величина магнитной проницаемости диамагнетиков обычно приравнивается к единице (отклонение незначительно). В случае с жидкостями и твердыми телами величина восприимчивости равна примерно 5-10, у газов она заметно меньше. Данный показатель не имеет прямой связи с температурой – этот факт подтвержден экспериментально П. Кюри.

Диамагнетики бывают следующих видов:

  • классические;
  • аномальные;
  • сверхпроводники.

Если магнитное поле несильное, то величина намагниченности диамагнетика прямо пропорциональна напряженности магнитного поля H→.

Ниже представлена схема, которая наглядно показывает данную зависимость в случае с классическими диамагнетиками (в слабом магнитном поле):

Что такое диамагнетики

Рисунок 1

Что такое парамагнетики

Парамагнетики также являются слабомагнитными веществами. Их молекулы характеризуются наличием постоянного магнитного момента pm→. Его энергию во внешнем поле можно вычислить так:

Если направления векторов B→ и pm→ совпадут, то величина энергии будет минимальной.

Определение 2

Если мы внесем парамагнетик во внешнее магнитное поле, то магнитные моменты получат преимущественную ориентацию в направлении поля, соответствующую распределению Больцмана.

Иными словами, вещество намагничивается: дополнительное поле усиливается за счет совпадения с внешним. При этом угол между векторами остается неизменным.

Смена ориентации магнитных моментов по распределению Больцмана связана со столкновениями и взаимодействием атомов между собой. В отличие от диамагнетиков, магнитная восприимчивость парамагнетиков меняется в зависимости от температуры в соответствии с законом Кюри или законом Кюри-Вейсса.

В формуле дельтой обозначена постоянная, которая может быть и больше 0, и меньше. 

Величина магнитной восприимчивости парамагнетика больше 0, но незначительно. Выделяют следующие виды парамагнетиков:

  • нормальные;
  • парамагнитные металлы;
  • антиферромагнетики.

Второй тип парамагнетиков не обнаруживает связи магнитной восприимчивости с температурой. Такие металлы являются слабомагнитными при χ≈10-6.

Парамагнетические вещества характеризуются наличием парамагнитного резонанса. Возьмем внешнее магнитное поле с помещенным в него парамагнетиком. Как мы уже писали выше, в нем создается дополнительное магнитное поле с вектором индукции, направленным перпендикулярно вектору постоянного поля. При взаимодействии дополнительного поля с магнитным моментом атома создается так называемый момент сил M→.

Данный момент стремится к смене угла между pm→ и B→.

Определение 3

При совпадении частоты прецессии с частотой переменного магнитного поля момент сил, создаваемый этим полем, будет либо постоянно увеличивать указанный угол, либо постоянно уменьшать. Это называется явлением парамагнитного резонанса.

Читайте также:  Чем полезна крапива и какие лечебные свойства у нее

Если магнитное поле слабое, то намагниченность в парамагнетиках будет пропорциональна напряженности поля и может быть выражена следующей формулой:

Что такое парамагнетики

Рисунок 2

Что такое ферромагнетики

В отличие от двух перечисленных выше магнетиков, ферромагнетики являются сильномагнитными веществами.

Определение 4

Ферромагнетики – это вещества с высокой магнитной проницаемостью, зависящей от внешнего магнитного поля.

Данные вещества могут иметь так называемую остаточную намагниченность. Выразить зависимость восприимчивости ферромагнетиков от напряженности внешнего магнитного поля можно с помощью функции. Она представлена на схеме ниже:

Что такое ферромагнетики

Рисунок 3

Намагниченность ферромагнетика имеет пределы насыщения. Это указывает нам на природу возникновения намагниченности в таких веществах: она образуется путем смены ориентации магнитных моментов вещества. Для ферромагнетиков также характерно такое явление, как гистерезис.

В магнитном отношении все ферромагнетики делят на мягкие и жесткие. Первые из них имеют высокую магнитную проницаемость и способны легко намагничиваться и размагничиваться. Они имеют широкое применение в электротехнических приборах, основанных на работе переменных полей (например, трансформаторов). Жесткие ферромагнетики имеют сравнительно небольшую проницаемость и намагничиваются трудно. Их используют при производстве постоянных магнитов.

Пример 1

Условие: на схеме выше (рис. 3) показана кривая намагниченности ферромагнетика. Постройте кривую, выражающую зависимость B(H) и определите, возможно ли насыщение для магнитной индукции. Поясните свой вывод.

Решение

Мы знаем отношение вектора магнитной индукции к вектору намагниченности.

B→=J→+μ0H→.

Из этого можно сделать вывод, что насыщения кривая B(H) иметь не может. Создадим график зависимости напряженности внешнего поля от индукции магнитного поля в соответствии с рисунком выше. Мы получили схему, называемую кривой намагничивания:

Что такое ферромагнетики

Рисунок 4

Ответ: кривая индукции не имеет насыщения.

