Какие физические свойства глицерина

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 15 марта 2020; проверки требуют 5 правок.
Глицери́н (от греч. γλυκερός — сладкий) — органическое соединение, простейший представитель трёхатомных спиртов с формулой . Представляет собой вязкую прозрачную жидкость со сладким вкусом. Нетоксичен, в отличие например от простейших двухатомных спиртов.
Синонимы: глицерóл, пропантриол-1,2,3.
Физические свойства[править | править код]
Бесцветная вязкая жидкость без запаха. Сладкий на вкус, отчего и получил своё название (греч. γλυκερός — сладкий). Имеет молярную массу 92,09 г/моль, относительную плотность = 1,260, коэффициент преломления = 1,4740. Температура плавления составляет 17,9 °C, кипит при 290 °C, частично при этом разлагаясь. Гигроскопичен, поглощает воду из атмосферы в количестве до 40 % от собственной массы. С водой, метанолом, этанолом, ацетоном смешивается в любых пропорциях, но не растворим в эфире и хлороформе, хотя и способен растворяться в их смесях с этанолом[2].
При растворении глицерина в воде выделяется теплота и происходит контракция — уменьшение объёма раствора. Смеси глицерина с водой обладают температурой плавления значительно более низкой, чем каждое из веществ по отдельности, например, при массовом содержании глицерина в 66,7 % его смесь с водой будет замерзать при −46,5 °C[2].
Образует азеотропы с нафталином, его производными и рядом других веществ[2].
Химические свойства[править | править код]
Химические свойства глицерина типичны для многоатомных спиртов.
Взаимодействие глицерина с галогеноводородами или галогенидами фосфора ведёт к образованию моно- и дигалогенгидринов.
Глицерин этерифицируется карбоновыми и минеральными кислородосодержащими кислотами с образованием соответствующих сложных эфиров. Так, с азотной кислотой глицерин образует тринитрат — нитроглицерин (получен в 1847 г. Асканио Собреро), использующийся в настоящее время в производстве бездымных порохов.
При дегидратации он образует токсичный акролеин:
,
и окисляется до глицеринового альдегида , дигидроксиацетона или глицериновой кислоты .
Сложные эфиры глицерина и высших карбоновых кислот — жиры являются важными метаболитами, существенное биологическое значение также имеют фосфолипиды — смешанные глицериды фосфорной и карбоновых кислот.
Получение[править | править код]
Глицерин впервые был получен в 1779 году Карлом Вильгельмом Шееле при омылении жиров в присутствии оксидов свинца[3]. Основную массу глицерина получают как побочный продукт при омылении жиров[4].
Большинство синтетических методов получения глицерина основано на использовании пропилена в качестве исходного продукта. Хлорированием пропилена при 450—500 °С получают аллилхлорид, при присоединении к последнему хлорноватистой кислоты образуются хлоргидрины, например, , которые при омылении щёлочью превращаются в глицерин.
На превращениях аллилхлорида в глицерин через дихлоргидрин или аллиловый спирт основаны другие методы.
Известен также метод получения глицерина окислением пропилена в акролеин; при пропускании смеси паров акролеина и изопропилового спирта через смешанный — катализатор образуется аллиловый спирт. Он при 190—270 °C в водном растворе перекиси водорода превращается в глицерин.
Глицерин можно получить также из продуктов гидролиза крахмала, древесной муки, гидрированием образовавшихся моносахаридов или гликолевым брожением сахаров. Также глицерин получается в качестве побочного продукта при производстве биотоплива.
Производные глицерина и их место в обмене веществ живых организмов[править | править код]
Глицериды[править | править код]
Триглицериды являются производными глицерина и образуются при присоединении к нему высших жирных кислот. Триглицериды являются важными компонентами в процессе обмена веществ в живых организмах.
Жиры и масла гидрофобны и нерастворимы в воде, так как гидроксильные группы глицерина заменены малополярными остатками жирных кислот.
