Какие два свойства разбавленных растворов сильных электролитов

Электролиты, практически полностью диссоциирующие в водных растворах, называются сильными электролитами. К сильным электролитам относятся большинство солей, которые уже в кристаллическом состоянии построены из ионов (они хорошо растворяются в воде), гидроксиды щелочных и щелочноземельных металлов (щелочи), некоторые кислоты (НСl, HBr, HI, HсlO4, HNO3, H2SO4). Многие свойства растворов, такие, как осмотическое давление, температура кипения и замерзания, давление насыщенного пара растворителя над раствором, зависят как от концентрации раствора, т. е. от числа растворенных в нем частиц, так и от взаимного влияния этих частиц друг на друга. Степень взаимодействия частиц в растворе тем выше, чем больше плотность их зарядов и чем меньше среднее расстояние между ними.

В растворах слабых электролитов взаимодействие между ионами относительно невелико вследствие их незначительной концентрации. Сильные электролиты диссоциируют практически полностью. В растворах сильных электролитов из-за сильной диссоциации концентрация ионов довольно велика, так что силы межионного взаимодействия заметно проявляются даже при малой концентрации электролита. В результате ионы оказываются не вполне свободными в своем движении, и все свойства электролита, зависящие от числа ионов, проявляются слабее, чем следовало бы ожидать при полной диссоциации электролита на невзаимодействующие между собой ионы.

Подобные несоответствия объясняет теория сильных электролитов, разработанная П. Дебаем и Э. Хюккелем (1923). Согласно этой теории, в растворах сильных электролитов действуют электростатические силы притяжения между разноименными ионами и силы отталкивания – между одноименными. Вокруг каждого иона образуется ионная атмосфера, состоящая из ионов противоположного знака. Каждый из ионов этой атмосферы находится в окружении другой ионной атмосферы. Поэтому раствор сильного электролита можно рассматривать как систему равномерно распределенных по всему объему раствора разноименных ионов, каждый из которых находится в центре силового поля создаваемого окружающими ионами. Тепловое движение постоянно изменяет картину распределения ионов в такой сфере: в ней происходит постоянный ионный обмен. Ввиду того, что радиус ионной атмосферы относительно велик, атмосферы двух соседних ионов пересекаются, в результате чего каждый ион в данный момент может входить в состав одной или даже нескольких ионных атмосфер других ионов.

Все это обуславливает довольно сложные взаимоотношения между компонентами раствора, которые не могут не сказываться на его свойствах. Поэтому для описания состояния ионов в растворе пользуются их активностью, т. е. условной (эффективной) концентрацией ионов, в соответствии с которой они действуют в химических процессах (а = gС). Коэффициенты активности зависят от природы растворителя и растворенного вещества, концентрации раствора и температуры. Для сильных электролитов их называют кажущейся степенью диссоциации или коэффициентом электропроводности.

В области разбавленных растворов (концентрация ниже 0,1 моль/дм3) коэффициенты активности зависят главным образом от концентрации и заряда ионов, присутствующих в растворе и мало зависят от природы растворенных веществ. Эта закономерность известна в теории растворов под названием правила ионной силы. Согласно этому правилу, ионы с одинаковыми зарядами, независимо от их природы, в разбавленных растворах с одинаковой ионной силой имеют равные коэффициенты активности. Ионной силой раствора (I) называется полусумма произведений концентраций всех ионов присутствующих в растворе, на квадрат их заряда:

I = 0,5SCizi2 (7.36)

Например, ионная сила раствора хлорида алюминия с концентрацией 0.01 моль/дм³, диссоциирующего AlCl3 D Al+3 + 3Cl-, равна

I = 0,5(0,01 .32 + 0, 03 .12) = 0,06

Правило ионной силы позволяет рассчитать коэффициенты активности отдельных ионов в разбавленных растворах. Коэффициенты активности ионов уменьшаются с увеличением ионной силы растворов и заряда ионов (табл. 6)

Для разбавленных растворов, ионная сила которых не превышает 0,01, коэффициент активности ионов связан с ионной силой раствора следующим соотношением:

lgg = -0,5z2 √I (7.37)

Коэффициенты активности широко используются в практике и теоретических расчетах, но сами по себе не раскрывают природу процессов, протекающих в реальных системах. Они просто позволяют, используя простейшие соотношения, быстро и легко рассчитать реальные свойства разбавленных растворов сильных электролитов.

Таким образом, поведение растворов слабых электролитов описывается законом разведения Оствальда, а разбавленных растворов сильных электролитов – моделью ионной атмосферы Дебая-Хюккеля. Однако общая теория растворов, охватывающая все виды растворов электролитов и весь диапазон концентраций, до сих пор не создана.

