Какие частицы элементарные и их свойства

Какие частицы элементарные и их свойства thumbnail

      
Для того чтобы объяснить свойства и поведение элементарных частиц, их приходится наделять, кроме массы, электрического заряда и типа, рядом дополнительных, характерных для них величин (квантовых чисел), о которых мы поговорим ниже.

      
Элементарные частицы обычно подразделяются на четыре класса. Помимо этих классов, предполагается существование ещё одного класса частиц – гравитонов (квантов гравитационного поля). Экспериментально эти частицы ещё не обнаружены.

      
Дадим краткую характеристику четырем классам элементарных частиц.

      
К одному из них относится только одна частица – фотон.

      
Фотоны (кванты электромагнитного поля) участвуют в электромагнитных взаимодействиях, но не обладают сильным и слабым взаимодействием.

      
Второй класс образуют лептоны, третий – адроны и, наконец, четвертый – калибровочные бозоны (табл. 2)

Таблица 2

Элементарные частицы

Лептоны

Калибровочные

бозоны

Адроны

Барионы

Мезоны

n, p,

гипероны

и др.

Барионные

резонансы

и др.

Мезонные

резонансы

      
Лептоны (греч. «лептос» – лёгкий) – частицы, участвующие в электромагнитных и слабых взаимодействиях. К ним относятся частицы, не обладающие сильным взаимодействием: электроны ( ), мюоны ( ), таоны ( ), а также электронные нейтрино ( ), мюонные нейтрино ( ) и тау-нейтрино ( ). Все лептоны имеют спины, равные 1/2 , и следовательно являются фермионами. Все лептоны обладают слабым взаимодействием. Те из них, которые имеют электрический заряд (т.е. мюоны и электроны), обладают также и электромагнитным взаимодействием. Нейтрино участвуют только в слабых взаимодействиях.

      
Адроны (греч. «адрос» – крупный, массивный)частицы, участвующие в сильных, электромагнитных и слабых взаимодействиях. Сегодня известно свыше сотни адронов и их подразделяют на барионы и мезоны.

      
Барионыадроны, состоящие из трёх кварков (qqq) и имеющие барионное число B = 1.

      
Класс барионов объединяет в себе нуклоны (p, n) и нестабильные частицы с массой большей массы нуклонов, получившие название гиперонов ( ). Все гипероны обладают сильным взаимодействием, и следовательно активно взаимодействуют с атомными ядрами. Спин всех барионов равен 1/2 , так что барионы являются фермионами. За исключением протона, все барионы нестабильны. При распаде бариона, наряду с другими частицами, обязательно образуется барион. Эта закономерность является одним из проявлений закона сохранения барионного заряда.

      
Мезоныадроны, состоящие из кварка и антикварка ( ) и имеющие барионное число B = 0.

      
Мезоны – сильно взаимодействующие нестабильные частицы, не несущие так называемого барионного заряда. К их числу принадлежат -мезоны или пионы ( ), K-мезоны, или каоны ( ), и -мезоны. Массы и мезонов одинакова и равна 273,1 , 264,1 время жизни, соответственно, и с. Масса К-мезонов составляет 970 . Время жизни К-мезонов имеет величину порядка с. Масса эта-мезонов 1074 , время жизни порядка с. В отличие от лептонов, мезоны обладают не только слабым (и если они заряжены, электромагнитным), но также и сильным взаимодействием, проявляющимся при взаимодействии их между собой, а также при взаимодействии между мезонами и барионами. Спин всех мезонов равен нулю, так что они являются бозонами.

      
Калибровочные бозонычастицы, осуществляющие взаимодействие между фундаментальными фермионами (кварками и лептонами). Это частицы W+, W–, Z0 и восемь типов глюонов g. Сюда же можно отнести и фотон γ.

Свойства элементарных частиц

      
Каждая частица описывается набором физических величин – квантовых чисел, определяющих её свойства. Наиболее часто употребляемые характеристики частиц следующие.