Применение[править | править код]
Область применения глицерина разнообразна: пищевая промышленность, табачное производство, электронные сигареты, медицинская промышленность, производство моющих и косметических средств, сельское хозяйство, текстильная, бумажная и кожевенная отрасли промышленности, производство пластмасс, лакокрасочная промышленность, электротехника и радиотехника (в качестве флюса при пайке).
Глицерин относится к группе стабилизаторов, обладающих свойствами сохранять и увеличивать степень вязкости и консистенции пищевых продуктов. Зарегистрирован как пищевая добавка Е422, и используется в качестве эмульгатора, при помощи которого смешиваются различные несмешиваемые смеси.
Поскольку глицерин хорошо поддается желированию и горит без запаха и чада, его используют для изготовления высококачественных прозрачных свечей и основы для жидкости, используемой в дым-машинах.
В прошлом глицерин использовался для изготовления динамита[5].
В последние годы глицерин используется, наряду с пропиленгликолем, в качестве основного компонента для приготовления жидкости и картриджей для электронных сигарет.
Используется в криобиологии и крионике как основной компонент популярных проникающих криопротекторов для криоконсервирования анатомических препаратов, биологических тканей и организмов.
Примечания[править | править код]
Литература[править | править код]
- Дьяконов И. А. Глицерин // Химическая энциклопедия : в 5 т. / Гл. ред. И. Л. Кнунянц. — М.: Советская энциклопедия, 1988. — Т. 1: А—Дарзана. — С. 585. — 623 с. — 100 000 экз. — ISBN 5-85270-008-8.
Ссылки[править | править код]
- Физические свойства глицерина
- What is Glycerin?
- Glossary for the Modern Soap Maker
- Glycerol soap
- Absolute alcohol using glycerol
- Computational Chemistry Wiki
- Health.gov dietary guidelines
Источник
Свойства вещества
Глицерин представлен органическим соединением, которое получают из растительных и животных масел. В нем хорошо растворяются различные вещества. Средство не относится к токсичным и ядовитым соединениям. На марки дистиллированного вещества распространяются действия государственного стандарта ГОСТ 6824–96 .
Химическая формула глицерина — C3H8O3. В структурной формуле вещество состоит из цепочки трех атомов углерода, каждый из которых связан с атомом водорода и гидроксильной группы. Сложные эфиры глицерина с длинноцепочными карбоновыми кислотами называются триглицеридами. Они выступают важными производными в метаболизме живых организмов.
Основные физические свойства глицерина:
- плотность — 1,261 г/см3;
- молярная масса — 92,1 г/моль;
- температура кипения (испарения) — 290 °C.
В чистом виде вещество не замерзает, поэтому температура замерзания глицерина определяется в зависимости от его концентрации в растворах. Простейший представитель трехатомных спиртов выглядит как вязкая прозрачная жидкость. Его можно смешивать с водой в разных пропорциях. Глицерин характеризуется сладким вкусом. В сочетании с пропиленгликолем жидкое вещество становится более текучим. Сильно нагретое и зажженное соединение горит синим пламенем.
Химические свойства вещества характерны для многоатомных спиртов. При его взаимодействии с галогеноводородами или галогенидами фосфора образуются моно- и дигалогенгидрины. С азотной кислотой формируется нитроглицерин, который используется в изготовлении бездымных порохов.
При дегидратации образуется токсичный акролеин, после чего окисляется до глицеринового альдегида, дигидроксиацетона или глицериновой кислоты.
Получение глицерина
Впервые вещество было получено в 1779 году путем нагревания масла оливы с оксидом свинца. Этот метод разработал шведский исследователь Карл Шееле. Химик смог доказать, что во все жиры и масла включена сладкая основа.
До начала XIX века технический трехатомный спирт делали именно по способу Шееле. Вскоре его стали широко использовать в промышленной сфере, что заставило увеличить его производство. Француз Мишель Шеврель изучил органическое соединение, выведенное шведским ученым, и дал ему название в 1811 году. Химик открыл первый промышленный метод получения вещества, на который получил патент. При использовании его способа жировые вещества обрабатываются известью или щелочью, чтобы при разложении получились жирные кислоты. Сегодня к этой схеме все еще прибегают во многих странах.
