Какие есть свойство корней

Какие есть свойство корней thumbnail

Данная статья представляет собой совокупность детальной информации, которая касается темы свойства корней. Рассматривая тему, мы начнем со свойств , изучим все формулировки и приведем доказательства. Для закрепления темы мы рассмотрим свойства  n-ой степени.

Свойства корней

Мы поговорим о свойствах.

  1. Свойство умноженных чисел a и b, которое представляется как равенствоa·b=a·b. Его можно представить в виде множителей, положительных или равных нулю a1, a2, …, ak как a1· a2· …· ak=a1· a2· …· ak;
  2. из частного a:b= a:b,  a≥0, b>0, он также может записываться в таком виде ab=ab;
  3. Свойство из степени числа a с четным показателем a2·m=am при любом числе a, например, свойство из квадрата числа a2=a.

В любом из представленных уравнений можно поменять части до и после знака тире местами, например, равенство a·b=a·b трансформируется как a·b=a·b. Свойства для равенства часто используются для упрощения сложных уравнений.

Доказательство первых свойств основано на определении квадратного корня и свойствах степеней с натуральным показателем. Чтобы обосновать третье свойство, необходимо обратиться к определению модуля числа.

Первым делом, необходимо доказать свойства квадратного корня a·b=a·b. Согласно определению , необходимо рассмотреть, что a·b – число, положительное или равное нулю, которое будет равно a·bпри возведениив квадрат. Значение выражения a·b положительно или равно нулю как произведение неотрицательных чисел. Свойство степени умноженных чисел позволяет представить равенство в виде (a·b)2=a2·b2. По определению квадратного корня a2=a и b2=b, то a·b2=a2·b2=a·b.

Аналогичным способом можно доказать, что из произведения k множителей a1, a2, …, ak будет равняться произведению квадратных корней из этих множителей. Действительно, a1·a2· …· ak2=a12· a22· …· ak2=a1· a2· …· ak.

Из этого равенства следует, что a1· a2· …· ak=a1· a2· …· ak.

Рассмотрим несколько примеров для закрепления темы.

Пример 1

3·525=3·525, 4,2·1312=4,2·1312 и 2,7·4·1217·0,2(1)=2,7·4·1217·0,2(1).

Необходимо доказать свойство арифметического квадратного корня из частного: a:b=a:b, a≥0, b>0. Свойство позволяет записать равенство a:b2=a2:b2, а a2:b2=a:b, при этом a:bявляется положительным числом или равно нулю. Данное выражение и станет доказательством.

Например, 0:16=0:16, 80:5=80:5 и 30,121=30,121.

Рассмотрим свойство квадратного корня из квадрата числа. Его можно записать в виде равенствакак a2=aЧтобы доказать данное свойство, необходимо подробно рассмотреть несколько равенств при a≥0 и при a<0.

Очевидно, что при a≥0 справедливо равенство a2=a. При a<0 будет верно равенство a2=-a. На самом деле, в этом случае −a>0 и (−a)2=a2. Можно сделать вывод, a2=a, a≥0-a, a<0=a. Именно это и требовалось доказать.

Рассмотрим несколько примеров.

Пример 2

52=5=5 и -0,362=-0,36=0,36.

 Доказанное свойство поможет дать обоснованиеa2·m=am, где a – действительное, а m –натуральное число. Действительно, свойство возведения степени позволяет заменить степень a2·m выражением (am)2, тогда a2·m=(am)2=am.

Пример 3

38=34=34 и (-8,3)14=-8,37=(8,3)7.

