Какие физ свойства вольфрама лежат в основе его применения в лампах накаливания
Какие физические свойства вольфрама лежат в основе его применения – 4 Какие физические свойства вольфрама лежат в основе его применения в лампах накаливания?
alexxlab | 16.01.2020 | 0 | Вопросы и ответы
Область применения, формула и свойства вольфрама
Что представляет собой вольфрам? Основные свойства данного элемента базируются на особенностях его химического строения. Учитывая востребованность вольфрама, необходимо детальнее разобрать его строение.
Положение в таблице Менделеева
Рассматривая основные свойства вольфрамам, начнем с того, что он имеет 74-й порядковый номер. При нормальных условиях он собой представляет переходный металл, имеющий серо-серебристый цвет. Вольфрам твердый, обладает металлическим блеском. Это самый тугоплавкий элемент, большей температурой плавления обладает только углерод. Электронная формула: KLMN5s25p65d46s2, Eион (Ме => Ме+ + e) = 7,98 эВ.
История происхождения
Своему необычному названию данный металл обязан минералу вольфрамиту. «Волчья пена» известна с 16 века. Такое необычное наименование минерала объясняется наличием в нем оловянных руд. Вольфрам мешал выплавлять олово, переводил его в пену из шлаков. Какие физические свойства вольфрама стали основой его широкого применения в промышленности? В США данный металл называли «тяжелым камнем».
В конце 18 века швед Шееле при обработке минерала азотной кислотой получил шеелит, получив триоксид вольфрама. Чуть позже братьям Элиар удалось получить окись вольфрамам из саксонского вольфрамита. Именно этими химиками были выявлены некоторые химические свойства вольфрама.
Нахождение в природе
Есть ли в природе в чистом виде вольфрам? Химические свойства данного металла предполагают его присутствие в земной коре по большей части в виде соединений. Например, есть смесь оксидов марганца, железа, вольфрама. Для промышленного применения выбирают соединения ферберит и гюбнерит. В них помимо вольфрама присутствуют железо и марганец. Физические свойства вольфрама позволяют выделять металл и из вольфрамовых минералов. В них его концентрация не превышает двух процентов. Среди крупнейших месторождений вольфрама отметим Китай, США, Казахстан. Кроме того, выявлены и существенные запасы руд данного металла в Южной Корее, Боливии, России, Португалии. Отличные физические свойства вольфрама предполагают его существенное промышленное производство. В мире ежегодно производят порядка 50 тысяч тонн этого тугоплавкого элемента. Главными экспортерами вольфрама считают Южную Корею, Китай, Австрию. Среди импортеров тугоплавкого металла пальма лидерства принадлежит Великобритании, Японии, США, Германии.
Особенности производства
Получение вольфрама осуществляется через промежуточную стадию, подразумевающую выделение из рудного концентрата триоксида вольфрама. Далее осуществляется восстановление его до порошкообразного металла. Подобный этап происходит при температуре около 700 градусов Цельсия. Какие физические свойства вольфрама лежат в основе данной технологии? Высокая температура его плавления позволяет с помощью порошкообразной металлургии подвергать порошок прессованию, спеканию в атмосфере водорода при температуре около 1300 градусов Цельсия. Далее через полученный вольфрам пропускают электрический ток. При нагревании металла до температуры в 3000 градусов наблюдается монолитный материал. Путем зонной плавки осуществляется последующая очистка и получение монокристаллического металла.
Свойства
Какие характеристики имеет вольфрам? Химические свойства его основываются на высокой температуре плавления. Элемент проявляет валентности от 2 до 6. Самым устойчивым является вольфрам с валентностью шесть. Металл характеризуется повышенной коррозионной стойкостью. Он не окисляется на воздухе при комнатной температуре. В оксид вольфрама он превращается только при достижении температуры белого коленья. В электрохимическом ряду напряжений металлов данный элемент располагается после водорода, поэтому он не растворяется в разбавленной плавиковой и серной кислотах. Вольфрам способен растворяться в пероксиде водорода, а также в смеси плавиковой и азотной кислот.