В середине XIX века А. Тилгман открыл еще один промышленный метод создания трехатомного спирта в биохимии. Вещество начали получать путем перемешивания и давления жиров и воды. В течение 12 часов жиры расщепляются на жирные кислоты и глицерин при температуре 180−200 °С. Когда глицериновую воду охлаждают, жирные кислоты всплывают на поверхность. Этот способ часто используют в современной промышленности.
Сделать глицерин можно и мыловарам. Вещество выступает побочным продуктом при изготовлении продукта для ухода за кожей. Он образуется при реакции омыления тристеарата глицерина гидроксидом натрия.
Сферы использования
Не все люди знают, зачем и для чего нужен глицерин. Он используется в различных областях и быту, благодаря своим химическим и физическим свойствам. Глицерин придает мягкость разным видам текстиля, а также регулирует влажность табака. Его часто включают в состав моющих средств и препаратов для обработки сельскохозяйственных культур.
Сферы применения вещества:
- Пищевая промышленность. Глицерин используется в качестве подсластителя для создания различных пищевых продуктов и напитков, а также как загуститель в ликерах. А также он прекрасный увлажнитель и растворитель. Органическое соединение входит в состав низкокалорийных продуктов вместо жира. В пищевой промышленности компонент обозначают как Е422. Он может заменить сахар и препятствовать размножению бактерий.
- Косметика. Девушки часто интересуются, где взять глицерин растительного и животного происхождения. Компонент включают в качественные средства личной гигиены. Он используется в увлажняющей косметике по уходу за лицом и телом, кремах для бритья и других продуктах. Вещество считается одним из главных составляющих глицеринового мыла, которое предназначено для сухой и чувствительной кожи. Его применяют при раздражениях, зуде кожного покрова и шелушениях.
Поскольку вещество не реагирует с маслами и имеет высокую устойчивость к окислению, оно может применяться в качестве смазочного материала для механических деталей, подвергающихся воздействию бензина. Органическое соединение используют в технической промышленности при обработке алюминия и при изготовлении смол и пластмассы.
Оно применяется в типографии при нанесении красок, для создания кальки, салфеток и пергаментной бумаги.
Область медицины
Глицерин считается безопасным средством для взрослых, не вызывает брожение в организме или размножение болезнетворных бактерий. Вещество хорошо всасывается в тонком кишечнике и не попадает в толстую кишку. Еще оно не обладает канцерогенными свойствами, повреждающими ДНК и вызывающими врожденные эффекты.
Компонент добавляют в аптечные сиропы от кашля и отхаркивающие средства. Он может присутствовать в зубных пастах и жидкостях для полоскания полости рта. В таблетках вещество используется как влагоудерживающий агент. Оно входит в состав слабительных средств. Глицерин принимают в качестве первой помощи при экстренном лечении глазного давления, он быстро его понижает.
Глицерин безопасен для здоровья человека. Иногда его используют для приема внутрь при лечении различных заболеваний.
Полезные действия лекарственного средства:
- снижает вес;
- улучшает выносливость при физических нагрузках и помогает организму удерживать влагу;
- избавляет от диареи и поноса;
- снижает отек мозга при нейрохирургических операциях;
- предотвращает обмороки при нарушении кровотока к мозгу.
Глицерин может использоваться и внутривенно в неврологии. Он применяется для понижения внутричерепного давления при инсульте, менингите, синдроме Рейна, энцефалите, менингите, травмах ЦНС. Спортсмены принимают средство, чтобы предотвратить обезвоживание.
Вред для организма и меры безопасности
Если человек использует препараты или косметику, в которых содержится глицерин, ему необходимо предварительно узнать о вреде этого вещества, а также в каких случаях его не следует использовать.
Когда средство применяется в домашних условиях без контроля или назначения специалиста, у человека могут проявляться побочные последствия или обезвоживание организма:
- При приеме препаратов внутрь у больных иногда возникают головокружения, тошнота, рвота, вздутие живота, мигрень, жажда или диарея.