Свойства корня n-ой степени

Для начала необходимо рассмотреть основные свойства корней n-ой степени:

  1. Свойство из произведения чисел a и b, которые положительны или равны нулю, можно выразить в качестве равенства a·bn=an·bn, данное свойство справедливо для произведения k чисел a1, a2, …, ak как a1· a2· …·akn=a1n· a2n· …·akn;
  2.  из дробного числа обладает свойством abn=anbn, где a – любое действительное число, которое положительно или равно нулю, а b – положительное действительное число;
  3. При любом a и четных показателях n=2·m справедливо a2·m2·m=a, а при нечетных n=2·m−1 выполняется равенство a2·m-12·m-1=a.
  4. Свойство извлечения из amn=an·m, где a – любое число, положительное или равное нулю, n и m – натуральные числа, это свойство также может быть представлено в виде …ankn2n1=an1·n2…·nk;
  5. Для любого неотрицательного a и произвольных n и m, которые являются натуральными, также можно определить справедливое равенство amn·m=an;
  6. Свойство степени n из степени числа a, которое положительно или равно нулю, в натуральной степени m, определяемое равенством amn=anm;
  7. Свойство сравнения , которые обладают одинаковыми показателями: для любых положительных чисел a и b таких, что a<b, выполняется неравенство an<bn;
  8. Свойство сравнения , которые обладают одинаковыми числами под корнем: если m и n – натуральные числа, что m>n, тогда при 0<a<1 справедливо неравенство am>an, а при a>1 выполняется am<an.

Равенства, приведенные выше, являются справедливыми, если части до и после знака равно поменять местами. Они могут быть использованы и в таком виде. Это зачастую применяется во время упрощения или преобразовании выражений.

Доказательство приведенных выше свойств корня основывается на определении, свойствах степени и определении модуля числа. Данные свойства необходимо доказать. Но все по порядку.

  1. Первым делом докажем свойства корня n-ой степени из произведения a·bn=an·bn. Для a и b, которые являютсяположительными или равными нулю, значение an·bn также положительно или равно нулю, так как является следствием умножения неотрицательных чисел. Свойство произведения в натуральной степени позволяет записать равенство an·bnn=ann·bnn. По определению корня n-ой степени ann=a и bnn=b, следовательно, an·bnn=a·b. Полученное равенство – именно то, что и требовалось доказать.
Читайте также:  Какие свойства имеют элементарные частицы

Аналогично доказывается это свойство для произведения k множителей: для неотрицательных чисел a1, a2, …, an выполняется a1n· a2n· …· akn ≥0 .

Приведем примеры использования свойства корня n-ой степени из произведения: 5·2127=57·2127 и 8,34·17,(21)4·34·574=8,3·17,(21)·3·574.

  1. Докажем свойство корня из частного  abn=anbn. При a≥0 и b>0выполняется условие anbn≥0, а anbnn=annbnn=ab.

Покажем примеры:

Пример 4

8273=83273 и  2,310:2310=2,3:2310.

  1. Для следующего шага необходимо доказать свойстваn-ой степени из числа в степени n. Представим это в виде равенства a2·m2·m=a и a2·m-12·m-1=a для любого действительного a и натурального m. При a≥0 получаем a=a и a2·m=a2·m, что доказывает равенство a2·m2·m=a, а равенство a2·m-12·m-1=a очевидно. При a<0 получаем соответственно a=-a и a2·m=(-a)2·m=a2·m. Последняя трансформация числа справедлива согласно свойству степени. Именно это доказывает равенство a2·m2·m=a, а a2·m-12·m-1=a будет справедливо, так как за  нечетной степени рассматривается -c2·m-1=-c2·m-1 для любого числа c, положительного или равного нулю.

Для того, чтобы закрепить полученную информацию, рассмотрим несколько примеров с использованием свойства:

Пример 5

744=7=7, (-5)1212=-5=5, 088=0=0, 633=6 и (-3,39)55=-3,39.

  1. Докажем следующее равенство amn=an·m. Для этого необходимо поменять числа до знака равно и после него местами an·m=amn. Это будет означать верная запись . Для a, которое является положительнымили равно нулю, из вида amn является числом положительным или равным нулю. Обратимся к свойству возведения степени в степень и определению . С их помощью можно преобразовать равенства в виде amnn·m=amnnm=amm=a. Этим доказано рассматриваемое свойство корня из корня.