При наличии окислителей данный металл способен реагировать с расплавленными щелочами. Сначала взаимодействие протекает достаточно медленно, но после достижения температуры 400 градусов наблюдается самопроизвольное разогревание металла, которое ускоряет реакцию. Вольфрам в смеси плавиковой и азотной кислот образует гексафторвольфрамовую кислоту. В максимальном количестве в промышленности применяют вольфрамовый ангидрид. У вольфроматов есть способность к созданию полимерных анионов. Этот металл является основой тугоплавких материалов в современной металлургии.
Сферы применения
Как можно использовать карбид вольфрама? Свойства данного соединения позволяют выделять из него чистый вольфрам. Пластичность и тугоплавкость металла сделали его основой при создании нитей накаливания в многочисленных осветительных приборах. Кроме того, вольфрам используют в вакуумных трубках и кинескопах. Так как у этого элемента высокая плотность, он стал базой для производства тяжелых сплавов. Они незаменимы при создании противовесов, подкалиберных и бронебойных сердечников, сверхскоростных роторов гироскопов для создания баллистических ракет. В больших объемах вольфрам применяют при аргоново-дуговой сварке как электрод. Сплавы, которые в своем составе содержат вольфрам, имеют высокую жаропрочность, кислотостойкость, они устойчивы к механическим деформациях. Подобные характеристики позволяют применять их для производства хирургических инструментов, брони танков, двигателей самолетов, контейнеров для размещения радиоактивных веществ. Именно вольфрам является важным компонентом для изготовления высококачественных марок сталей.
Применяют его и в высокотемпературных вакуумных печах в виде нагревательного элемента. В сплаве с рением из него создают термопары для подобных печей.
Заключение
Именно благодаря высокой плотности вольфрама металл удобен для защиты поверхности от ионизирующего излучения. Повышенная твердость и тугоплавкость металла создают существенные сложности с его обработкой. Для решения проблемы вводят в состав никель, медь, железо. Стойкость вольфрама сделала его востребованным при изготовлении конструкционных материалов в современном машиностроении.
Он необходим при фрезеровании, долблении, точении, бурении скважин. Например, победит состоит из карбида вольфрама. Эта смесь наносится на сверла, применяемые при создании отверстий в бетоне. Сульфид вольфрама выступает в качестве высокотемпературной смазки. Он востребован в производстве. Часть соединений вольфрама используется в виде пигментов и катализаторов. Применяют соединения данного металла и как легирующий элемент в сплавах и сталях на базе железа. Биологической ценности металлический вольфрам не имеет.
fb.ru
Область применения, формула и свойства вольфрама
Что представляет собой вольфрам? Основные свойства данного элемента базируются на особенностях его химического строения. Учитывая востребованность вольфрама, необходимо детальнее разобрать его строение.
Положение в таблице Менделеева
Рассматривая основные свойства вольфрамам, начнем с того, что он имеет 74-й порядковый номер. При нормальных условиях он собой представляет переходный металл, имеющий серо-серебристый цвет. Вольфрам твердый, обладает металлическим блеском. Это самый тугоплавкий элемент, большей температурой плавления обладает только углерод. Электронная формула: KLMN5s25p65d46s2, Eион (Ме => Ме+
+ e) = 7,98 эВ.
История происхождения
Своему необычному названию данный металл обязан минералу вольфрамиту. «Волчья пена» известна с 16 века. Такое необычное наименование минерала объясняется наличием в нем оловянных руд. Вольфрам мешал выплавлять олово, переводил его в пену из шлаков. Какие физические свойства вольфрама стали основой его широкого применения в промышленности? В США данный металл называли «тяжелым камнем».