- Нередко людей мучает сухость во рту, частое мочеиспускание или понос после внутривенного применения средства. Такие симптомы могут привести к обезвоживанию организма, поэтому лечение назначают с большой осторожностью.
- Данных о влиянии глицерин на беременных и кормящих женщин при приеме перорально или внутривенно, не имеется. В этом случае стоит отказаться от лечения, чтобы избежать негативных последствий.
- Поскольку вещество растительного происхождения обычно получают из кокосового или пальмового масла, в индивидуальных случаях оно вызывает аллергическую реакцию.
- Гигроскопичная жидкость в чистом виде оказывает вредное действие и вызывает ожог, если капнуть ее на язык.
- Курящие электронные сигареты часто испытывают сухость во рту и першение в горле. В этих устройствах содержится глицерин, который при вдыхании «забирает» влагу, что негативно влияет на состояние легких человека. Не рекомендуется парить аптечный глицерин. Специалисты советуют использовать только пищевой вариант.
Препараты с органическим соединением необходимо применять согласно инструкции на упаковке. Некоторые лекарства с этим веществом следует предварительно встряхивать перед употреблением. Если глицерин применяется для увлажнения и смягчения кожи или при лечении опрелостей, тогда его придется наносить после каждого мытья рук.
Необходимо следить, чтобы средство не попало в глаза, рот и нос. После лучевой терапии для лечения ожогов кожи рекомендуется проконсультироваться с врачом о приеме вещества.
Глицерин незаменим в пищевой и промышленной сфере. Он обладает множеством полезных свойств, которые особенно ценятся в медицине. При правильном применении средств с таким подсластителем получится улучшить здоровье без вреда организму.
Источник
ФИЗИЧЕСКИЕ СВОЙСТВА ГЛИЦЕРИНА [c.59]
Физические свойства. Глицерин — это бесцветная жидкость, без запаха, сладкая на вкус. По внешнему виду напоминает густой сироп. Очень гигроскопичен, смешивается с водой и спиртом. Темп. кип. 290° С (с разложением) df =1,26. [c.124]
Номенклатура. Физические свойства. Отдельные представители. Двухатомные спирты называют гликолями или диола-ми, трехатомные — глицеринами или триолами. Положение гидроксильных групп указывают цифрами [c.169]
Физические свойства. Этиленгликоль и глицерин — вязкие жидкости, сладкие на вкус, хорошо растворимые в воде. [c.338]
На физические свойства алкидных смол большое влияние оказывает их химическое строение 961-2975 3 ряде работ отмечаются положительные свойства алкидных смол, синтезированных на основе триметилолпропана Так, сравнительные испытания покрытий из алкидных смол, модифицированных жирными кислотами таллового масла и полученных иа основе триметилолпропана, триметилолэтана и глицерина, показали заметные преимущества алкидной смолы из триметилолпропана по цвету, стойкости к пожелтению при горячей сушке, твердости, прочности на удар, стойкости к 5 /о-ной щелочи и кипящей воде и сохранности блеска 2961. Применение для синтеза алкидных смол вместо фталевого ангидрида изофталевой кислоты дает возможность получать на основе этих полимеров лаки воздушной сушки с более коротким временем высыхания, большей прочностью покрытий а удар, большим сопротивлением трению и большей твердостью 9 . [c.221]
Жидкости характеризуются самопроизвольными отклонениями плотности и состава в отдельных микрообластях от их среднего значения по всему объему смеси — флуктуациями. Значение и частота флуктуаций нарастают при увеличении температуры. Флуктуации отражаются на физических свойствах жидкости ее диэлектрической постоянной, теплоемкости и др. В ряде случаев флуктуации настолько велики, что смесь обладает опалесценцией — видимым светорассеянием. Однако есть и смеси, в которых уровень флуктуаций концентрации понижен, например смесь формамид — вода. В настоящее время жидкие смеси все чаще применяют для выращивания кристаллов (например, смеси вода — пропи-ловый спирт, вода — глицерин). [c.14]