Таблица 7.6

Коэффициент активности ионов в водных растворах (при 298 К)

Ионы Коэффициенты активности для ионной силы
0,001 0,01 0,02 0,05 0,07 0,10
Однозарядные 0,98 0,92 0,89 0,85 0,83 0,80
Двузарядные 0,77 0,58 0,50 0,40 0,36 0,30
Трехзарядные 0,73 0,47 0,37 0,28 0,25 0,21

Источник

Принципиальное отличие сильных электролитов от слабых состоит в том, что равновесие диссоциации сильных электролитов полностью смещено в сторону прямой реакции:

а потому константа равновесия (диссоциации) оказывается величиной неопределенной. Снижение электропроводности при увеличении концентрации сильного электролита обусловлено электростатическим взаимодействием ионов.

Дебай и Хюккель, предложив модель, которая легла в основу теории сильных электролитов, постулировали:

1. Электролит полностью диссоциирует, но в сравнительно разбавленных растворах (C = 0,01 моль·л–1).

2. Каждый ион окружен оболочкой из ионов противоположного знака. В свою очередь, каждый из этих ионов сольватирован. Это окружение называется ионной атмосферой.

При движении катиона в электростатическом поле его ионная атмосфера деформируется; она сгущается перед ним и разрежается позади него. Эта асимметрия ионной атмосферы оказывает тем более тормозящее действие движению катиона, чем выше концентрация электролитов и чем больше заряд ионов. В этих системах само понятие концентрации становится неоднозначиным и должно заменяться активностью. Для бинарного одно-однозарядного электролита KatAn → Kat+ + An+ активности катиона (a+) и аниона (a–) соответственно равны

где C+ и C– – аналитические концентрации соответственно катиона и аниона, γ+ и γ– – их коэффициенты активности.

Определить активности каждого иона в отдельности невозможно, поэтому для одно-однозарядных электролитов пользуются средними геометрическими значений активностей и коэффициентов активностей:

Коэффициент активности по Дебаю–Хюккелю зависит по крайней мере от температуры, диэлектрической проницаемости растворителя (ε) и ионной силы (I); последняя служит мерой интенсивности электрического поля, создаваемого ионами в растворе. Для данного электролита ионная сила выражается уравнением Дебая–Хюккеля:

Ионная сила в свою очередь равна

Здесь C – аналитическая концентрация, z – заряд катиона или аниона. Для одно-однозарядного электролита ионная сила совпадает с концентрацией. Таким образом, NaCl и Na2SO4 при одинаковых концентрациях будут иметь разные ионные силы. Сопоставление свойств растворов сильных электролитов можно проводить только тогда, когда ионные силы одинаковы; даже небольшие примеси резко изменяют свойства электролита.

Растворы слабых электролитов window.top.document.title = “6.4. Растворы слабых электролитов”;

Растворение некоторых веществ сопровождается высвобождением или образованием ионов. При этом возможны диссоциативный и ионизационный механизмы. Диссоциативный механизм превалирует при разрушении ионной кристаллической решетки под воздействием сольватирующего растворителя. Так, ионы, составляющие кристаллическую решетку KCl, приобретают способность проводить электрический ток в любом из двух случаев разрушения кристаллической решетки – под воздействием тепловой энергии (расплав) или под воздействием сольватирующего растворителя (растворение). В последнем случае в раствор переходят готовые ионы, окруженные молекулами растворителя. Процесс взаимодействия ионов кристаллической решетки с молекулами растворителя называется сольватацией. Ионизационный механизм состоит в том, что в молекулах газообразных, твердых и жидких веществ под воздействием полярных молекул растворителя увеличивается доля ионности настолько, что в раствор могут переходить сольватированные ионы. В зависимости от природы растворителя электролит может быть полностью диссоциирован, либо будет вести себя как слабый электролит:

В воде равновесие смещено вправо и растворенный хлористый водород диссоциирован полностью. В бензоле растворенный HCl ведет себя как слабый электролит. Важной характеристикой электролитов служит степень диссоциации α:

По величине степени диссоциации электролиты делятся на слабые и сильные. Для сильных электролитов, к которым относятся некоторые минеральные кислоты и щелочи, большинство солей, α > 30 %. Для слабых электролитов устанавливается равновесие между недиссоциированными молекулами и ионами. К слабым электролитам относятся плохо растворимые соли (см. таблицу растворимости), вода, большинство органических кислот (например, уксусная CH3COOH, муравьиная HCOOH), а также неорганические соединения (H2CO3Угольная кислота., H2SСероводородная кислота., HCNЦиановодородная (синильная) кислота., H2SiO3Метакремниевая кислота., H2SO3Сернистая кислота., HNO2Азотистая кислота., HClOХлорноватистая кислота., HCNOЦиановая кислота., NH4OHГидроксид аммония., большинство оснований). Важнейшей характеристикой слабого электролита служит константа диссоциации. Рассмотрим равновесную реакцию диссоциации слабого электролита HAn: Константа равновесия Kр этой реакции и есть Kд:

Читайте также:  Какие общие свойства присущи газам а легко охлаждаются

Если выразить равновесные концентрации через концентрацию слабого электролита C и его степень диссоциации α, то получим

Это соотношение называют законом разбавления Оствальда. Для очень слабых электролитов при α << 1 это уравнение упрощается:

Тогда

Это позволяет заключить, что при бесконечном разбавлении степень диссоциации α стремится к единице.