      
Масса частицы, m. Массы частиц меняются в широких пределах от 0 (фотон) до 90 ГэВ (Z-бозон). Z-бозон – наиболее тяжелая из известных частиц. Однако могут существовать и более тяжелые частицы. Массы адронов зависят от типов входящих в их состав кварков, а также от их спиновых состояний.

      
Время жизни, τ. В зависимости от времени жизни частицы делятся на стабильные частицы, имеющие относительно большое время жизни, и нестабильные.

      
К стабильным частицам относят частицы, распадающиеся по слабому или электромагнитному взаимодействию. Деление частиц на стабильные и нестабильные условно. Поэтому к стабильным частицам принадлежат такие частицы, как электрон, протон, для которых в настоящее время распады не обнаружены, так и π0-мезон, имеющий время жизни τ = 0.8×10-16 с.

      
К нестабильным частицам относят частицы, распадающиеся в результате сильного взаимодействия. Их обычно называют резонансами. Характерное время жизни резонансов – 10-23-10-24 с.

      
Спин J. Величина спина измеряется в единицах ħ и может принимать 0, полуцелые и целые значения. Например, спин π-, К-мезонов равен 0. Спин электрона, мюона равен 1/2. Спин фотона равен 1. Существуют частицы и с большим значением спина. Частицы с полуцелым спином подчиняются статистике Ферми-Дирака, с целым спином – Бозе–Эйнштейна.

      
Электрический заряд q. Электрический заряд является целой кратной величиной от е = 1,6×10-19 Кл, называемой элементарным электрическим зарядом. Частицы могут иметь заряды 0, ±1, ±2.

      
Внутренняя четность Р. Квантовое число Р характеризует свойство симметрии волновой функции относительно пространственных отражений. Квантовое число Р имеет значение +1, -1.

      
Наряду с общими для всех частиц характеристиками, используют также квантовые числа, которые приписывают только отдельным группам частиц.

Читайте также:  Какими свойствами должен обладать элемент с z 34 дайте его описание

      
Квантовые числа: барионное число В, странность s, очарование (charm) с, красота (bottomness или beauty) b, верхний (topness) t, изотопический спин I приписывают только сильновзаимодействующим частицам – адронам.

      
Лептонные числа Le, Lμ, Lτ. Лептонные числа приписывают частицам, образующим группу лептонов. Лептоны e, μ и τ участвуют только в электромагнитных и слабых взаимодействиях. Лептоны νe, nμ и nτ участвуют только в слабых взаимодействиях. Лептонные числа имеют значения Le, Lμ, Lτ = 0, +1, -1. Например, e-, электронное нейтрино ne имеют Le = +l; , имеют Le = – l. Все адроны имеют .

      
Барионное число В. Барионное число имеет значение В = 0, +1, -1. Барионы, например, n, р, Λ, Σ, нуклонные резонансы имеют барионное число В = +1. Мезоны, мезонные резонансы имеют В = 0, антибарионы имеют В = -1.

      
Странность s. Квантовое число s может принимать значения -3, -2, -1, 0, +1, +2, +3 и определяется кварковым составом адронов. Например, гипероны Λ, Σ имеют s = -l; K+- , K–- мезоны имеют s = + l.

      
Charm с. Квантовое число с может принимать значения -3, -2, -1, 0, +1, +2, +3. В настоящее время обнаружены частицы, имеющие с = 0, +1 и -1. Например, барион Λ+ имеет с = +1.

      
Bottomness b. Квантовое число b может принимать значения -3, -2, -1, 0, +1, +2, +3. В настоящее время обнаружены частицы, имеющие b = 0, +1, -1. Например, В+-мезон имеет b = +1.

      
Topness t. Квантовое число t может принимать значения -3, -2, -1, 0, +1, +2, +3. В настоящее время обнаружено всего одно состояние с t = +1.

