Какие есть свойства чисел 4 класс

Натуральные числа и их свойства
Для счёта предметов в жизни используют натуральные числа. В записи любого натурального числа используются цифры $0,1,2,3,4,5,6,7,8,9$
Последовательность натуральных чисел, каждое следующее число в котором на $1$ больше предыдущего, образует натуральный ряд, который начинается с единицы (т.к. единица- самое маленькое натуральное число) и не имеет наибольшего значения, т.е. бесконечен.
Нуль не относят к натуральным числам.
Свойства отношения следования
Все свойства натуральных чисел и операций над ними следуют из четырех свойств отношений следования, которые были сформулированы в $1891$ г. Д.Пеано:
Единица- натуральное число, которое не следует ни за каким натуральным числом.
За каждым натуральным числом следует одно и только одно число
Каждое натуральное число, отличное от $1$, следует за одним и только одним натуральным числом
Подмножество натуральных чисел, содержащее число $1$, а вместе с каждым числом и следующее за ним число, содержит все натуральные числа.
Готовые работы на аналогичную тему
Получить выполненную работу или консультацию специалиста по вашему учебному проекту
Узнать стоимость
Если запись натурального числа состоит из одной цифры его называют однозначным (например, $2,6.9$ и т.д.), если запись состоит из двух цифр-двузначным(например,$12,18,45$) и т.д. по аналогии. Двузначные, трехзначные, четырехзначные и т.д. числа называют в математике многозначными.
Свойство сложения натуральных чисел
Переместительное свойство: $a+b=b+a$
Сумма не изменяется при перестановке слагаемых
Сочетательное свойство: $a+ (b+c) =(a+b) +c$
Чтобы прибавить к числу сумму двух чисел, можно сначала прибавить первое слагаемое, а потом, к полученной сумме- второе слагаемое
От прибавления нуля число не измениться и если прибавить к нулю какое- нибудь число, то получится прибавленное число.
Свойства вычитания
Свойство вычитания суммы из числа $a-(b+c) =a-b-c$ если $b+c ≤ a$
Для того, чтобы вычесть сумму из числа, можно сначала вычесть из этого числа первое слагаемое, а затем из полученной разности- второе слагаемое
Свойство вычитания числа из суммы $(a+b) -c=a+(b-c)$, если $c ≤ b$
Чтобы из суммы вычесть число, можно вычесть его из одного слагаемого, а к полученной разности прибавить другое слагаемое
Если из числа вычесть нуль, то число не изменится
Если из числа вычесть его само, то получится нуль
Свойства умножения
Переместительное $acdot b=bcdot a$
Произведение двух чисел не изменяется при перестановке множителей
Сочетательное $acdot (bcdot c)=(acdot b)cdot c$
Чтобы умножить число на произведение двух чисел,можно сначала умножить его на первый множитель, а потом полученное произведение умножить на второй множитель
При умножении на единицу произведение не изменяется $mcdot 1=m$
При умножении на нуль произведение равно нулю
Когда в записи произведения нет скобок, умножение выполняют по порядку слева направо
Свойства умножения относительно сложения и вычитания
Распределительное свойство умножения относительно сложения
$(a+b)cdot c=ac+bc$
Для того чтобы умножить сумму на число,можно умножить на это число каждое слагаемое и сложить получившиеся произведения
Например, $5(x+y)=5x+5y$
Распределительное свойство умножение относительно вычитания
$(a-b)cdot c=ac-bc$
Для того,чтобы умножить разность на число,множно умножить на это число уменьшаемое и вычитаемое и из первого произведения вычесть второе
Например, $5(x-y)=5x-5y$
Сравнение натуральных чисел
Для любых натуральных чисел $a$ и $b$ может выполняться только одно из трех соотношений $a=b$, $a
Меньшим считается число, которое в натуральном ряду появляется раньше, а большим, которое появляется позже. Нуль меньше любого натурального числа.
если $a
Пример 1
Сравнить числа $a$ и $555$, если известно, что существует некоторое число $b$, причем выполняются соотношения: $a
Решение: На основании указанного свойства ,т.к. по условию $a
в любом подмножестве натуральных чисел, содержащем хотя бы одно число, есть наименьшее число
Подмножеством в математике называют часть множества. Говорят, что множество является подмножеством другого, если каждый элемент подмножества является одновременно и элементом большего множества
если $a
Если $c
Часто для сравнения чисел находят их разность и сравнивают ее с нулем. Если разность больше $0$, но первое число больше второго, если разность меньше $0$, то первое число меньше второго.