Кислоты и основания диссоциируют ступенчато. Каждая ступень диссоциации характеризуется своей константой.

На состояние динамического равновесия, в котором находится раствор слабого электролита, сильно влияет присутствие одноименного иона. Так, диссоциация уксусной кислоты протекает по схеме

и для этой реакции

Прибавление к раствору уксусной кислоты ее соли (CH3COONa → CH3COO– + Na+) резко увеличивает концентрацию ионов CH3COO– и смещает равновесие в сторону образования недиссоциированных молекул кислоты. Ее диссоциация теперь пренебрежимо мала, и концентрация недиссоциированных молекул почти равна концентрации кислоты, тогда при [CH3COOH] = [кислота], и [CH3COO–] = [соль] концентрация H+ равна

или

Следовательно, концентрация ионов H+ этого раствора будет определяться соотношением концентраций кислоты и соли, взятых для его приготовления.

Рассуждая аналогичным образом, можно вывести уравнения для раствора слабого основания и его соли (NH4OH и NH4Cl):

или

Из предыдущих уравнений видно, что концентрация ионов водорода при разбавлении сохраняется, ибо отношения [кислота]:[соль], [соль]:[основание] остаются постоянными. Добавление к такой смеси кислоты или щелочи приводит к связыванию избыточных ионов H+ анионами, а OH– – катионами. Это смещает равновесие диссоциации слабого электролита, в результате чего концентрация H+ практически не меняется. Растворы, содержащие смесь слабого электролита и его соли, сохраняющие характерные для него значения pH при разбавлении, добавлении сильных кислот или щелочей, называются буферными.

Источник

Вследствие полной диссоциации число ионов в растворе сильных электролитов всегда больше, чем в растворах слабых электролитов той же концентрации. В концентрированных растворах расстояние между ионами мало. Это приводит к сильному межионному действию. В результате около иона находятся ионы противоположного знака: образуются ионные пары, триплеты – т.е. образуются “ионные атмосферы”.

Поэтому в этом случае возникает эффект уменьшения числа ионов, участвующих в химических процессах.

В электрическом поле ионы разных знаков движутся к разным электродам, это приводит к уменьшению подвижности ионов. Чем выше концентрация, тем сильнее тормозящее действие ионной атмосферы. Кроме этого движение ионов тормозит и сольватная оболочка. При разбавлении растворов влияние “ионной атмосферы” уменьшается, а при бесконечном разведении исчезает.

Теория Дебая Хюккеля объясняет найденные опытным путем значения электрической проводимости, степени диссоциации, которые меньше чем следовало ожидать при 100% диссоциации.

В результате тормозящего действия “ионных атмосфер” определяемая по электрической проводимости растворов степень диссоциации является кажущейся степенью диссоциации. Эта величина с ростом концентрации уменьшается.

Можно считать, что в растворах электролитов во всех процессах участвуют лишь “активные ионы”, т.е. ионы не принимающие участие в межионных взаимодействиях. В связи с этим для оценки концентрационных эффектов в растворах сильных электролитов вводится величина – активность (а).

Под активностью электролита понимают эффективную концентрацию, в соответствии с которой он принимает участие в различных процессах.

Активность связана с истинной концентрацией растворенного вещества

а(в-ва) = fв-ва * Св-ва

а – активность вещества (моль/л)

С – концентрация вещества (моль/л)

f – коэффициент активности (безмерная величина)

Этот коэффициент показывает отклонение раствора с данной концентрацией от поведения раствора при бесконечном разведении, т.е. при отсутствии межионных взаимодействий. Активность и коэффициент активности можно определить экспериментально.

На коэффициент активности влияет:

1. концентрация вещества

2. температура;

3. концентрация других ионов.

1) При переходе от разбавленных растворов к концентрированным коэффициент активности уменьшается из-за увеличения межионного взаимодействия. При концентрации близкой к значению 1 моль/л, коэффициент возрастает и может быть больше 1. Это объясняется тем, что в растворе не хватает воды для гидратации, что увеличивает подвижность ионов.

2) При повышении температуры, f увеличивается, т.к. возрастает подвижность ионов и происходит разрушение гидратного слоя.

3) На f влияет общая концентрация ионов в растворе.

Следует отметить, что в любых растворах эффективные концентрации не равны аналитическим, следовательно в любых случаях следует говорить не о концентрации, а об активности.

Активности разных ионов одного электролита не равны, поэтому для определения свойств раствора учитывают среднюю активность ионов

Это справедливо и для коэффициента активности

Эти понятия позволяют определить свойства реальных растворов.