      
Изоспин I. Сильновзаимодействующие частицы можно разбить на группы частиц, обладающих схожими свойствами (одинаковое значение спина, чётности, барионного числа, странности и др. квантовых чисел, сохраняющихся в сильных взаимодействиях) – изотопические мультиплеты. Величина изоспина I определяет число частиц, входящих в один изотопический мультиплет, n и р составляет изотопический дуплет I = 1/2; Σ+, Σ-, Σ0, входят в состав изотопического триплета I = 1, Λ – изотопический синглет I = 0, число частиц, входящих в один изотопический мультиплет, 2I + 1.

      
G четность – это квантовое число, соответствующее симметрии относительно одновременной операции зарядового сопряжения с и изменения знака третьего компонента I изоспина. G-четность сохраняется только в сильных взаимодействиях.

Источник

Элементарные частицы были впервые открыты и изучены в ходе исследования ядерных процессов. В связи с этим в течение долгого времени физика элементарных частиц являлась одним из разделов ядерной физики. И только с середины 20-го века физика элементарных частиц выделилась в отдельное, самостоятельное направление. Оба эти раздела физики до сих пор объединяются общностью изучаемых явлений и применяемых методов исследования. Но есть у этих направлений и отличия. Основной задачей физики элементарных частиц является исследование природы, свойств и взаимных превращений элементарных частиц.

Из истории вопроса

Первым из тех, кто задумался о существовании мельчайших частиц, из которых состоят все вещества и окружающие предметы, был древнегреческий философ Демокрит. Он был первым, кто высказал предположение о существовании фундаментальных частиц. Согласно письменным источникам, случилось это в 4 веке до нашей эры. Демокрит дал название атому и определил, что это неделимая частица материи.

В течение ряда веков понятие об атомах носило скорее философский, чем физический смысл. И только начиная с 19 века представление об атомах стали использовать сначала для объяснения химических, а затем и физических процессов.

В 30-е годы 19 столетия Макс Фарадей ввел в обиход понятие иона в рамках теории электролиза, а также выполнил изменение элементарного заряда. К концу столетия Антуан Анри Беккерель открыл явление радиоактивности, Джозеф Томсон установил существование электронов, Эрнест Резерфорд – α-частиц. В первые пять лет 20 века Альберт Эйнштейн разработал учение о фотонах (квантах электромагнитного поля). Все эти открытия были бы невозможны без понятия об атомах.

В течение первой трети 20 века было установлено, что атом имеет сложное строение, которое предполагает наличие ядра и расположенных вокруг него электронов. Эрнест Резерфорд предложил орбитальную модель строения атома, согласно которой электроны движутся вокруг ядра по определенным орбитам. Он же во время опытов по расщеплению ядер атомов установил существование протонов.

Открытие нейтронов принадлежит известному английскому физику Джеймсу Чедвику. Он установил, что ядра атомов имеют сложное строение. Так возникла протон-нейтронная теория строения ядер, разработкой которой занимались немецкий исследователь Вейнер Гейзенберг и наш соотечественник, физик-теоретик, лауреат Сталинской премии Дмитрий Дмитриевич Иваненко.

Существование позитрона было предсказано англичанином Полем Дираком. Эта положительно заряженная частица, имеющая такую же массу и такой же (по модулю) заряд, что и электрон, была открыта американским физиком-экспериментатором Карлом Дейвидом Андерсеном в космических лучах.

В тридцатых годах 20-го века были открыты взаимные превращения нейтронов и протонов. Было установлено, что элементарные частицы не являются неизменными. В это же время были открыты мюоны– частицы, масса которых составляет 207 электронных масс, а затем и пионы – частицы, которые обеспечивают взаимодействие между нуклонами в ядре атома.

Читайте также:  Какое излучение обладает также бактерицидными свойствами

До середины 20 века было открыто большое количество элементарных частиц. Это стало возможно благодаря широкому исследованию космических лучей, внедрению ускорительной техники, развитию ядерной физики.