Округление натуральных чисел
Когда полная точность не нужна, или не возможна ,числа округляют,т.е заменяют их близкими числами с нулями на конце.
Натуральные числа округляют до десятков, сотен,тысяч и т.д
При округлеии числа до десятков его заменяют ближайшим числом,состоящим из целых десятков; у такого числа в разряде единиц стоит цифра $0$
При округлеии числа до сотен его заменяют ближайшим числом,состоящим из целых сотен; у такого числа в разряде десятков и единиц должна стоять цифра $0$. И т.д
Числа,до которых округляют данное называют приближенным значением числа с точностью до указанных разрядов.Например если округлять число $564$ до десятков то получим, что округлить его можно с недостатком и получить $560$, или с избытком и получить $570$.
Правило округления натуральных чисел
Если справа от разряда, до которого округляют число, стоит цифра $5$ или цифра,большая $5$, то к цифре этого разряда прибавляют $1$; в противном случае эту цифру оставляют без изменения
Все цифры, расположенные правее разряда, до которого округляют число ,заменяют нулями
Источник
Ниже приведены характеристики чисел с примерами, которые рассматривает сайт aboutnumber.ru
Сумма цифр
Сумма цифр, из которых состоит число.
62316 → 6 + 2 + 3 + 1 = 18
Произведение цифр
Произведение цифр, из которых состоит число.
872 → 8 * 7 * 2 = 112
Количество цифр в числе
Отображение количества цифр в числе (если их больше 4-х). Это удобно, так как не всегда можно на глаз определить
порядок числа.
57348920572348 → 14
Все делители числа
Полный список делителей, на которые делится число без остатка.
2612 → 1, 2, 4, 653, 1306, 2612
Наибольший делитель из ряда степеней двойки
Ряд степеней двойки — это ряд вида 1, 2, 4, 8, 16, 32, 64, 128, 256 и т.д.
Эти числа являются основными числами в бинарной математике (в двоичной записи), так как ими можно охарактеризовать
объем
информации.
832 → 64
Количество делителей
Суммарное число делителей.
3638143886 → всего 32 делителя
Сумма делителей
Сумма всех делителей числа.
77432243032 → сумма делителей 145185455700
Простое число
Проверка на простое число. Простое число — это число, которое делится без остатка только на единицу и само себя.
Таким образом у простого числа может быть всего два делителя.
677 → 1 * 677
Полупростое число
Проверка на полупростое число. Полупростое число — число, которое можно представить в виде произведения двух простых чисел.
У полупростого числа два делителя — оба простые числа.
898 → 2 * 449
Обратное число
Два числа называются обратными если их произведение равно единице. Таким образом обратным к заданному числу N всегда
будет 1/N.
125 → 0.008
Проверка: 0.008 * 125 = 1
Факторизация
Факторизация числа — представление числа в виде произведения простых чисел.
220683351 → 3 * 7 * 953 * 11027
Двоичный вид
Двоичное, оно же бинарное представление числа. Это запись числа в системе счисления с основанием два.
72412810 → 101100001100101000002
Троичный вид
Троичное представление числа. Это запись числа в системе счисления с основанием три.
990418010 → 2001220112221113
Восьмеричный вид
Восьмеричное представление числа. Это запись числа в системе счисления с основанием восемь.
9788143604410 → 13312140276148
Шестнадцатеричный вид (HEX)
Шестнадцатеричное представление числа. Часто его пишут английскими буквами «HEX». Это запись числа в системе
счисления с основанием шестнадцать.
12444510 → 1E61D16
Перевод из байтов
Конвертация из байтов в килобайты, мегабайты, гигабайты и терабайты.
29141537 (байт) → 27 мегабайтов 810 килобайтов 545 байтов
Цвет
В случаем, если число меньше чем 16777216, то его можно представить в виде цвета. Шестнадцать миллионов цветов,
которые можно
закодировать стандартной цветовой схемой компьютера.
8293836 →
RGB(126, 141, 204) или #7E8DCC
Наибольшая цифра в числе (возможное основание)
Наибольшая цифра, встречающаяся в числе. В скобках указана система счисления, с помощью которой, возможно, записано
это число.