Для оценки сил межионного взаимодействия, для предсказания свойств растворов электролитов пользуются законом Дебая – Хюккеля; который сформулирован следующим образом:

В разбавленных растворах сильных электролитов с одинаковой ионной силой коэффициенты активности катионов и анионов одинаковой зарядности равны не зависимо от их химической природы.

Математическое выражение этого закона:

– коэффициент активности;

– заряд иона;

– ионная сила раствора.

Ионная сила – это величина измеряемая полусуммой произведения концентрацией всех находившихся в растворе ионов на квадрат их зарядов.

– концентрация;

– заряд ионов.

Ионная сила дает характеристику раствору, т.к. свойства раствора оцениваются суммарным вкладом всех ионов раствора, их концентраций и зарядом.

Зная состав раствора можно рассчитать его ионную силу, далее коэффициент активности и активность и предсказать его свойства.

При уменьшении концентрации уменьшается ионная сила, коэффициенты активности возрастают, при максимальном разведении стремятся к 1. Т.е. активность приблизительно равна концентрации. И наоборот, с увеличением концентрации раствора, ионная сила растет, уменьшается коэффициент активности и активность. При больших концентрациях коэффициент активности и достигает значений выше 1. Это обусловлено увеличением подвижности ионов, которые практически лишены сольватной оболочки (нехватка растворителя).

Источник

Сильные электролиты – вещества, которые при растворении практически полностью диссоциируют на ионы.

Понятие «сильный электролит» относительно. Оно характеризует не только растворяемое вещество, но и растворитель. Хлороводород, растворённый в воде, — сильный электролит, а хлороводород, растворённый в безводной уксусной кислоте, — слабый. Причина электролитической диссоциации электролитов в водных растворах является гидратация.

Например: NaCl + (a +b)H2O = Na+ · aH2O + Cl- · bH2O. В результате гидратации образуются гидратированные ионы натрия и хлора.

Вследствие электростатического взаимодействия в растворах любых концентраций вблизи катиона находятся преимущественно анионы, а вблизи аниона – катионы. Взаимное расположение ионов различного знака таково, что каждый из них окружён ионной атмосферой из противоположно заряженных ионов. С изменением концентрации раствора меняется строение ионной атмосферы и химическая активность иона. С ростом концентрации проявляются электростатические силы, связывающие ионы, и химическая активность ионов становится меньше, чем их концентрация.

Закон действующих масс не учитывает взаимодействия ионов, и в растворах сильных электролитов наблюдается нарушение этого закона. Общая теория растворов, которая позволяла бы теоретически учесть все виды внутренних взаимодействий в растворах любых концентраций, пока ещё не создана. Поэтому по предложению американского физико-химика Г.Льюиса в выражении закона действующих масс концентрации заменены активностями. Активность молекул или ионов — это их эффективная концентрация, в соответствие с которой молекулы или ионы проявляют себя в химических и физических процессах. Значения активностей должны быть такими, чтобы при их подстановке сохранялась справедливость закона действующих масс.

Читайте также:  У какого элемента ярче выражены неметаллические свойства у азота или фосфора

Для равновесной реакции: aA + bB = cC + dD константа равновесия

после замены концентраций активностями выглядит так:

Активность иона или молекулы равна произведению его концентрации С на его коэффициент активности «f» : a = f ∙ C.

Коэффициенты активности ионов зависят от величины I , называемой ионной силой и вычисляемой по уравнению:

I = 0,5( C1z12 + C2z22 + C3z32 + …) =0,5∑ Cizi2,

где Ci – концентрация иона данного сорта, а zi – заряд этого иона.

Ионная сила учитывает электростатическое влияние всех ионов в растворе. Она имеет размерность концентрации и для растворов сильных однозарядных электролитов численно ей равна. В разбавленных растворах (I< 0,1M) коэффициенты активности ионов меньше единицы и уменьшаются с ростом ионной силы: при I→ 0 величина f→1. Растворы с очень низкой ионной силой(I<10-4М) можно считать идеальными.

С увеличением концентрации коэффициенты активности ионов начинают зависеть от природы ионов, а затем и от общего состава. В очень концентрированных растворах ( I> 1M) коэффициенты активности ионов могут быть больше единицы. Одна из причин этого явления состоит в том, что в области очень высоких концентраций сказывается дегидратация, освобождение иона от гидратной оболочки и активность его снова растёт. Поэтому для нахождения коэффициентов активности следует пользоваться конкретными справочными данными (см. табл. 5 Приложения).

Пример 1. Рассчитайте рН раствора, содержащего в 1л 0,001 моль HCl и 0,06 моль CaCl2 с учетом и без учета коэффициентов активности.

Решение:

Уравнение протолиза: HCl + H2O = H3O+ + Cl–

а) без учета коэффициента активности:

[H3O+] = 0,001моль/л; рН = –lg[H3O+] = –lg10-3 = 3.