Аналогично доказываются и другие свойства. Действительно, …ankn2n1n1·n2·…·nk=…ankn3n2n2·n3·…·nk=…ankn4n3n3·n4·…·nk=…=anknk=a.

Например,735=75·3 и 0,00096=0,00092·2·6=0,000924.

  1. Докажем следующее свойствоamn·m=an. Для этого необходимо показать, что an – число, положительное или равное нулю. При возведении в степень n·m равно am. Если число a является положительным или равным нулю, то n-ой степени из числа a является числом положительным или равным нулю При этом an·mn=annm, что и требовалось доказать.

Для того, чтобы закрепить полученные знания, рассмотрим несколько примеров

2312=24.

  1. Докажем следующее свойство – свойство корня из степени вида amn=anm. Очевидно, что при a≥0 степень anm является неотрицательным числом. Более того, ее n-ая степень равна am, действительно, anmn=anm·n=annm=am. Этим и доказано рассматриваемое свойство степени.

Например, 2353=2335.

  1. Необходимо доказательство, что для любых положительных чисел a и b выполнено условие a<b. Рассмотрим неравенство an<bn. Воспользуемся методом от противного an≥bn. Тогда, согласно свойству, о котором говорилось выше, неравенство считается верным ann≥bnn, то есть, a≥b. Но это не соответствует условию a<b. Следовательно, an<bn при a<b.

Для примера приведем 124<15234.

  1. Рассмотрим свойство корня n-ой степени. Необходимо для начала рассмотреть первую часть неравенства. При m>n и 0<a<1справедливо am>an. Предположим, что am≤an. Свойства позволят упростить выражение до anm·n≤amm·n. Тогда, согласно свойствам степени с натуральным показателем, выполняется неравенство anm·nm·n≤amm·nm·n, то есть, an≤am. Полученное значение при m>n и 0<a<1 не соответствует свойствам, приведенным выше.

Таким же способом можно доказать, что при m>n и a>1справедливо условие am<an.

Для того, чтобы закрепить приведенные свойства, рассмотрим несколько конкретных примеров. Рассмотрим неравенства, используя конкретные числа.

Пример 6

0,73>0,75 и 12>127.

Источник

Ñâîéñòâà êâàäðàòíûõ êîðíåé.

  • Êâàäðàòíûé êîðåíü;
  • Êâàäðàòíûé êîðåíü åñëè à ≥ 0 è b > 0;
  • Êâàäðàòíûé êîðåíü åñëè à ≥ 0 è n — íàòóðàëüíîå ÷èñëî;
  • Êâàäðàòíûé êîðåíü åñëè à ≥ 0 è n — íàòóðàëüíîå ÷èñëî.
  • Îáðàòèòå âíèìàíèå, (−5)2 = 25, íî Êâàäðàòíûé êîðåíü.
  • Êîðåíü íå ìîæåò ðàâíÿòüñÿ íåïîëîæèòåëüíîìó ÷èñëó.
  • Êâàäðàòíûé êîðåíü — íåâîçìîæíî âû÷èñëèòü, êîðåíü èç îòðèöàòåëüíîãî ÷èñëà íå ñóùåñòâóåò.
  • Åñëè Êâàäðàòíûé êîðåíü, òî b2 = a, ïðè à ≥ 0 è b ≥ 0, ýòî îäíî èç âàæíåéøèõ ñâîéñòâ êîðíåé.
  • Âàæíî ïîíèìàòü, ÷òî êâàäðàòíûé êîðåíü – ýòî äðóãàÿ çàïèñü ñòåïåíè ½:

Êâàäðàòíûé êîðåíü

Íàïðèìåð:

Êâàäðàòíûé êîðåíü

Êâàäðàòíûé êîðåíü

  • Âåëè÷èíà êîðíÿ íå èçìåíèòñÿ, åñëè åãî ïîêàçàòåëü óâåëè÷èòü â n ðàç è îäíîâðåìåííî âîçâåñòè ïîäêîðåííîå çíà÷åíèå â ñòåïåíü n:
  •   Âåëè÷èíà êîðíÿ íå èçìåíèòñÿ, åñëè ïîêàçàòåëü ñòåïåíè óìåíüøèòü â n ðàç è îäíîâðåìåííî èçâëå÷ü êîðåíü n-é ñòåïåíè èç ïîäêîðåííîãî çíà÷åíèÿ:
  •  Êîðåíü îò ÷àñòíîãî ðàâåí ÷àñòíîìó îò äåëåíèÿ êîðíÿ èç äåëèìîãî íà êîðåíü èç äåëèòåëÿ (ïîêàçàòåëè êîðíåé äîëæíû áûòü îäèíàêîâûìè):

  Îáðàòíî:

  •   ×òîáû âîçâåñòè êîðåíü â ñòåïåíü, äîñòàòî÷íî âîçâåñòè â ýòó ñòåïåíü ïîäêîðåííîå çíà÷åíèå:

  Îáðàòíî, ÷òîáû èçâëå÷ü êîðåíü èç ñòåïåíè, äîñòàòî÷íî âîçâåñòè â ýòó ñòåïåíü êîðåíü èç îñíîâàíèÿ ñòåïåíè:

  •   Êîðåíü èç ïðîèçâåäåíèÿ íåñêîëüêèõ ñîìíîæèòåëåé ðàâåí ïðîèçâåäåíèþ êîðíåé òîé æå ñòåïåíè èç ýòèõ ñîìíîæèòåëåé (òîæå âàæíîå ñâîéñòâî êîðíåé):
Читайте также:  Какие элементы проявляют металлические и неметаллические свойства

  Îáðàòíî, ïðîèçâåäåíèå êîðíåé îäíîé è òîé æå ñòåïåíè ðàâíî êîðíþ òîé æå ñòåïåíè èç ïðîèçâåäåíèÿ ïîäêîðåííûõ çíà÷åíèé:

Êâàäðàòíûé êîðåíü êàê ýëåìåíòàðíàÿ ôóíêöèÿ.

Êâàäðàòíûé êîðåíü – ýòî ýëåìåíòàðíàÿ ôóíêöèÿ è ÷àñòíûé ñëó÷àé ñòåïåííîé ôóíêöèè Ãðàôèê ôóíêöèè êâàäðàòíîãî êîðíÿ ïðåîáðàçîâàíèÿ ãðàôèêîâ ïðè Ãðàôèê ôóíêöèè êâàäðàòíîãî êîðíÿ ïðåîáðàçîâàíèÿ ãðàôèêîâ. Àðèôìåòè÷åñêèé êâàäðàòíûé êîðåíü ÿâëÿåòñÿ ãëàäêèì ïðè Ãðàôèê ôóíêöèè êâàäðàòíîãî êîðíÿ ïðåîáðàçîâàíèÿ ãðàôèêîâ, à â íóëå îí íåïðåðûâåí ñïðàâà, íî íå äèôôåðåíöèðóåòñÿ (îòëè÷èòåëüíîå ñâîéòâî êîðíåé).

Êàê ôóíêöèÿ êîìïëåêñíûé ïåðåìåííûé êîðåíü — äâóçíà÷íàÿ ôóíêöèÿ, ó êîòîðîé ëèñòû ñõîäÿòñÿ â íóëå.

Ñâîéñòâî êîðíÿ êàê ôóíêöèè.

Íà [0; +∞) ìîæíî ïîñòàâèòü êàæäîìó ÷èñëó õ â ñîîòâåòñòâèå åäèíñòâåííîå ÷èñëî êîðåíü n-ñòåïåíè èç x ïðè ëþáîì çíà÷åíèè n.

Ôóíêöèè êîðíÿ

Òî åñòü ýòî îçíà÷àåò, ÷òî íà ìíîæåñòâå [0; +∞) ìîæíî ãîâîðèòü î ôóíêöèè êîðíÿ:

Ôóíêöèè êîðíÿ

Òåïåðü îïðåäåëèì ñâîéñòâà ôóíêöèè êîðíÿ è ïîñòðîèì åå ãðàôèê.