Виды частиц

В наше время известно порядка 400 элементарных или субъядерных частиц. Большинство из них нестабильно: одни частицы могут самопроизвольно превращаться в другие с течением времени. Исключением из этого являются нейтрино, фотон, протон и электрон.

Время жизни нестабильных частиц значительно разнится. Дольше всех «живет» нейтрон: 15 минут. Существование μ-мезона ограничено отрезком времени в 2,2·10–6 секунды, нейтрального π-мезона – 0,87·10–16 с. Среднее время существования гиперонов, массивных частиц, составляет всего 10–10 с.

Определение 1

По продолжительности существования выделяют следующие группы частиц:

  • относительно стабильные, время жизни которых превосходит 10–17 с;
  • короткоживущие, время жизни которых порядка 10–22–10–23 с.

Основые свойства элементарных частиц

Одним из наиболее важных свойств элементарных частиц является их способность к взаимным превращениям. Частицы способны поглощаться (возникать) и испускаться (исчезать). Это относится как к стабильным, так и к нестабильным частицам. Разница лишь в том, что стабильные частицы могут превращаться не самопроизвольно, а в результате взаимодействия с другими частицами.

Определение 2

В процессе аннигиляции (исчезновения) позитрона и электрона появляется фотон большой энергии.

При столкновении фотона, несущего достаточный заряд энергии, с ядром атома появляется электрон-позитронная пара.

Частицы и античастицы

Электрон является двойником позитрона. Антипротон отличается от протона наличием у него отрицательного электрического заряда. Нейтрон не имеет заряда. Антинейтрон отличается от нейтрона знаком магнитного момента и барионного заряда.

Наличие античастиц установлено для всех элементарных частиц. Встреча частицы и античастицы сопровождается аннигиляцией, в результате которой обе частицы превращаются в кванты излучения или частицы других видов.

Ученые предполагают существование антивещества. Теоретически, это возможно, если в ядре будут антинуклоны, а в оболочке атома позитроны. Взаимодействие вещества и антивещества может привести к выделению огромного количества энергии, которое будет превосходить энергию ядерных и термоядерных реакций.

Группы элементарных частиц

Информацию об основных элементарных частицах мы собрали в таблицу. Размещение частиц соответствует существующей ныне системе классификации элементарных частиц. Каждая из частиц имеет ряд характеристик: время жизни, масса, выраженная в электронных массах, электрический заряд в единицах элементарного заряда и спин, который также носит название момента импульса, выраженный в единицах постоянной Планка ħ = h2π.

ГруппаНазвание частицыСимволМасса (в электронных массах)Электрический зарядСпинВремя жизни (с)
ЧастицаАнтичастица
ФотоныФотонγ1Стабилен
ЛептоныНейтрино электронноеνeνe~12Стабильно
Нейтрино мюонноеνμνμ~12Стабильно
Электронe–e+1–1     112Стабилен
Мю-мезонμ–μ+206,8–1     1122,2·10–6
АдроныМезоныПи-мезоныπ0264,10,87·10–16
π+π–273,11     –12,6·10–8
К-мезоныK+K–966,41     –11,24·10–8
K0K0~974,1≈ 10–10–10–8
Эта-нуль-мезонη01074≈ 10–18
БарионыПротонpp~1836,11     –112Стабилен
Нейтронnn~1838,612898
Лямбда-гиперонΛ0Λ0~2183,1122,63·10–10
Сигма-гипероныΣ+Σ+~2327,61     –1120,8·10–10
Σ0Σ0~2333,6127,4·10–20
Σ –Σ –~2343,1–1     1121,48·10–10
Кси-гипероныΞ 0Ξ 0~2572,8122,9·10–10
Ξ –Ξ –~2585,6–1     1121,64·10–10
Омега-минус-гиперонΩ–Ω–~3273–1     1120,82·10–11

Определение 3

Выделяют три основные группы элементарных частиц:

  • фотоны;
  • лептоны;
  • андроны.