В конце 18 века швед Шееле при обработке минерала азотной кислотой получил шеелит, получив триоксид вольфрама. Чуть позже братьям Элиар удалось получить окись вольфрамам из саксонского вольфрамита. Именно этими химиками были выявлены некоторые химические свойства вольфрама.
Нахождение в природе
Есть ли в природе в чистом виде вольфрам? Химические свойства данного металла предполагают его присутствие в земной коре по большей части в виде соединений. Например, есть смесь оксидов марганца, железа, вольфрама. Для промышленного применения выбирают соединения ферберит и гюбнерит. В них помимо вольфрама присутствуют железо и марганец. Физические свойства вольфрама позволяют выделять металл и из вольфрамовых минералов. В них его концентрация не превышает двух процентов. Среди крупнейших месторождений вольфрама отметим Китай, США, Казахстан. Кроме того, выявлены и существенные запасы руд данного металла в Южной Корее, Боливии, России, Португалии. Отличные физические свойства вольфрама предполагают его существенное промышленное производство. В мире ежегодно производят порядка 50 тысяч тонн этого тугоплавкого элемента. Главными экспортерами вольфрама считают Южную Корею, Китай, Австрию. Среди импортеров тугоплавкого металла пальма лидерства принадлежит Великобритании, Японии, США, Германии.
Особенности производства
Получение вольфрама осуществляется через промежуточную стадию, подразумевающую выделение из рудного концентрата триоксида вольфрама. Далее осуществляется восстановление его до порошкообразного металла. Подобный этап происходит при температуре около 700 градусов Цельсия. Какие физические свойства вольфрама лежат в основе данной технологии? Высокая температура его плавления позволяет с помощью порошкообразной металлургии подвергать порошок прессованию, спеканию в атмосфере водорода при температуре около 1300 градусов Цельсия. Далее через полученный вольфрам пропускают электрический ток. При нагревании металла до температуры в 3000 градусов наблюдается монолитный материал. Путем зонной плавки осуществляется последующая очистка и получение монокристаллического металла.
Свойства
Какие характеристики имеет вольфрам? Химические свойства его основываются на высокой температуре плавления. Элемент проявляет валентности от 2 до 6. Самым устойчивым является вольфрам с валентностью шесть. Металл характеризуется повышенной коррозионной стойкостью. Он не окисляется на воздухе при комнатной температуре. В оксид вольфрама он превращается только при достижении температуры белого коленья. В электрохимическом ряду напряжений металлов данный элемент располагается после водорода, поэтому он не растворяется в разбавленной плавиковой и серной кислотах. Вольфрам способен растворяться в пероксиде водорода, а также в смеси плавиковой и азотной кислот.
При наличии окислителей данный металл способен реагировать с расплавленными щелочами. Сначала взаимодействие протекает достаточно медленно, но после достижения температуры 400 градусов наблюдается самопроизвольное разогревание металла, которое ускоряет реакцию. Вольфрам в смеси плавиковой и азотной кислот образует гексафторвольфрамовую кислоту. В максимальном количестве в промышленности применяют вольфрамовый ангидрид. У вольфроматов есть способность к созданию полимерных анионов. Этот металл является основой тугоплавких материалов в современной металлургии.
Сферы применения
Как можно использовать карбид вольфрама? Свойства данного соединения позволяют выделять из него чистый вольфрам. Пластичность и тугоплавкость металла сделали его основой при создании нитей накаливания в многочисленных осветительных приборах. Кроме того, вольфрам используют в вакуумных трубках и кинескопах. Так как у этого элемента высокая плотность, он стал базой для производства тяжелых сплавов. Они незаменимы при создании противовесов, подкалиберных и бронебойных сердечников, сверхскоростных роторов гироскопов для создания баллистических ракет. В больших объемах вольфрам применяют при аргоново-дуговой сварке как электрод. Сплавы, которые в своем составе содержат вольфрам, имеют высокую жаропрочность, кислотостойкость, они устойчивы к механическим деформациях. Подобные характеристики позволяют применять их для производства хирургических инструментов, брони танков, двигателей самолетов, контейнеров для размещения радиоактивных веществ. Именно вольфрам является важным компонентом для изготовления высококачественных марок сталей.