Îñíîâíûå ñâîéñòâà êîðíÿ êàê ôóíêöèè:

Ïðîìåæóòîê [0; +∞) – ÿâëÿåòñÿ îáëàñòüþ îïðåäåëåíèÿ.

Òàê êàê íåîòðèöàòåëüíîå ÷èñëî ÿâëÿåòñÿ êîðíåì n-ñòåïåíè èç íåîòðèöàòåëüíîãî ÷èñëà, çíà÷èò ïðîìåæóòîê [0; +∞) áóäåò îáëàñòüþ çíà÷åíèÿ ôóíêöèè.

Ïîñêîëüêó ñèììåòðè÷íûì ìíîæåñòâîì íå ÿâëÿåòñÿ îáëàñòü îïðåäåëåíèÿ ôóíêöèè, ïîýòîìó äàííàÿ ôóíêöèÿ íå ÿâëÿåòñÿ íè íå÷åòíîé, íè ÷åòíîé.

Îïåðàöèÿ ïî èçâëå÷åíèþ êîðíÿ ââîäèëàñü êàê îáðàòíàÿ îïåðàöèÿ âîçâåäåíèÿ â ñîîòâåòñòâóþùóþ ñòåïåíü.

Çíà÷èò ìîæíî óòâåðæäàòü, ÷òî:

Ôóíêöèè êîðíÿ

Òåïåðü ìîæíî ïîñòðîèòü ãðàôèê ôóíêöèè êîðíÿ.

Ôóíêöèè êîðíÿ

Ïîëüçóÿñü ãðàôèêîì, ìîæíî çàïèñàòü îñòàâøèåñÿ ñâîéñòâà ôóíêöèè.

Íà ïðîìåæóòêå [0; +∞) ôóíêöèÿ âîçðàñòàåò.

Ñâåðõó ôóíêöèÿ íå îãðàíè÷åíà, íî îíà îãðàíè÷åíà ñíèçó, íàïðèìåð, ïðÿìîé ó, êîòîðàÿ = -0,5.

Íà âñåé îáëàñòè îïðåäåëåíèÿ ôóíêöèÿ âûïóêëà ââåðõ.

Ó ôóíêöèè íàèìåíüøèì çíà÷åíèåì áóäåò ÿâëÿòüñÿ 0, à íàèáîëüøåãî çíà÷åíèÿ îíà íå èìååò.

Åñëè â êàæäîé èç òî÷åê íåêîòîðîãî ïðîìåæóòêà ôóíêöèÿ äèôôåðåíöèðóåìà, òî ýòî çíà÷èò, ÷òî íà äàííîì ïðîìåæóòêå îíà íåïðåðûâíà.

Ôóíêöèè êîðíÿ

Òîãäà:

Ôóíêöèè êîðíÿ

 ëþáîé òî÷êå ïðîìåæóòêà [0; +∞) ñóùåñòâóåò ýòà ïðîèçâîäíàÿ, èñêëþ÷åíèåì ÿâëÿåòñÿ òîëüêî òî÷êà 0.

Ïîñêîëüêó â ëþáîé òî÷êå ïðîìåæóòêà (0; +∞) ôóíêöèÿ èìååò ïðîèçâîäíóþ, çíà÷èò íà ïðîìåæóòêå (0; +∞) ôóíêöèÿ äèôôåðåíöèðóåìà.