б) с учетом коэффициента активности:

Ионная сила раствора:

I = 0,5( 0,001∙1 + 0,001∙1 + 0,06∙22 + 2∙0,06∙1)= 0,182.

Коэффициент активности иона H3O+ f= 0,824.

а(Н3O+) = 0,824∙0,001 =0,000824.

рН= –lgа(Н3O+) = – lg8,24 ∙10-4 = 3,08.

Пример 2. Рассчитайте рН 0,001М NaOH.

Решение:

pOH = –lg 10–3 = 3; pH = 14 – pOH = 14 – 3 = 11.

Пример 3.Рассчитайте рН раствора соляной кислоты с концентрацией 10–7моль/л.

Решение:

При концентрации сильного электролита < 10–6 моль/л пренебречь автопротолизом воды нельзя.

Уравнение электронейтральности: [H3O+] = [Cl–] + [OH–] .

[Cl–] = [HCl]; [OH–] = Kw / [H3O+] ;

Тогда [H3O+] = [HCl} + Kw/[H3O+] ;

[H3O+]2 – [HCl] – Kw = 0;

______________

[H3O+] = 0,5( [HCl] + √ [HCl]2 + 4Kw )

[Cl–] = 10–7 моль/л ; [OH–] = K(H2O) / [H3O+] = 10–14/ [H3O+] ;

Тогда [H3O+] = 10–7 + 10–14/ [H3O+] или [H3O+]2 – 10–7 – 10 –14 = 0

_____________

Отсюда: [H3O+] = 0,5(10-7 + √ 10–14 + 4 ∙10–14 = 1,67 ∙ 10–7 ­­ моль/л.

pH = –lg1,67 ∙ 10–7 = 6,78.

Упражнения и задачи для самостоятельного решения

1. Дайте определения понятиям «идеальный» и «реальный» растворы, «активность», «ионная сила», «коэффициент активности иона».

2. Рассчитайте [Н3О +], [ОН –], а(Н3О+) , а(ОН–) и рН:

а) 0,01 М. раствора НС1,

б) раствора Н2SО4 с концентрацией С[0,5Н2SO4 ]= 0,01 моль/л;

в) 0,2 М раствора КОН;

г) раствора Ва(ОН)2. с концентрацией С[0,5 Ва(ОН)2]= 0,1моль/л.

Ответ:

а) [H3O+]=0,01моль/л; [OH–]=10-12моль/л;a(H3O+)=9,2∙10–3моль/л;

a(OH–)=1,1 ∙10–12моль/л; pH = 2,04.

б) [H3O+]=10–2моль/л; a(H3O+)=9,210–3моль/л; [OH–]=10–12моль/л;

a(OH–) = 1,1 ∙10–12 моль/л; pH = 2,04.

в) [OH–]=0,2моль/л; a(OH–)=0,136моль/л;

[Н3О+]=5∙10–14моль/л; a(H3O+)=7,4∙10-14моль/л; pH = 13,13.

г) [OH–]=0,1моль/л; a(OH–)=0,072моль/л; [H3O+]=10–13моль/л;

a(H3O+) =1,39∙10–13 моль/л; pH = 12,86.

3. Рассчитайте молярную концентрацию:

а) раствора HBr, если рН раствора равно 1,65.

б) раствора NaOH, если рН раствора равно11,26.

Ответ: а)c(HBr)= 0,022моль/л; б)c(NaOH)=0,0018 моль/л

4. Вычислите с учётом коэффициентов активности ионов рН вод­ного

раствора, содержащего гидроксид натрия [w(NaOH)= 0,05%] и хлорид натрия [w(NaCl)= 0,2%], если плотность раствора равна 1,02г/мл.

Ответ: рН=12,03.

5. Рассчитайте рН раствора, содержащего в 2,5л одновременно

0,0032 моль HNO3 и 0,0083 моль H2SO4. Ответ: рН = 2,14.

6. Вычислите рН конечного водного раствора, полученного при смешении 20 мл 0,1 М НС1 и 20 мл О,2М KOH с последующим разбавлением водой до объёма 1л.

Ответ: рН = 11,3.

БУФЕРНЫЕ РАСТВОРЫ

Основные понятия

В самом широком смысле буферными называются системы, поддерживающие определённое значение какого-либо параметра при изменении состава. Буферные растворы могут быть кислотно-основными — поддерживающими постоянное значение рН при введении кислот или оснований; окислительно-восстановительными, сохраняющими постоянным потенциал систем при введении окислителей или восстановителей и др.

Кислотно-основной буферный раствор представляет собой сопряжённую кислотно-основную пару.

Основные типы буферных водных растворов:

1. Слабая кислота и её анион.

2. Слабое основание и его катион.

3. Анионы средней и кислой соли; анионы двух кисдлых солей.

4. Ионы и молекулы амфолитов ( аминокислотные и белковые системы).