Пример 2

Условие: выведите формулу восприимчивости парамагнетика при условии, что механизм его намагничивания точно такой же, как механизм электризации полярных диэлектриков. Среднее значение магнитного момента молекул в проекции на ось Z обозначается формулой ρmz=ρmL(β).

Здесь L(β)=cth(β)-1β означает функцию Ланжевена при β=ρmBkT.

Решение

Взяв высокие температуры и небольшие поля, получим следующее:

ρmB≪kT,→β≪1.

Значит, если β≪1cthβ=1β+β3-β345+…, можно ограничить функцию линейным членом и получить, что:

ρmB≪kT,→β≪1.

Возьмем нужную формулу и подставим в нее полученное значение:

ρmz=ρmρmB3kT=ρm2B3kT.

Зная, как связаны между собой напряженность магнитного поля и его индукция, а также приравняв магнитную проницаемость парамагнетика к 1, получим следующее:

ρmz=ρm2μ0H3kT.

В итоге формула намагниченности будет выглядеть так:

J=nρmz=ρm2μ0H3kTn.

Поскольку модуль намагниченности связан с модулем вектора (J=χH), мы можем записать результат:

χ=ρm2м0n3kT.

Ответ: χ=ρm2м0n3kT.

Источник

Одним из серьезных преимуществ метода МО ЛКАО по сравнению с МВС является более правильное описание магнитных свойств молекул и ионов, и в частности объяснение парамагнетизма молекулярного кислорода.

Взаимодействие химических веществ с магнитным полем порождает несколько эффектов. Среди них наиболее известным является ферромагнетизм. Намагниченные ферромагнетики (например, железо, кобальт, никель) магнитны — они обладают собственным магнитным нолем, которое проявляется во взаимодействии с другими ферромагнетиками. Ненамагни- ченные ферромагнетики притягиваются намагниченными.

Большая часть химических веществ (например, соли, оксиды, органические вещества) не относится к ферромагнетикам. Но и немагнитные в обычных условиях вещества взаимодействуют с внешним магнитным полем. Это проявляется в двух эффектах — парамагнетизме и диамагнетизме.

Парамагнетизм — явление втягивания немагнитного вещества в область сильного магнитного поля (вещество «притягивается магнитом»). Причина парамагнетизма — наличие в составе вещества частиц с собственным магнитным моментом. При воздействии внешнего поля хаотически расположенные из-за теплового движения магнитные моменты этих частиц ориентируются по полю и усиливают его.

Диамагнетизм — явление выталкивания немагнитного вещества из области сильного магнитного поля (вещество «отталкивается магнитом»). Причина диамагнетизма — наличие в веществе движущихся электронов, которые под действием внешнего поля порождают наведенный магнитный момент, ориентированный против поля.

Основной вклад в собственный магнитный момент атомов и молекул вещества вносят магнитные моменты неспаренных электронов. Чем больше суммарный спин электронов в атоме или молекуле, тем сильнее проявляется парамагнетизм вещества.

Следует особо подчеркнуть, что сказанное относится именно к химическим веществам с атомно-молекулярной структурой. В случае веществ с металлической связью картина взаимодействия вещества с магнитным полем значительно усложняется из-за появления значительного количества свободных электронов и сложной структуры кристаллической решетки, в узлах которой расположены электрически заряженные «атомные остовы» металлов. Все вместе это приводит к существенному увеличению диамагнитного вклада магнитных моментов индукционных токов, и такие вещества, как висмут, медь, золото, серебро, цинк, свинец, будучи в атомарном состоянии парамагнетиками, в виде простых веществ становятся диамагнетиками.

Читайте также:  Какими свойствами обладают силы взаимодействия

Структура молекулы кислорода 02 по МВС такова, что все валентные электроны а- и л-связей в ней образуют электронные пары и суммарный спин электронов молекулы равен нулю. Модель предсказывает, что кислород должен быть диамагнитным (см. рис. 2.4).

Как следует из диаграммы, построенной по методу МО (рис. 2.14), в молекуле кислорода присутствуют два неспаренных электрона на разрыхляющих 71^л и я2/, орбиталях. Их магнитные моменты складываются и дают отличный от нуля суммарный магнитный момент молекулы. В соответствии с этим метод МО ЛКА О предсказывает, что молекулы кислорода обладают магнитными свойствами и, следовательно, вещество кислород обладает парамагнетизмом.