  

Èçâëå÷ü êîðåíü 2, 3, 4, 5, n ñòåïåíè îíëàéí

Íàéòè êîðåíü 2, 3, 4, 5, … n ñòåïåíè èç ëþáîãî ÷èñëà.
Èçâëå÷ü êîðåíü 2, 3, 4, 5, n ñòåïåíè îíëàéí
  

Ìàòåìàòèêà 4,5,6,7,8,9,10,11 êëàññ, ÅÃÝ, ÃÈÀ

Îñíîâíàÿ èíôîðìàöèÿ ïî êóðñó ìàòåìàòèêè äëÿ îáó÷åíèÿ è ïîäãîòîâêè â ýêçàìåíàì, ÃÂÝ, ÅÃÝ, ÎÃÝ, ÃÈÀ
Ìàòåìàòèêà 4,5,6,7,8,9,10,11 êëàññ, ÅÃÝ, ÃÈÀ
  

Êâàäðàòíûé êîðåíü.

Ñâîéñòâà êâàäðàòíûõ êîðíåé, äðîáíûå ñòåïåíè, êîðåíü n-íîé ñòåïåíè, ïðèìåðû âû÷èñëåíèÿ âûðàæåíèé ñ êîðíÿìè è äðóãîå.
Êâàäðàòíûé êîðåíü.
  

Ôîðìóëû ñòåïåíåé è êîðíåé.

Ôîðìóëû ñòåïåíåé èñïîëüçóþò â ïðîöåññå ñîêðàùåíèÿ è óïðîùåíèÿ ñëîæíûõ âûðàæåíèé, â ðåøåíèè óðàâíåíèé è íåðàâåíñòâ.
Ôîðìóëû ñòåïåíåé è êîðíåé.
  

Äåéñòâèÿ ñ êîðíÿìè

Îñíîâíàÿ èíôîðìàöèÿ ïî êóðñó ìàòåìàòèêè äëÿ îáó÷åíèÿ è ïîäãîòîâêè â ýêçàìåíàì, ÃÂÝ, ÅÃÝ, ÎÃÝ, ÃÈÀ
Äåéñòâèÿ ñ êîðíÿìè

Источник

В математике решение примеров с корнями нередко вызывает затруднения у школьников, особенно при изучении темы. В данной статье описаны основные свойства корней, а также правила сложения, вычитания, умножения и деления. Наглядные примеры помогаю понять, как решать задания с корнями.

Определение

 Корень второй степени (квадратный корень) из числа a — это число, которое становится равным a, если число a возвести во вторую степень (в квадрат).
Например, √64 = 8 (корень из 64 равно числу 8).

Формула: a2 = a

Число, стоящее под знаком корня, называется подкоренным числом. Если под знаком корня стоит целое выражение, то его называют подкоренным выражением.
Свойство квадратного корня: для действительных чисел не существует квадратный корень из отрицательного числа, так как возведение числа в квадрат будет всегда неотрицательным числом.

Извлечение корней: примеры

Извлечь корень — значит найти значение корня (то есть найти число, при возведении которого в степень, получается подкоренное значение).
Например, извлечь корень из 64 – значит найти √64.

Найти корень из числа можно одним из следующих способов:

  • Использование таблицы квадратов, таблицы кубов и т.д. В данном случае нужно просто найти нужное число в таблице и посмотреть, какому значению оно соответствует.
  • Разложение подкоренного выражения (числа) на простые множители.
    Порядок нахождения корня в этом случае будет следующим:
    1. Разложение подкоренного значения на простые множители,
    2. Объединение одинаковых множителей и их представление в виде степени с необходимым показателем.
    Например, √144 = √2х2х2х2х3х3 = √(2х2)х(2х2)х(3х3) = √22х22х32 = √122 = 12
    3. В случае, если невозможно найти корень из числа, то можно упростить подкоренное выражение (число). В этом случае применяется следующее правило: корень из произведения чисел равен произведению корней этих чисел.
    Например, √72 = √2х2х2х3х3 = √(2х2)х2х(3х3) = √22х2х32 = √62х2 = 6√2
  • Когда невозможно получить два одинаковых числа под знаком корня, это значит, что упростить такой корень нельзя.
    Например, √130=√13х5х2 – упростить нельзя.
  • Извлечение корня из дроби. В этом случае применяются следующие правила:
    1. дробное число должно быть записано в виде обыкновенной дроби;
    2. корень из дроби равен частному от деления корня числителя на корень знаменателя.
    Например, √3,24 = √324/100 = √81/25 = √81 / √25 = 9/5 = 1,8.
  • Извлечение нечетной степени из отрицательных чисел. Чтобы извлечь корень нечетной степени из отрицательного числа необходимо извлечь корень из положительного числа и поставить перед ним знак минус.
    Например, чтобы найти корень третьей степени из (-125), нужно найти корень третьей степени из 125 (будет 5) и подставить знак минуса (будет -5).