Определение 4

Фотоны представлены одной частицей. Это фотон – носитель электромагнитного взаимодействия.

Определение 5

К лептонам относятся легкие частицы:

  • два сорта нейтрино (электронное и мюонное);
  • электрон;
  • μ-мезон.

Объединяет частицы из группы лептонов спин 12. В таблицу мы включили только основные лептоны. На самом деле их намного больше.

Определение 6

Андроны делятся на две основные подгруппы:

  • мезоны;
  • барионы.

Определение 7

К подгруппе мезонов относятся:

  • нейтральные, а также положительно и отрицательно заряженные π-мезоны, чья масса составляет порядка 250 электронных масс;
  • четыре K-мезона;
  • η0-мезон.

Спин всех мезонов равен нулю.

Подгруппа барионов по сравнению с мезонами является более обширной и состоит из более тяжелых элементарных частиц. Нуклоны являются самыми легкими из барионов, затем идут гипероны. Масса омега-минус-гиперона составляет 3273 электронных массы. Спин барионов составляет 12.

Кварковая гипотеза

Количество уже открытых и вновь открываемых частиц позволяет предположить, что существуют какие-то более мелкие фундаментальные частицы. В середине 20 века американский физик Мюррей Гелл-Ман выдвинул гипотезу существования кварков, фундаментальных частиц, из которых построены тяжелые элементарные частицы.

Согласно теории Гелл-Мана существует три кварка и три антикварка. Они могут объединяться, образуя различные сочетания.

Определение 8

В состав бариона входит три кварка. Для того, чтобы получить антибарион, должны объединиться три антикварка. Мезон образует пара кварк и антикварк.

Эта теория позволила объяснить существование уже открытых частиц и существование других, еще неизвестных науке. При этом, ряд свойств предсказанных частиц оказался неожиданным для исследователей.

Электрический заряд кварков должен выражаться дробными числами, равными 23 и 13 элементарного заряда.

Поиски кварков в космических лучах и на современных ускорителях высоких энергий оказались безуспешными. Считается, что кварки обладают очень большой массой. В связи с этим, получить кварки при тех энергиях, которые можно получить в современных ускорителях, не получается. Тем не менее, установлено, что кварки существуют внутри тяжелых элементарных частиц, таких как андроны.

Читайте также:  Какие свойства есть в хурме

 Фундаментальные взаимодействия в природе

Определение 9

Фундаментальные взаимодействия – это процессы, сильно различающиеся по уровню энергии и времени протекания, в которые вступают элементарные частицы. Фундаментальными их называют потому, что их невозможно свести в другим, более простым взаимодействиям.

Определение 10

Выделяют 4 вида фундаментальных взаимодействий:

  • сильное;
  • электромагнитное;
  • слабое;
  • гравитационное.

Сильное взаимодействие

Это вид фундаментального взаимодействия также носит название ядерного, так как оно обуславливает прочную связь между нуклонами в ядре атома. Из числа элементарных частиц в сильном взаимодействии принимают участие андроны (мезоны и барионы).

Сильное взаимодействие считается короткодействующим, так как проявляется на расстоянии порядка 10–15 м и менее.

Электромагнитное взаимодействие

Благодаря этому виду взаимодействия возможно существование молекул и атомов. Оно определяет большинство свойств веществ, находящихся в трех агрегатных состояниях (твердом, жидком и газообразном). Оно обуславливает протекание процессов поглощения и излучения фотонов атомами и молекулами вещества, а также целый ряд других физических и химических процессов. Кулоновское отталкивание, существующее между протонами, объясняет неустойчивость ядер атомов с большими массовыми числами.

В электромагнитном взаимодействии могут участвовать любые частицы, которые обладают электрическим зарядом, а также кванты электромагнитного поля фотоны.

Слабое взаимодействие

Этот вид взаимодействия определяет ход наиболее медленных процессов, которые протекают в микромире, в том числе с участием нейтрино или антинейтрино.