Например, ацетатный буферный раствор состоит из СН3СООН и сопряжённого с ней основания СН3СОО–, гидрокарбонатный —из НСО3-и СО2∙Н2О ,аммонийный — из аммиака NH3 и сопряжённой с ним кислоты NH4+ ,фосфатный— из кислоты H2PO4– и сопряжённой с ней HPO42–. В растворе, содержащем сопряжённую пару, устанавливаются равновесия.

Например, для ацетатного буфера:

СН3СООН + Н2О = Н3О+ + СН3СОО– (1)

СН3СОО– + Н2О = СН3СООН + ОН– (2)

Оба равновесия сильно сдвинуты влево, поскольку в растворе находятся достаточные количества как кислоты CH3COOH, так и основания CH3COO–. Константа равновесия (1) является константой кислотности CH3COOH:

рН буферного раствора рассчитывается по уравнению Гендерсона—Хассельбаха:

рН = рКа + lg а(буф.осн.) / а(буф.к-та)

Так, для ацетатного буферного раствора уравнение имеет вид:

рКа — константа кислотности уксусной кислоты, а(CH3COO–) —активность буферного основания , а(CH3COOH)— активность буферной кислоты

Для аммиачного буфера:

рКа — константа кислотности буферной кислоты NH4+, a(NH3) — активность буферного основания, a(NH4+) — активность буферной кислоты.

При малой ионной силе вместо активностей можно использовать концентрации:

Для гидрокарбонатного буфера:

Буферные системы на основе глицина. Если раствор аминокислоты находится в иоэлектрическом состоянии (суммарный заряд молекулы равен нулю), он не является буферным. Буферное действие появляется, когда к раствору добавляют некоторое количество кислоты или щёлочи. Устанавливаются следующие равновесия:

Уравнение Гендерсона—Хассельбаха для первого равновесия:

Для второго равновесия:

где pKa1 = 2,43 и pKa2 = 9,63

При изучении метаболических процессов in vitro приходится использовать «нефизиологические» буферные растворы для направленного изменения рН, что позволяет значительно облегчить изучение таких типов молекул, как аминокислоты, белки и нуклеиновые кислоты с помощью электрофореза и иннообменной хроматографии.

Основные требования к буферным системам, применяемым для биологических исследований:

–обладать высокой степенью чистоты.

–обладать достаточной буферной ёмкостью в требуемом диапазоне рН.

–хорошо растворятьсяч в воде и не проникать через биологические мембраны.

–рН буферных растворов должна иметь минимальную зависимость от концентрации тепмпературы и ионного состава среды.

–комплексы буфера с катионами должны быть растворимыми.

–буферы должны быть устойчивы к действию ферментов не оказывать токситческого или ингибирующего действия.

Поддержание стабильного рН культуральных сред обеспечивается чаще всего тремя возможными буферными системами: гидрокарбонатным , фосфатным , HEPES. В последнее время для биологических исследований широко используется буферный агент HEPES (— 4–(2–hydroxyethyl)–1–piperazineethanesulfonic acid ) Среды на основе HEPES способны к поддержанию рН на уровне 7,3–7,5 в условиях атмосферного газового состава при 37оС для биологических исследований вне инкубатора.

Свойства буферных растворов

1. Значение рН практически остаётся неизменным при разбавлении. И лишь при очень большом разбавлении (в 104 и более) значение рН может измениться на 0,5–1,0 единиц. Кроме того, при точном измерении рН следует учитывать изменения коэффициентов активности кислоты и основания, а они изменяются по-разному для заряженных и незаряженных электролитов.

2. Буферные растворы мало изменяют рН при добавлении небольшого количества сильной кислоты или сильного основания.

3. При равенстве концентраций буферной кислоты и буферного основания

С(буф.к-та) =С(буф.осн.) рН буферного раствора равно рКа рН=рКа.

Читайте также:  О каком свойстве воды говорится в отрывке

Так экспериментально можно определить константу кислотности.

Механизм буферного действия — при добавлении небольшого количества сильной кислоты или сильного основания ионы Н3О+ и ОН– в эквивалентных количествах переходят в состав слабых электролитов(буферной кислоты или буферного основании).

Например:

К 1 л ацетатной буферной смеси, в которой [СН3СООН] = [СН3СОО–] = 1 моль/л добавили 0,1моль HCl. HCl + H2O = H3O+ + Cl- ;

[H3O+] = [HCl] = 0,1 моль/л

рН исходной буферной смеси: рН= рКа + lg[CH3COO–] / [CH3СOOH] =

4,76 + lg 1/1 = 4,76.

С кислотой взаимодействует буферное основание:

СН3СОО– + Н3О+ = СН3СООН + Н2О.

После добавления соляной кислоты:

[СН3СОО–] = 1,0 – 0,1 = 0,9(моль/л), а [CH3COOH] = 1,0 + 0,1 = 1,1(моль/л).

Тогда рН буферной смеси после добавления соляной кислоты

рН = 4,76 + lg 0,9 / 1,1 = 4,67.