347524172 → 7 (8, восьмеричный вид)
Перевод двоичной/троичной/восьмеричной записи в десятичную
Число, записанное с помощью единиц и нолей — имеет бинарный вид, таким образом его можно перевести в
десятичную систему счисления.
Число, записанное с помощью единиц, нолей и двоек — имеет троичный вид.
Если с помощью цифр до семи (включая) — восьмеричный вид числа.
111010010010112 → 1492310
120201001200213 → 278227610
745312768 → 1590547010
Число Фибоначчи
Проверка на число Фибоначчи. Числа Фибоначчи — это последовательно чисел, в которых каждый последующий элемент равен
сумме двух предыдущих.
Ряд Фибоначчи: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377 и т.д.
Позиция в ряду Фиббоначчи
Характеризует порядковый номер числа в ряду Фибоначчи.
21 → 8-е число в ряду Фибоначчи
Нумерологическое значение
Нумерологическое значение вычисляется путем последовательного сложения всех цифр числа до тех пор, пока не
не получится цифра от 0 до 9. В нумерологии каждой цифре соответствует свой характер.
8372890 → 8 + 3 + 7 + 2 + 8 + 9 + 0 = 37 → 3 + 7 = 10 → 1 + 0 = 1
мужество, логика, независимость, самостоятельность, индивидуализм, смелость, решительность, изобретательность
Синус числа
Расчет тригонометрической функции синуса числа в радианах.
Sin(18228730686) = -0.20084127807633853
Косинус числа
Расчет тригонометрической функции косинуса числа в радианах.
Cos(792834113) = 0.6573990013186783
Тангенс числа
Расчет тригонометрической функции тангенса числа в радианах. Чтобы получить котангенс числа, надо единицу поделить на
величину тангенса.
Tan(651946045) = 2.5709703278560982
Натуральный логарифм
Это логарифм числа по основанию константы e ≅ 2,718281828459.
Ln(7788338399) = 22.77589337484777
Десятичный логарифм
Это логарифм числа по основания десять.
LOG(1010432) = 6.004507091707365
Квадратный корень
Квадратный корень из введенного числа.
8512326 → 2917.589073190397
Кубический корень
Кубический корень из введенного числа.
5834788 → 180.02867855810877
Квадрат числа
Число, возведенное в квадрат, то есть умноженное само на себя.
31203^2 = 973627209
Перевод из секунд
Конвертация числа секунд в дни, часы, минуты и секунды.
1805506 (секунд) → 2 недели 6 дней 21 час 31 минута 46 секунд
Дата по UNIX-времени
UNIX-время или UNIX-дата — количество секунд, прошедших с полуночи 1 января 1970 года (по UTC).
Таким образом введенное число можно преобразовать в дату.
5265079917115 → Sun, 04 Nov 2136 10:11:57 GMT
Римская запись
Римская запись числа, в том случае, если оно меньше чем максимальное для римской записи 3999.
2014 → MMXIV
Индо-арабское написание
Запись числа с помощью индо-арабских цифр. Они используются в арабских странах Азии и в Египте.
24579540882896 → ٢٤٥٧٩٥٤٠٨٨٢٨٩٦
Азбука морзе
Число, закодированное с помощью азбуки морзе, каждый символ которой представляется в виде последовательсти
коротких (точка) и длинных (тире) сигналов.
7282077 → –… ..— —.. ..— —– –… –…
MD5
Хэш-сумма числа, рассчитанная по алгоритму MD5.
4706204202547 → db2766a5747fd3f8c8c77a1ddd2e24d0
SHA1
Хэш-сумма числа, рассчитанная по алгоритму SHA-1.
345297 → 3855120d2f9d556544bbd24746d0877b79a023df
Base64
Представление числа в системе Base64, то есть в системе счисления с основанием 64.
78868 → SmF2YVNjcmlwdA==
QR-код числа
Двумерный штрих-код-картинка. В ней зашифровано введенное число.
969393779 →
Источник
Определение натурального числа
Натуральные числа — это числа, которые мы используем для подсчета чего-то конкретного, осязаемого.
Вот, какие числа называют натуральными: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13.
Что точно не является натуральным числом:
- Нуль — целое число, которое при сложении или вычитании с любыми числами в результате даст то же число. Умножение на ноль дает ноль.
- Отрицательные числа: −1, −2, −3, −4.
- Дроби: 1/2, 3/4, 5/6.
Натуральный ряд — последовательность всех натуральных чисел, расположенных в порядке возрастания. Первые сто можно посмотреть в таблице.