В книге нашли отражение анализ всевозможных методов синтеза глицерина, физические и химические его свойства, а также области практического применения этого многоатомного спирта. [c.6]
По физическим свойствам и по реакционной способности (три гидроксильные группы) глицерин занимает важное место в многочисленных отраслях иромышленности (химическая, текстильная, пищевая, пластических материалов и др.). [c.425]
Физические свойства глицерина……………………….59 [c.277]
Исследование дисперсности факела, создаваемого вращаю-ш,имся погруженным конусом, было проведено Ю. И. Макаровым [37]. Дисперсность распыла определялась в интервалах изменения окружной скорости верхней кромки конуса Уо = 4,4ч– 21 м/с и производительности конуса У, = 36- 2000 л/ч. Физические свойства испытанных жидкостей (вода, машинное масло, водные растворы хлористого цинка и глицерина) находились в следующих пределах поверхностное натяжение ст = (31-н– 84) 10 Н/м плотность жидкости р = 910- 1630 кг/м вязкость жидкости = 10 – -0,20 кг/(м-с). [c.149]
Не в пример однофазной жидкости, критическое значение Не для потока, содержащего твердую фазу, может изменяться в широких пределах в зависимости от физических свойств твердой фазы, ее концентрации и размера частиц [41]. В некоторых случаях твердая фаза снижает критическое значение Ре и вызывает наступление турбулентного режима при параметре Ке, меньшем критического. Это наблюдается в системе вода —песок. Наоборот, в системах вода — глина, вода — резиновая крошка и вода — канифоль существует поздняя турбулизация, т. е. увеличение критического значения Ке. При содержании песка в смеси с нефтью, равном 200 г/л, турбулентный режим возникает при Ке > 400, а при 600 г/л Ке > 300. Для смеси глицерин — песок критическое значение Ке равно 150—200 [41]. Для смесей вода — канифоль и вода — резиновая крошка критическое значение Ке находится в пределах от 4000 до 18000 в зависимости от концентрации твердой фазы [41]. Для смеси вода — глина критические значения Ке даже превышают указанные величины [41]. [c.113]
Химические и физические свойства жиров определяются составом жирных кислот, образующих эфирную связь с глицерином. Жиры, содержащие много двойных связей, при комнатной температуре имеют жидкую консистенцию и называются маслами . Остатки жирных кислот, входящие в состав как жиров, так и масел, почти все имеют неразветвленную цепь с четным числом углеродных атомов от Сг до Сгг- [c.286]
Физические свойства. Глицерин — нейтральная, вязкая, бесцветная жидкость, сладкая на вкус. Трудно кристаллизуется. Т. пл. 17° С, плотность 1,26. Очень гигроскопичен. Смешивается с водой во всех соотношениях. При атмосферном давлении кипит при 290° С с частичным разложением. Поэтому для его очистки перегонку производят под вакуумом. [c.145]
Органические растворители, добавленные к распыляемым растворам, изменяют их физические свойства вязкость, поверхностное натяжение. Вещества, увеличивающие вязкость (глицерин, белки и др.), снижают эффективность распыления раствора. Поверхностно-активные вещества — этиловый, пропиловый спир- [c.242]
Физические свойства. Большинство гликолей и глицеринов— жидкости, остальные многоатомные спирты — твердые вещества. [c.73]
Для растворения солей меди в щелочном растворе в нем должны присутствовать лиганды которые связывают ноны меди в комплекс С ионами меди образуют комплексы коны гидроксила тартрата оксалата карбоната аммиак глицерин трилон Б и неко торые др Комплексообразователи (лиганды) не только увеличивают растворимость солей меди в щелочной среде но и влияют на Процесс восстановления ионов меди Следовательно вещества образующие прочные комплексы с нонами медн увеличивают устой чивость растворов химического меднения Кроме того комплексо образователи влияют на скорость каталитического восстаноаления меди и на физические свойства получаемого покрытия тотность блеск цвет и т п В качестве комплексообразователей и блеско образующих веществ могут быть использованы также амино уксусные кислоты этиленаминоуксусные кислоты Самые распро [c.75]