Применяют его и в высокотемпературных вакуумных печах в виде нагревательного элемента. В сплаве с рением из него создают термопары для подобных печей.
Заключение
Именно благодаря высокой плотности вольфрама металл удобен для защиты поверхности от ионизирующего излучения. Повышенная твердость и тугоплавкость металла создают существенные сложности с его обработкой. Для решения проблемы вводят в состав никель, медь, железо. Стойкость вольфрама сделала его востребованным при изготовлении конструкционных материалов в современном машиностроении.
Он необходим при фрезеровании, долблении, точении, бурении скважин. Например, победит состоит из карбида вольфрама. Эта смесь наносится на сверла, применяемые при создании отверстий в бетоне. Сульфид вольфрама выступает в качестве высокотемпературной смазки. Он востребован в производстве. Часть соединений вольфрама используется в виде пигментов и катализаторов. Применяют соединения данного металла и как легирующий элемент в сплавах и сталях на базе железа. Биологической ценности металлический вольфрам не имеет.
autogear.ru
Упражнение: 1 Назовите самый легкоплавкий металл. Самый легкоплавкий металл – ртуть Hg (Тпл. = -390C). При комнатной температуре он находится в жидком состоянии. | Упражнение: 2 Какие физические свойства металлов используют в технике? Электропроводность для передачи электроэнергии по проводам. | Упражнение: 3 Фотоэффект, т.е. свойство металлов испускать электроны под действием лучей света, характерен для щелочных металлов, например цезия. Почему? Где это свойство находит применение? Фотоэффект, характерен для щелочных металлов, потому что они имеют большое число электронных оболочек и один внешний электрон расположенный далеко от положительно заряженного ядра. Он слабо притягивается к ядру и под действием фотонов его легко оторвать от атома. Фотоэффект, применяется в приборах, позволяющих автоматизировать производственные процессы и наш быт. Солнечные элементы используют фотоэффект для прямого преобразования солнечной энергии в электрическую. | Упражнение: 4 Какие физические свойства вольфрама лежат в основе его применения в лампах накаливания? Вольфрам обладает наибольшей температурой плавления (33800С) – это свойство вольфрама используют для изготовления ламп накаливания. Упражнение: 5 Какие свойства металлов лежат в основе образных выражений: “серебряный иней”, “золотая заря”, свинцовые тучи”? В основе этих образных выражений лежит общее физическое свойство металлов – металлический блеск. Для разных металлов он имеет свой цветовой оттенок. |
reshebnikxim.narod.ru
Источник
Главная
Справочник
- Свойства вольфрама
Вольфрам (W) – удивительный металл с прекрасными физическими и химическими характеристиками. Его активно применяют практически во всех отраслях промышленности.
Физические свойства вольфрама
- твердый тугоплавкий и тяжелый металл (вес вольфрама почти в 2 раза больше, чем у свинца);
- масса вольфрама составляет 184 г/моль;
- сплавы W отличаются прочностью, твердостью и высоким сопротивлением к высоким температурам;
- цвет зависит от способа получения (порошок имеет серый, темно-серый или черный цвет, сплавленный W – серый оттенок, напоминающий цвет платины);
- плотность вольфрама при нормальних условиях равна 19, 25 г/м3.
Температура плавления вольфрама составляет 3410 °C – соизмерима с температурой на поверхности Солнца – 6690 °C. Высокая твердость вольфрама позволяет применять его в химической промышленности и металлургии. При этом сопротивление вольфрама зависит только от температуры.
Химические свойства вольфрама
- в природе состоит из стабильных изотопов (5 штук), массовые числа которых находятся в пределах 180-186;
- отделение 74 электронов атома W происходит легко;
- обладает 6 валентностью, в соединениях может иметь 0, 2, 3, 4 и 5-валентным;
- орбита элемента включает 2 яруса, что позволяет образовать крепкую химическую связь.