Особенности натуральных чисел |
---|
|
Какие операции возможны над натуральными числами
- сложение: слагаемое + слагаемое = сумма;
- умножение: множитель * множитель = произведение;
- вычитание: уменьшаемое — вычитаемое = разность. При этом уменьшаемое должно быть больше вычитаемого, иначе в результате получится отрицательное число или нуль;
- деление с остатком: делимое / делитель = частное (остаток);
- возведение в степень: ab, где a — основание степени, b — показатель степени.
Вникать во все тонкости математической вселенной комфортнее с внимательным наставником. Наши учителя объяснят сложную тему, ответят на неловкие вопросы и вдохновят ребенка учиться. А красочная платформа с увлекательными заданиями поможет заниматься современно и в удовольствие. Запишите вашего ребенка на бесплатный пробный урок в онлайн-школу Skysmart и попробуйте сами!
Десятичная запись натурального числа
В школе мы проходим тему натуральных чисел в 5 классе, но на самом деле многое нам может быть интуитивно понятно и раньше. Проговорим важные правила.
Мы регулярно используем цифры: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. При записи любого натурального числа можно использовать только эти цифры без каких-либо других символов. Записываем цифры одну за другой в строчку слева направо, используем одну высоту.
Примеры правильной записи натуральных чисел: 208, 567, 24, 1 467, 899 112. Эти примеры показывают нам, что последовательность чисел может быть разной и некоторые даже могут повторяться.
077, 0, 004, 0931 — это неправильные примеры натуральных чисел, потому что нуль расположен слева. По правилам, так нельзя. Это и есть десятичная запись натурального числа.
Количественный смысл натуральных чисел
Натуральные числа несут в себе количественный смысл, то есть выступают в качестве инструмента для нумерации.
Представим, что перед нами банан????. Мы можем записать, что видим 1 банан. При этом натуральное число 1 читается как «один» или «единица».
Но термин «единица» имеет еще одно значение: то, что можно рассмотреть, как единое целое. Элемент множества можно обозначить единицей. Например, из множества деревьев, любое дерево — единица, любой листок из множества листков — единица.
Представим, что перед нами 2 банана ????????Натуральное число 2 читается как «два». Далее, по аналогии:
???????????? | 3 предмета («три») |
???????????????? | 4 предмета («четыре») |
???????????????????? | 5 предметов («пять») |
???????????????????????? | 6 предметов («шесть») |
???????????????????????????? | 7 предметов («семь») |
???????????????????????????????? | 8 предметов («восемь») |
???????????????????????????????????? | 9 предметов («девять») |
Основная функция натурального числа — указать количество предметов.
Если запись числа совпадает с цифрой 0, то его называют «нуль». Напомним, что нуль — не натуральное число, но он может обозначать отсутствие. Нуль предметов значит — ни одного.
Однозначные, двузначные и трехзначные натуральные числа
Однозначное натуральное число — это такое число, в составе которого один знак, одна цифра. Девять однозначных натуральных чисел: 1, 2, 3, 4, 5, 6, 7, 8, 9.
Двузначные натуральные числа — те, в составе которых два знака, две цифры. Цифры могут повторяться или быть различными. Например: 88, 53, 70.
Если множество предметов состоит из девяти и еще одного, значит речь идет об 1 десятке («один десяток») предметов. Если один десяток и еще один, значит перед нами 2 десятка («два десятка») и так далее.
По сути, двузначное число — это набор однозначных чисел, где одно записывается справа, а другое слева. Число слева показывает количество десятков в составе натурального числа, а число справа — количество единиц. Всего двузначных натуральных чисел — 90.
Трехзначные натуральные числа — числа, в составе которых три знака, три цифры. Например: 666, 389, 702.
Одна сотня — это множество, состоящее из десяти десятков. Сотня и еще одна сотня — 2 сотни. Прибавим еще одну сотню — 3 сотни.
Вот, как происходит запись трехзначного числа: натуральные числа записываются одно за другим слева направо.
Крайнее правое однозначное число указывает на количество единиц, следующее — на количество десятков, крайнее левое — на количество сотен. Цифра 0 показывает отсутствие единиц или десятков. Поэтому 506 — это 5 единиц, 0 десятков и 6 сотен.
Точно также определяются четырехзначные, пятизначные, шестизначные и другие натуральные числа.