Жирами называют природные органические соединения, представляющие собой сложные эфиры высокомолекулярных жирных кислот и глицерина (триглицериды). В зависимости от происхождения жиры отличаются друг от друга по химическому составу и физическим свойствам. По консистенции (при 15 ) растительные и животные жиры подразделяются на твердые и жидкие. Растительные жиры принято называть маслами. [c.318]
Были сделаны попытки установить связи между физическими свойствами жидкости — летучестью, вязкостью и растворимостью. Действительно, летучие жидкости—сероуглерод, эфир и хлороформ — обладают по отношению к радону большей поглош аюш,ей способностью, в то время как глицерин, обладающий большой вязкостью и малой летучестью, поглощает мало. Вместе с тем следует отметить, что эта закономерность не всегда наблюдается. Например, ацетон более летуч, чем гексан, однако при этом обладает в три раза меньшей поглощающей способностью. [c.415]
Б. Физические свойства глицерина [c.107]
Физические свойства. Многоатомные спирты — бесцветные, сиропообразные жидкости сладковатого вкуса, хорошо растворимые в воде, плохо — в органических растворителях имеют высокие температуры кипения. Например, т. кип. у этиленгликоля 198°С, пл. 1,11 г/см , т. кип. 290°С, у глицерина пл. 1,26 г/см . [c.275]
Экспериментальная проверка изложенной методики определения параметров О VLt модели (7.2) строилась на сравнении опытных кривых распределения времени пребывания, получаемых индикаторными методами и методами гидродинамических возмущений [3, И—14]. На рис. 7.2 и 7.3 изображены в одних и тех же координатах типичные кривые отклика системы, полученные индикаторным и прямым методами. Опыты проводились на насадочной колонне диаметром 150 мм. Насадкой служили кольца Рашига размерами 10×10 и 15×15. Высота слоя насадки составляла 2 м. В качестве двухфазной системы использовалась система воздух—вода. В качестве жидкой фазы применялись также растворы СаС12 в воде различной концентрации и растворы глицерина в воде. Физические свойства жидкой фазы изменялись в следующих пределах плотность — от 1 до 1,4 [г/см ], вязкость — от 1 до 41 СП. Пределы изменения нагрузок по фазам были плотность орошения =227 15 000 кг/м час, нагрузка по газу 6=1050—5200 кг/м час, отношение нагрузок Ы = =0,05- 15. [c.358]
Подробное исследование теплоотдачи от одиночных поверхно стей и от трубных пучков (змеевиков) к слою пены с обобщением собственных опытных данных, а также результатов многих предыдущих работ в виде расчетных критериальных уравнений было выполнено в лабораторной укрупнешой модели пенного аппарата, с внутренними теплообменниками 1338, 356, 362]. Опыты были проведены при развитом пенном режиме (Шг = 0,4 3 м/с) в системах воздух — вода, а также воздух — растворы глицерина, олеата натрия, этилового спирта. Водные растворы органических веществ применяли с целью установить влияние физических свойств вспеви-ваемей жидкости на показатели теплопередачи. Для системы вода воздух высоту слоя пены изменяли от 100 до 360 мм. Величину об ” щего коэффициента теплопередачи определяли-по-формуле (11.23), причем рассчитывали как среднеарифмети.ческую разность температур между теплоносителем и пеной. Коэффициент теплоотдачи от теплообменника к пене а находили по формуле (11.46) по известной величине К . [c.117]
Жиры депо создают один из метаболических энергетических резервов живых систем. Это преимущественно триацилпроиз-водные глицерина (разд. 5.2). В целом триглицериды животного происхождения отличаются от триглицеридов многих растительных масел высоким содержанием насыщенных ацильных групп. Существует четкая корреляция между степенью ненасы-щенности и температурой плавления триглицеридов. Высоконенасыщенные растительные масла имеют очень низкую температуру плавления, тогда как животные жиры при обычной температуре обычно твердые вещества. В результате промышленной гидрогенизации растительных жиров образуется маргарин — продукт, обладающий физическими свойствами, сходными со свойствами типичного животного жира. Различие в физических свойствах обусловлено различием строения молекул насыщенных и ненасыщенных жирных кислот, которое особенно наглядно проявляется при рассмотрении формы молекулы с растянутой конформацией углеродных цепей [c.332]