рН буферной смеси уменьшилась на 4,76 – 4,67 = 0,09

А при добавлении такого же количества хлороводорода в 1л воды (рН = 1)

рН уменьшилась бы на (7–1) =6.

Каждый буферный раствор характеризуется сопротивляемостью к изменениям. Количественно её выражают буферной ёмкостью В,

которая определяется числом моль эквивалентов кислоты или основания, которые необходимы для смещения рН 1л буферного раствора на одну единицу.

Обычно определяются буферная емкость по кислоте (Вa) и буферная емкость по щелочи (Вb).

Вa = n(Н3О+)доб. / Vбуф.р-р ∙∆рН Вb = n(ОН-)доб. / Vбуф.р-р ∙∆рН

Буферначя ёмкость зависит от ряда факторов:

1. Чем выше концентрации компонентов буферного раствора, тем больше его буферная ёмкость.

2. Буферная ёмкость зависит от соотношения концентраций компонентов, а, следовательно, от рН буфера. При рН = рКa буферная ёмкость максимальна.

3. Достаточное буферное действие наблюдается, если концентрация одного из компонентов превышает концентрацию другого не более, чем в 10 раз. Таким образом, интервал буферного действия pH = pKa ± 1.

Пример 1.Рассчитайте рН раствора, приготовленного смешением 300мл 0,05М KH2PO4 и 200мл 0,1М Na2HPO4. pKa(H2PO4 – )= 7,2.

Решение:

рН буферного раствора равно: рН = рКа + lg

Определяем ионную силу раствора.

KH2PO4 = K+ +H2PO4– Na2HPO4 = 2Na+ + HPO42–

0,05 0,05 0,05 ( моль) 0,1 0,2 0,1 (моль)

Объём буферного раствора: 300мл + 200мл = 500 мл =0,5л.

Концентрации ионов в буферном растворе равны:

)= моль/л c(Na )= = 0,08моль/л

c(H2PO4– )= = 0,03 моль/л c(HPO42–)= = 0.04 моль/л

Ионная сила J= 0,5 ( 0,03·12 + 0,03·12 + 0,08·12 + 0,04·22)= 0,15.

По таблице находим коэффициенты активности f ионов.

f(H2PO4–) =0,81. f( HPO42–) = 0,41.Рассчитываем рН данного буферного раствора:

pH= +lg = 7,03.

Пример 2 Какие объёмы 0,2М NH3·H2O и 0,1М NH4Cl необходимо взять для приготовления 200 мл буферного раствора с рН=9,54? pKb(NH3·H2O)=4,76. Ионная сила раствора J= 0,1.

Решение:

Коэффициент активности нейтральных молекул можно принять равными 1, а f(NH4+) = 0,81 в соответствии с ионной силой.

pН данной буферной системы равно: рН = рКа(NH4+) + lg

pKa(NH4+) = 14 – pKb = 14 – 4,76 = 9,24. pH = 9,24 + lg

Предположим, что для приготовления буферного раствора взяли x (л) раствора аммиака. Тогда объём раствора хлорида аммония: (0,2 – x)л.

c(NH3·H2O) = =x(моль/л) c(NH4+)= =(0,1-0,5x) моль/л.

Подставляем полученные данные в уравнение для рН буферной системы:

9,54 = 9,24 + lg ; Отсюда: lg ;

Тогда: и x= 0,0895 (л) =89,5 мл 90мл.

V(NH3·H2O) = 90мл V(NH4Cl) = 110мл

Пример 3а) Рассчитайте рН ацетатной буферной системы, приготовленной смешением 200мл 0,1м СН3СООН и 200мл

0,1М СН3СООNa. рКа(СН3СООН) = 4,76.

б) Рассчитайте рН данной буферной системы после добавления 10мл

1М HCl и буферную ёмкость по кислоте.

в) Рассчитайте рН данной буферной системы после добавления

10 мл 1МNaOH и буферную ёмкость по щёлочи.

Решение:

а) рН ацетатной буферной системы равна: рН= 4,76 + lg

Концентрации буферных кислоты и основания равны:

c(CH3COO–) = с(СH3COOH) = моль/л

Для определения коэффициента активности определяем ионную силу:

J=0,5(0,05 + 0,05)= 0,05.

Концентрацией ионов, которые даёт слабый электролит― уксусная кислота, пренебрегаем в виду их малости.

Из табл.5 Приложения находим коэффициенты активности ацетат- иона и иона натрия:f=0,84.

Рассчитываем рН буферной системы:

pН = 4,76 + lg

б) При добавлении соляной кислоты протекает реакция:

CH3COO– + H3O+ = CH3COOH +H2O,

0,02 0,01 0,01 моль

В растворе было:n(CH3COO–) = 0,05·0,4 = 0,02 моль.