Многозначные натуральные числа
Многозначные натуральные числа состоят из двух и более знаков.
1 000 — это множество с десятью сотнями, 1 000 000 состоит из тысячи тысяч, а один миллиард — это тысяча миллионов. Тысяча миллионов, только представьте! То есть мы можем рассмотреть любое многозначное натуральное число, как набор однозначных натуральных чисел.
Например, 2 873 206 содержит в себе: 6 единиц, 0 десятков, 2 сотни, 3 тысячи, 7 десятков тысяч, 8 сотен тысяч и 2 миллиона.
Свойства натуральных чисел
Об особенностях натуральных чисел мы уже знаем. А теперь подробно расскажем про их свойства:
множество натуральных чисел | бесконечно и начинается с единицы (1) |
за каждым натуральным числом следует другое | оно больше предыдущего на 1 |
результат деления натурального числа на единицу (1) | само натуральное число: 5 : 1 = 5 |
результат деления натурального числа на него самого | единица (1): 6 : 6 = 1 |
переместительный закон сложения | от перестановки мест слагаемых сумма не меняется: 4 + 3 = 3 + 4 |
сочетательный закон сложения | результат сложения нескольких слагаемых не зависит от порядка действий: (2 + 3) + 4 = 2 + (3 + 4) |
переместительный закон умножения | от перестановки мест множителей произведение не изменится: 4 * 5 = 5 * 4 |
сочетательный закон умножения | результат произведения множителей не зависит от порядка действий. Можно хоть так, хоть эдак: (6 * 7) * 8 = 6 * (7 * 8) |
распределительный закон умножения относительно сложения | чтобы умножить сумму на число, нужно каждое слагаемое умножить на это число и полученные результаты сложить: 4 * (5 + 6) = 4*5 + 4*6 |
распределительный закон умножения относительно вычитания | чтобы умножить разность на число, можно умножить на это число отдельно уменьшаемое и вычитаемое, а затем из первого произведения вычесть второе: 3 * (4 — 5) = 3*4 — 3*5 |
распределительный закон деления относительно сложения | чтобы разделить сумму на число, можно разделить на это число каждое слагаемое и сложить полученные результаты: (9 + 8) : 3 = 9:3 + 8:3 |
распределительный закон деления относительно вычитания | чтобы разделить разность на число, можно разделить на это число сначала уменьшаемое, а затем вычитаемое, и из первого произведения вычесть второе: (5 — 3) : 2 = 5:2 — 3:2. |
Разряды натурального числа и значение разряда
Напомним, что от позиции, на которой стоит цифра в записи числа, зависит ее значение. Так, например, 1 123 содержит в себе: 3 единицы, 2 десятка, 1 сотню, 1 тысячу. При этом можно сформулировать иначе и сказать, что в заданном числе 1 123 цифра 3 располагается в разряде единиц, 2 в разряде десятков, 1 в разряде сотен и 1 служит значением разряда тысяч.
Разряд — это позиция, место расположения цифры в записи натурального числа.
У каждого разряда есть свое название. Слева всегда располагаются старшие разряды, а справа — младшие. Чтобы быстрее запомнить, можно использовать таблицу.
Количество разрядов всегда соответствует количеству знаков в числе. В этой таблице есть названия всех разрядов для числа, которое состоит из 15 знаков. У следующих разрядов также есть названия, но они используются крайне редко.
Низший (младший) разряд многозначного натурального числа — разряд единиц.
Высший (старший) разряд многозначного натурального числа — разряд, соответствующий крайней левой цифре в заданном числе.
Вы наверняка заметили, что в учебниках часто ставят небольшие пробелы при записи многозначных чисел. Так делают, чтобы натуральные числа было удобно читать. А еще, чтобы визуально разделить разные классы чисел.
Класс — это группа разрядов, которая содержит в себе три разряда: единицы, десятки и сотни.
Десятичная система счисления
Люди в разные времена использовали разные методы записи чисел. И каждая система счисления имеет свои правила и особенности.
Десятичная система счисления — самая распространенная система счисления, в которой для записи чисел используют десять знаков: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.
В десятичной системе значение одной и той же цифры зависит от ее позиции в записи числа. Например, число 555 состоит из трёх одинаковых цифр. В этом числе первая слева цифра означает пять сотен, вторая — пять десятков, а третья — пять единиц. Так как значение цифры зависит от её позиции, десятичную систему счисления называют позиционной.
Источник