Соколов и Соломахин [192] исследовали теплопередачу при малых скоростях газа (0,009—0,08 м/сек), причем в качестве жидкостей применяли воду, этанол, СС14 и растворы глицерина. Авторы получили высокое значение а для воды (4000— 5200 вт-м град ) и обнаружили значительное влияние физических свойств жидкости. Те же авторы на основе своих опытов и данных других исследователей предложили уравнения [193] [c.587]
Эти результаты показывают, что взаимное загрязнение различных липидных фракций, вообще говоря, минимально. Особенно обращает на себя внимание тот факт, что даже алкоксидиглицериды, которые по химическому строению и физическим свойствам столь близки к триглицеридам, не загрязнены ими. Диацетилглицериновые эфиры и диацетилмоноглицериды также разделяются методом ХТС [80]. Однако значительно более полярные не-этерифицированные простые моноэфиры глицерина и соответствующие им моноглицериды разделяются неполностью. [c.155]
Питательная ценность источников углерода зависит от физиологических особенностей микроорганизма, химического состава и физических свойств вещества. Легкость усвоения углеродсодержащих соединений предопределяется степенью окислен-ности углерода. Карбоксилы — СООН имеют малую питательную ценность, радикалы с восстановленным углеродом — СНз, СНг и СН — более питательны. Но легче всего усваиваются полуокнсленные атомы углерода — СНгОН, СНОН, СОН. Высокую питательную ценность имеют соединения, богатые спиртовыми группами. Наиболее доступными источниками углерода для большинства гетеротрофных микроорганизмов являются сахара, глицерин, маннит, молочная, винная и лимонная кислоты. Многие бактерии успешно осуществляют гидролиз углеводов, жиров, белков, используя их в качестве источника углерода. Весьма распространенный растительный полисахарид крахмал часто служит источником углерода для бактерий и гри- [c.88]
Опыты по определению влияния физических свойств газовой и ЖИД1С0Й ааз потока на условия начала псевдоожижения проведены на стенде диаметром 41,5 ш с частицшии образца I (тайл.1) при использовании смесей гелия, азота, углекислого газа с н-гекса-ном, водой, 20%-нш раствором глицерина е воде. Полученные [c.76]
Для введения фтора в молекулу спирта была использована реакция кеталирования ксилита и глицерина 1,1,1-трифторацетоном в концентрированной серной кислоте. Реакция проводилась в ампулах при встряхивании в течение двух-трех суток без нагревания. После гидролиза 3%-ной серной кислотой сернокислого эфира кеталя экстракцией серным эфиром выделялись кетали. Их физические свойства представлены в табл. 3. [c.249]
Третий тип систем с НКТР включает воду или глицерин в смеси с эфирами гликолей или органическими основаниями типа алкилпи-ридинов. Вероятно, повышение температуры вызывает разрыв некоторых связей, что способствует разделению жидкостей. Долголенко [729] предположил, что эти связи возникают благодаря образованию гидратов. Журавлев [746] исследовал иррациональности в вязкостях и плотностях некоторых двойных водных систем, содержащих триэтиламин. Он сделал следующее заключение Двойные расслаивающиеся системы с нижней критической температурой растворения — это всегда системы с химическим взаимодействием компонентов. Изотермы физических свойств системы триэтиламин — вода подтверждают это . [c.19]