Приведение корней с разными показателями

Для того, чтобы упростить выражение с корнями, которое содержит корни разных степеней, необходимо привести все корни к одной степени.

Читайте также:  Какие свойства лукового сока

Для этого воспользуемся следующим свойством дроби: a = n√an.

Например, есть квадратный корень (корень второй степени √2 ) и кубический корень (корень третьей степени 3√3).
Во-первых, необходимо найти наименьшее общее кратное (НОК) для степеней. В нашем примере НОК=6 (2х3).
Во-вторых, применим свойство a = n√an: √2 = 2√2 = 6√23 = 6√8; 3√3 = 6√32 = 6√9
Получилось два корня одинаковой степени, с которыми можно совершать различные математические действия.

 Сложение и вычитание корней

Основное правила сложения и вычитания квадратных корней: сложение и вычитание квадратного корня возможны только при условии одинакового подкоренного выражения. 

Примеры:
2√3 + 3√3 = 5√3
2√3 + 2√4 – не выполняется.

При этом, нужно рассмотреть возможность упростить выражения.
Пример: 2√3 + 3√12 = 2√3 + 3√2х2х3 = 2√3 + 3√ 22х3 = 2√3 + 6√3 = 8√3.

Алгоритм действия:
1. Упростить подкоренное выражение путем разложения на простые множители.
2. Затем нужно извлечь корень из квадратного числа и записать полученное значение перед знаком корня. 
3. После процесса упрощения необходимо подчеркнуть корни с одинаковыми подкоренными выражениями — только их можно складывать и вычитать.
4. У корней с одинаковыми подкоренными выражениями необходимо сложить или вычесть множители, которые стоят перед знаком корня. Подкоренное выражение остается без изменений. Нельзя складывать или вычитать подкоренные числа!

Умножение корней

Умножение корней без множителей

Произведение корней из чисел равно корню из произведения этих чисел.
√a*b=√a*√b
Важно: между собой можно умножать только одинаковые степени корней, то есть можно умножить один квадратный корень на другой квадратный корень, но нельзя умножить квадратный корень на корень кубической степени.
Примеры:
√2 х √3 = √6
√6 х √3 = √18 = √3х3х2 = 3√2

Умножение корней с множителями

При умножении корней с множителями нужно отдельно перемножить множители и подкорневые выражения (числа). Подкорневые числа можно перемножать между собой только в том случае, если они имеют одинаковые степени (см. умножение корней без множителей). В случае отсутствия множителя, он равен единице.
Примеры:
3√2 х √5 = (3х1) √(2*5) = 3√10

4√2 х 3√3 = (3х4) √(2х3) = 12√6

Деление корней

Основной правило деления —  подкоренные выражения делятся на подкоренные выражения, а множители на множители.
√a:b=√a:√b
В процессе деления квадратных корней дроби упрощаются.

Деление корней без множителей

Частное корней из чисел равно корню из частного этих чисел.
Важно: между собой можно делить только одинаковые степени корней, то есть можно делить один квадратный корень на другой квадратный корень, но нельзя делить квадратный корень на корень кубической степени.
Пример. √21:√3=√21:3=√7

Деление квадратных корней с множителями

При делении корней с множителями нужно отдельно разделить множители и подкорневые выражения (числа). Подкорневые числа можно делить между собой только в том случае, если они имеют одинаковые степени. В случае отсутствия множителя, он равен единице.
Пример. 12√32 : 6√16 = (12:6) √(32:16) = 2√2.

Источник