Добавили n(HCl) = 0,01·1 = 0,01моль. При этом сильная кислота заменяется в эквивалентных количествах на слабую (буферную) кислоту, а буферное основание в эквивалентных количествах уменьшается. (В этом заключается механизм буферного действия). В результате реакции буферного основания осталось: 0,02 –0,01 = 0,01 моль,

а буферной кислоты стало: 0,02 + 0,01 = 0,03 моль.

Поскольку количество ионов в результате такой реакции не меняется, ионная сила не изменяется, и коэффициент активности остаётся прежним.

Тогда рН = 4,76 + lg

Буферная ёмкость по кислоте равна:

Ba = моль/л.

в) При добавлении щёлочи в буферную систему протекает реакция:

CH3COOH + OH– = CH3COO– + H2O

0,02 0,01 0,01 (моль)

В растворе было: n(CH3COOH) = 0,05·0,4 = 0,02моль.

Добавили n(NaOH) = 0,01·1= 0,01моль.При этом сильное основание ОН– заменяется в эквивалентных количествах на слабое(буферное основание), а буферная кислота в эквивалентных количествах уменьшается. В результате реакции буферной кислоты осталось: 0,02 – 0,01 = 0,01 моль, а буферного основания стало: 0,02 + 0,01 = 0,03 моль. Поскольку ионная сила не меняется, коэффициент активности остаётся прежним 0,84.

Тогда рН = 4,76 + lg

Буферная ёмкость по щёлочи равна: Вb = моль/л.

Упражнения и задачи для самостоятельного решения

1. Рассчитайте рН буферного раствора, содержащего 0,01 моль КН2 РО4. и 0,02 моль Na2 НРО4 в 1000 мл раствора.

[Ка(H3PO4) =7,1 ∙10-3,Ка (H2PO4–) = 6,2×10–8, Kа ( HPO42–) = 5,0 ×10 –13 ].

Какие реакции будут протекать при добавлении к этому раствору небольшого количества КОН или HNO3 ? Объясните механизм буферного действия.

Ответ: pH=7,28.

2. Какие объёмы 0,2 М NH3 и 0,5 М NH4NO3 необходимовзять для

приготовления 200 мл буферного раствора с рН=8,25?

Кв (NH3 ×H2O) =1,76 ×10-5 . Вычислите рН после добавления в этому раствору 5 мл 0,2 М НС1 и напишите уравнения протекающих реакций. Плотности растворов счи­тать равными 1,00 г/мл.

Ответ: V(0,2M NH3) =40,00мл; V(0,5M NH4NO3) = 160,00мл.

После добавления HCl pH=8,19

3. рН ацетатного буферного раствора равно 4,85. Рассчитайте молярную концентрацию буферного основания в 100 мл этого раствора, содержащего 0,1 моль СН3 СООН. Ка(СН3СООН) =1,76∙10–5 .Какова буферная ёмкость это­го раствора по кислоте?

Ответ: [CH3COO–] = 1,26моль/л; Ba = 0,075моль/л.

8. РАВНОВЕСИЯ В СИСТЕМЕ ОСАДОК― РАСТВОР

Между насыщенным при некоторой температуре водным раствором малорастворимого сильного электролита AmBn и осадком этого вещества устанавливается состояние гетерогенного химического равновесия осадок↔насыщенный раствор:

AmBn(k) = mA + nB

Термодинамическая константа данного гетерогенного равновесия (между малорастворимым соединением и его ионами в растворе) называется термодинамическим произведением растворимостиПРо и записывается как ПРо = am(A)∙ an(B), поскольку для чистого твёрдого вещества AmBn активность a =1.

Из этого выражения следует: произведение активностей иoнов в степенях, равных стехиометрическим коэффициентам, в насыщенном растворе малорастворимого электролита есть величина постоянная для данного растворителя, температуры, давления.

В растворах с малой ионной силой, в которых коэффициенты активностей «f» ионов практически равны единице, можно считать, что активности ионов равны их равновесным концентрациям. Соответственно вместо термодинамического произведения растворимости ПРо используют реальное концентрационное произведение растворимости ПРс = [A]m∙ [ B]n.

Например, в насыщенном водном растворе малорастворимого соединения хлорида серебра устанавливается равновесие:

AgCl(k) = Ag+(aq) + Cl-(aq),

s s s

где s —растворимость хлорида серебра.

ПРо(AgCl) = a(Ag+) ∙ a(Cl-).

Концентрационное произведение растворимости ПРс(AgCl) =[Ag+] ∙ [Cl-].

Тогда ПРo== a(Ag+) ∙ a(Cl-) = f(Ag+)[Ag+] ∙ f(Cl-)[Cl-] = ПРс f(Ag+)∙f(Cl-). Отсюда реальное концентрационное произведение растворимости

ПРс AgCl) = ПРо (AgCl) / f(Ag+)∙f(Cl-).

Следовательно, чем больше величина ионной силы и соответственно меньше коэффициенты активностей, тем больше величина концентрационн