Физические свойства соединений трех классов, рассмотренных в этом разделе, широко контрастируют друг с другом. Простые эфиры представляют собой относительно летучие, нейтральные, углеводородоподобные вещества. Спирты и фенолы сил ьно ассоциированы в жидком состоянии (см. гл. 7), и с этим обстоятельством, вероятно, связаны их относительно высокие температуры кипения. Многоатомные спирты кипят прн особенно высокой температуре, что делает глицерин ценным смягчающим средством, используемым в косметических препаратах, а этиленгликоль — важным антифризом. Подобно воде спирты — это вещества со слабо выраженными амфотерными свойствами, тогда как фенолы являются кислотами, по силе занимающими промежуточное место между спиртами и карбоновыми кислотами (гл. 8). В табл. 3.2 приведены данные о физических свойствах некоторых важнейших спиртов, простых эфиров и фенолов. [c.53]
В связи с возросшим интересом к многоатомным спиртам возникла необходимость в разработке газо-хроматографического метода анализа смеси нолиолов, получающихся при гидрогенолизе моноз и состоящей из следующих компонентов этиленгликоля, 1,2-пропиленгликоля, глицерина, эритрита, ксилита и сорбита. Рассмотрение физических свойств этих соединений показывает, что непосредственный хроматографический анализ полиолов трудно осуществить вследствие того, что их температуры кипения высоки и сильно отличаются одна от другой. Поэтому полиолы целесообразно предварительно перевести в более летучие соединения, а именно в полные ацетильные производные, которые легче разделить газо-хроматографическим методом. Ацетильные производные полиолов имеют более низкую температуру кипения, более стабильны при нагревании и являются менее полярными веществами. [c.61]
Физические свойства. Глицерин— нейтральная, вязкая, бесцветная жидкость со сладким вкусом. Трудно кристаллизуется, Т. пл. 17° плотность 1, .-Очень гигроскопичен. Смешивается с водой во всех соотношениях. При атмосферном давлении кипнт при 290° с частичным разложением. Поэтому д ля его очистки п4>ё-гонку производят иод вакуумом. [c.131]
Физические свойства. Большинство гликолей и глицеринов — жидкости, остальные многоатомные спирты — твердые вещества. Двухатомные спирты, как и одноатомные, обладают опьяняющим действием, которое постепенно уменьшается. по мере увеличения числа углеродов и гидроксилов в молекуле. Двухато.мные и трехатомные спирты обладают сладким вкусом, откуда и название гликоля и глицерина (гликос по-гречески— сладкий). По мере увеличения числа гидроксилов в молекуле многоатомного спирта сладкий вкус нарастает. [c.76]
Уотсон с сотр. [63—65] провели в насадочном экстракторе ( >к==50 мм, Я = 610 мм, насадка — фарфоровые кольца Ращига, н = 9,5 мм) исследования предельных нагрузок на системах жидкость — жидкость (вода — ртуть ртуть — раствор глицерина диб-ромметан — вода четыреххлористый углерод — вода), отличающихся значительно большим диапазоном изменения физических свойств (Лр, х), чем обычно применяющиеся йодно-органические системы. Обработкой результатов собственных опытов и данных других исследователей (всего для 56-ти систем жидкость — жидкость) показано, что предельные фиктивные скорости фаз (Ус)з и (Од)з связаны зависимостью [c.279]
Глицерин смешивается с водой во всех отношениях. Практически чаше всего приходится иметь дело с глицерино-вод-ными смесями с широким диапазоном соотношения компонентов, в зависимости от чего резко меняются показатели физических свойств. В табл. 12—14 приводятся показатели удельных весов (или плотностей) глицерино-водных растворов. Как видно из табл. 12 и рис. 34, смешение глицерина с водой сопровождается контракцией. Максимальное уменьшение объема наблюдается при смешении 57 вес. ч. глице- [c.111]
В табл. 34 приводим характеристику физических свойств полиглицеринов, полученных нагреванием глицерина с 5% N32504 при 245°С в атмосфере азота и затем разогнанных под вакуумом, и в табл. 35 — характеристику отдельных полигли-цериновых фракций, выделенных из товарного полиглицерина. [c.141]
Смотреть страницы где упоминается термин Глицерин физические свойства:
[c.555]
[c.71]
[c.356]
Органическая химия (1979) — [
c.304
,
c.305
,
c.324
]
Химия жиров Издание 2 (1962) — [
c.56
]
Источник