Наука относит вольфрам к химически активным элементам. Он может вступать в различные реакции и образовывать как простые, так и сложные соединения. В сплавах W чаще всего остается химически связанным. При этом с окислителями (например, с кислородом) он реагирует быстрее, чем другие металлы рода «тяжеловесов».
В случае нагревания элемента он еще быстрее вступает в реакцию с кислородом. Если в реакции участвуют водные пары, реакция протекает гораздо быстрее. Ученые выяснили: при нагреве элемента до 500 °C получается WO2 – низкий окислитель с высокой устойчивочтью. Он затягивает поверхность металла коричневой пленкой.
Если повышать температуру – можно получить еще один окислитель, который называют промежуточным (W4O11). Он имеет синюю окраску, а если продолжить нагрев до температуры в 923°C, она изменится на лимонно-желтую. Этому будет способствовать WO3.
Если с вольфрамом смешивают сухой фтор, то даже при небольшом подогреве можно получить вещество WF6. Его именуют гексафторидом. Оно может плавиться даже при 2,5 градусах, а кипеть при 19,5. Такое же соединение можно получить и при использовании хлора. Однако для этой реакции потребуется высокая температура – около 600 °C.
Также вольфрам легко вступает в реакции с йодом и бромом. С ними он образовывает такие малоустойчивые соединения как дибромид, ментамид, а также дииодид и тетрадид. При высоких температурах вольфрам соединяется с селеном, азотом, серой, а также с кремнием и углеродом.
Одним из интересных соединений считают карбонил. В этой реакции вольфрам реагирует на окись углерода. Именно здесь и проявляется его нулевая валентность. Однако это вещество сложно назвать устойчивым. Поэтому его можно получить только при создании специальных условий. Из карбонила получают плотные и ультратонкие покрытия чистого вольфрама.
Нужно уделить внимание и вольфрамовым соединениям. Некоторые из них поддаются полимеризации, в частности окись вольфрама.
Свойства атома
- Имя, символ, номер – Вольфрам/Wolframium (W), 74
- Атомная масса (молярная масса), г/моль – 183,84 а. е. м.
- Электронная конфигурация – [Xe] 4f14 5d4 6s2
- Радиус атома, пм – 141
Химические свойства
- Ковалентный радиус, пм – 170
- Радиус иона, пм – (+6e) 62 (+4e) 70
- Электроотрицательность, шкала Полинга – 2.3
- Электродный потенциал, В – W < W3+ 0,11
- W < W6+ 0,68
- Степени окисления – 6, 5, 4, 3, 2, 0
- Энергия ионизации, кДж/моль(1-й ионизац. потенциал, эВ) – 769,7 (7,98)
Термодинамические свойства простого вещества
- Плотность, кг/м3 (при н. у., г/см3) – 19300 (19,3)
- Температура плавления, °C, K – 3422, 3695
- Температура кипения, °C, K – 5555, 5828
- Теплота плавления, кДж/кг, кДж/моль – 191, 35
- Теплота испарения, кДж/кг, кДж/моль – 4482, 824
- Теплоемкость, кДж/(кг·°С) – 0,134
- Молярная теплоемкость, Дж/(K·моль) – 24,27
- Молярный объем, см3/моль – 9,53
Кристаллическая решетка простого вещества
- Структура решетки – кубическая объемноцентрированая
- Параметры решетки, A – 3,160
- Температура Дебая, K – 310,00
Прочие характеристики
- Теплопроводность, K, Вт/(м·К) – 300, 173
- Удельное электросопротивление при 20°С, ом·мм2/м – 5,03
- Коэффициент теплопроводности при 20°С, кал/ (см·сек·град) – 0,4
- Коэффициент линейного расширения, 1/град – 43·10-6
- Временное сопротивление при растяжении, кг/мм2 – 35
Источник