В этом виде взаимодействия могут принимать участие любые элементарные частицы.

Пример 1

Примером слабого взаимодействия может служить β-распад нейтрона, который протекает с участием нейтрино или антинейтрино.

 10n→11ρ⇒0-1e+00v0~

Также сюда можно отнести процессы распада частиц с большим временем жизни (τ≥10–10 с), которые протекают без участия нейтрино.

Гравитационное взаимодействие

В связи с тем, что масса элементарных частиц мала, силами гравитационного воздействия между ними можно пренебречь. Гравитация имеет значение при взаимодействии космических объектов, чья масса огромна.

Теория обменного взаимодействия

В первой трети прошлого столетия у исследователей появилась гипотеза о том, что все взаимодействия в мире элементарных частиц осуществляются посредством обмена квантами какого-либо поля. Выдвинули эту гипотезу советские ученые И.Е. Тамм и Д.Д. Иваненко. Они провели параллели между взаимодействиями, которые возникают в результате обмена частицами, и обменом валентными электронами, которые при образовании ковалентной химической связи объединяются на незаполненных электронных оболочках.

Определение 11

Обменное взаимодействие – это взаимодействие, которое осуществляется путем обмена частицами.

Определение 12

Электромагнитное взаимодействие, которое наблюдается между заряженными частицами, сопровождается обменом фотонами, квантами электромагнитного поля.

Подтверждением верности теории обменного взаимодействия стали теоретические выкладки японского физика Х. Юкавы, который доказал, что сильное взаимодействие между нуклонами можно объяснить обменом гипотетическими частицами, которые получили название мезонов. Юкава вычислил массу этих частиц. Она оказалась приблизительно равно 300 электронным массам.

Спустя несколько лет частицы с такой массой действительно были обнаружены. Они были названы π-мезонов (пионов). В настоящее время известны три вида пионов: π+, π- и π0.

Теория электрослабого взаимодействия рассматривает электромагнитное поле и поле слабого взаимодействия как две разные характеристики одного поля. В таком поле помимо квантов взаимодействие обеспечивают и векторные бозоны.

Теория Великого объединения

После того, как удалось объединить в одну модель слабое и электромагнитное взаимодействия, у исследователей появилась уверенность в том, что связаны между собой все виды взаимодействий. Единственное, чего не хватает для полноты картины, это физического подтверждения таких взаимодействий. До получения доказательств теория остается лишь привлекательной научной гипотезой.

Для того, чтобы объединить слабое, электромагнитное и гравитационное взаимодействия, физики-теоретики предположили существование гипотетической частицы под названием гравитон. Однако до настоящего времени существование такой частицы не было подтверждено в ходе экспериментов.

Предполагается, что получить подтверждение теории Великого объединения в современных ускорителях невозможно. А все потому, что единое поле, которое объединяет все виды взаимодействий, существует только при очень больших энергиях частиц. Такая энергия частицы могла наблюдаться только на самых ранних этапах существования вселенной, сразу после Большого взрыва.

Предполагается, что Большой взрыв произошел 18 миллиардов лет назад. В теории, сразу после Большого взрыва температура могла достигать 1032 К, а энергия частиц E = kT достигать значений 1019 ГэВ. В таких условиях материя могла существовать в форме кварков и нейтрино, а все виды взаимодействий были объединены в одно силовое поле.

По мере расширения вселенной энергия частиц уменьшается. Из единого поля при энергиях частиц ≤ 1019 ГэВ выделилось гравитационное взаимодействие. При энергиях порядка 1014 ГэВ разделились сильное и электрослабое взаимодействия. При энергиях порядка 103 ГэВ все четыре вида фундаментальных взаимодействий оказались разделенными. Параллельно этому началось формирование более сложных форм материи: нуклонов, ядер атомов, атомов, ионов.

Основываясь на законах физики, описывающих взаимодействие элементарных частиц, создана модель эволюции вселенной, на которую опирается вся современная космология.

Источник