Энергетическая диаграмма молекулы кислорода по методу МО ЛКАО

Рис. 2.14. Энергетическая диаграмма молекулы кислорода по методу МО ЛКАО

Эксперимент показывает, что магнитный момент молекулы кислорода равен 2,8 магнетонов Бора {магнетон Бора — единица элементарного магнитного момента). Собственный магнитный момент электрона, обусловленный его спином, равен одному магнетону Бора. Учитывая, что полный магнитный момент, кроме собственного электронного, включает в себя и орбитальный, связанный с движением электрона по орбитали, количественное совпадение весьма убедительно свидетельствует в пользу справедливости структуры молекулярных орбиталей на основании метода МО ЛКАО.

Кроме магнитных свойств анализ энергетических диаграмм МО ЛКАО дает возможность определить кратность Ксв, или порядок Псп химической связи:

Какие атомы обладают парамагнитными свойствами

где ЛГСВЯЗ — общее число электронов на связывающих орбиталях; ЛГразр — общее число электронов на разрыхляющих орбиталях.

Эта величина соответствует «количеству черточек» в графических формулах химических веществ по Льюису. Чем больше величина Ксв, тем прочнее связь в молекуле или ионе.

Источник

Все вещества, помещенные в магнитное поле, приобретают магнитные свойства, т.е. намагничиваются и поэтому изменяют внешнее поле. При этом одни вещества ослабляют внешнее поле, а другие усиливают его. Первые называются диамагнитными, вторые –парамагнитными веществами. Среди парамагнетиков резко выделяется группа веществ, вызывающих очень большое усиление внешнего поля. Это ферромагнетики.

Диамагнетики – фосфор, сера, золото, серебро, медь, вода, органические соединения.

Парамагнетики- кислород, азот, алюминий, вольфрам, платина, щелочные и щелочноземельные металлы.

Ферромагнетики – железо, никель, кобальт, их сплавы.

Геометрическая сумма орбитальных и спиновых магнитных моментов электронов и собственного магнитного момента ядра образует магнитный момент атома (молекулы) вещества.

У диамагнетиков суммарный магнитный момент атома (молекулы) равен нулю, т.к. магнитные моменты компенсируют друг друга. Однако под влиянием внешнего магнитного поля у этих атомов индуцируется магнитный момент, направленный противоположно внешнему полю. В результате диамагнитная среда намагничивается и создает собственное магнитное поле, направленное противоположно внешнему и ослабляющее его.

Индуцированные магнитные моменты атомов диамагнетика сохраняются до тех пор, пока существует внешнее магнитное поле. При ликвидации внешнего поля индуцированные магнитные моменты атомов исчезают и диамагнетик размагничивается.

У атомов парамагнетиков орбитальные, спиновые, ядерные моменты не компенсируют друг друга. Однако атомные магнитные моменты расположены беспорядочно, поэтому парамагнитная среда не обнаруживает магнитных свойств. Внешнее поле поворачивает атомы парамагнетика так, что их магнитные моменты устанавливаются преимущественно в направлении поля. В результате парамагнетик намагничивается и создает собственное магнитное поле, совпадающее с внешним и усиливающим его.

При ликвидации внешнего поля под действием теплового движения ориентация магнитных моментов атома нарушается и парамагнетик размагничивается.

Результирующая напряженность магнитного поля в веществе H’ равна

(1)

Где -напряженность поля, создаваемого самой средой. Знак (+) берется для парамагнетиков, (-) для диамагнетиков. Поскольку ~H, то

(2)

Где -магнитная проницаемость среды, которая характеризует ее способность намагничиваться под влиянием внешнего поля.

Магнитное поле в веществе принято характеризовать индукцией магнитного поля

(3),

где 0-магнитная постоянная. Или (4), где

-абсолютная магнитная проницаемость среды.

В вакууме =1, , а

В ферромагнетиках имеются области (~10-2см) с одинаково ориентированными магнитными моментами их атомов. Однако ориентация самих доменов разнообразна. Поэтому в отсутствие внешнего магнитного поля ферромагнетик не намагничен.

С появлением внешнего поля домена, ориентированные в направлении этого поля, начинают увеличиваться в объеме за счет соседних доменов, имеющих иные ориентации магнитного момента; ферромагнетик намагничивается. При достаточно сильном поле все домены переориентируются вдоль поля и ферромагнетик быстро намагничивается до насыщения.

При ликвидации внешнего поля ферромагнетик полностью не размагничивается, а сохраняет остаточную магнитную индукцию, так как тепловое движение может разориентировать домены. Размагничивание может быть достигнуто нагреванием, встряхиванием или приложением обратного поля.

При температуре равной точке Кюри, тепловое движение оказывается способным дезориентировать атомы в доменах, вследствие чего ферромагнетик превращается в парамагнетик.

Поток магнитной индукции через некоторую поверхность S равен числу линий индукции, пронизывающих эту поверхность:

(5)

Единица измерение B –Тесла, Ф-Вебер.

Источник