Какие физические свойства имеют алканы

Какие физические свойства имеют алканы thumbnail

Àëêàíû – íàñûùåííûå (ïðåäåëüíûå) óãëåâîäîðîäû. Ïðåäñòàâèòåëåì ýòîãî êëàññà ÿâëÿåòñÿ ìåòàí (ÑÍ4). Âñå ïîñëåäóþùèå ïðåäåëüíûå óãëåâîäîðîäû îòëè÷àþòñÿ íà ÑÍ2– ãðóïïó, êîòîðàÿ íàçûâàåòñÿ ãîìîëîãè÷åñêîé ãðóïïîé, à ñîåäèíåíèÿ – ãîìîëîãàìè.

Îáùàÿ ôîðìóëà – ÑnH2n+2.

Àëêàíû Ñâîéñòâà àëêàíîâ

Ñòðîåíèå àëêàíîâ.

Êàæäûé àòîì óãëåðîäà íàõîäèòñÿ â sp3 – ãèáðèäèçàöèè, îáðàçóåò 4 σ– ñâÿçè (1 Ñ-Ñ è 3 Ñ-Í). Ôîðìà ìîëåêóëû â âèäå òåòðàýäðà ñ óãëîì 109,5°.

Ñâÿçü îáðàçóåòñÿ ïîñðåäñòâîì ïåðåêðûâàíèÿ ãèáðèäíûõ îðáèòàëåé, ïðè÷åì ìàêñèìàëüíàÿ îáëàñòü ïåðåêðûâàíèÿ ëåæèò â ïðîñòðàíñòâå íà ïðÿìîé, ñîåäèíÿþùåé ÿäðà àòîìîâ. Ýòî íàèáîëåå ýôôåêòèâíîå ïåðåêðûâàíèå, ïîýòîìó σ-ñâÿçü ñ÷èòàåòñÿ íàèáîëåå ïðî÷íîé.

Èçîìåðèÿ àëêàíîâ.

Äëÿ àëêàíîâ ñâîéñòâåííà èçîìåðèÿ óãëåðîäíîãî ñêåëåòà. Ïðåäåëüíûå ñîåäèíåíèÿ ìîãóò ïðèíèìàòü ðàçëè÷íûå ãåîìåòðè÷åñêèå ôîðìû, ñîõðàíÿÿ ïðè ýòîì óãîë ìåæäó ñâÿçÿìè. Íàïðèìåð,

Àëêàíû Ñâîéñòâà àëêàíîâ

Ðàçëè÷íûå ïîëîæåíèÿ óãëåðîäíîé öåïè íàçûâàþòñÿ êîíôîðìàöèÿìè.  íîðìàëüíûõ óñëîâèÿõ êîíôîðìàöèè àëêàíîâ ñâîáîäíî ïåðåõîäÿò äðóã â äðóãà ñ ïîìîùüþ âðàùåíèÿ Ñ-Ñ ñâÿçåé, ïîýòîìó èõ ÷àñòî íàçûâàþò ïîâîðîòíûìè èçîìåðàìè. Ñóùåñòâóåò 2 îñíîâíûå êîíôîðìàöèè – «çàòîðìîæåííîå» è «çàñëîíåííîå»:

Àëêàíû Ñâîéñòâà àëêàíîâ

Èçîìåðèÿ óãëåðîäíîãî ñêåëåòà àëêàíîâ.

Êîëè÷åñòâî èçîìåðîâ âîçðàñòàåò ñ óâåëè÷åíèåì ðîñòà óãëåðîäíîé öåïè. Íàïðèìåð ó áóòàíà èçâåñòíî 2 èçîìåðà:

Àëêàíû Ñâîéñòâà àëêàíîâ

Äëÿ ïåíòàíà – 3, äëÿ ãåïòàíà – 9 è ò.ä.

Åñëè ó ìîëåêóëû àëêàíà îòíÿòü îäèí ïðîòîí (àòîì âîäîðîäà), òî ïîëó÷èòñÿ ðàäèêàë:

Àëêàíû Ñâîéñòâà àëêàíîâ

Ôèçè÷åñêèå ñâîéñòâà àëêàíîâ.

 íîðìàëüíûõ óñëîâèÿõ – Ñ1-Ñ4 – ãàçû, Ñ5-Ñ17 – æèäêîñòè, à óãëåâîäîðîäû ñ êîëè÷åñòâîì àòîìîâ óãëåðîäà áîëüøå 18 – òâåðäûå âåùåñòâà.

Ñ ðîñòîì öåïè ïîâûøàåòñÿ òåìïåðàòóðà êèïåíèÿ è ïëàâëåíèÿ. Ðàçâåòâëåííûå àëêàíû èìåþò áîëåå íèçêèå òåìïåðàòóðû êèïåíèÿ, ÷åì íîðìàëüíûå.

Àëêàíû íåðàñòâîðèìû â âîäå, íî õîðîøî ðàñòâîðÿþòñÿ â íåïîëÿðíûõ îðãàíè÷åñêèõ ðàñòâîðèòåëÿõ. Ëåãêî ñìåøèâàþòñÿ äðóã ñ äðóãîì.

Ïîëó÷åíèå àëêàíîâ.

Ñèíòåòè÷åñêèå ìåòîäû ïîëó÷åíèÿ àëêàíîâ:

1. Èç íåíàñûùåííûõ óãëåâîäîðîäîâ – ðåàêöèÿ «ãèäðèðîâàíèÿ» ïðîòåêàåò ïîä âîçäåéñòâèåì êàòàëèçàòîðà (íèêåëü, ïëàòèíà) è ïðè òåìïåðàòóðå:

Àëêàíû Ñâîéñòâà àëêàíîâ

2. Èç ãàëîãåíïðîèçâîäíûõ – ðåàêöèÿ Âþðöà: âçàèìîäåéñòâèå ìîíîãàëîãåíàêëêàíîâ ñ ìåòàëëè÷åñêèì íàòðèåì, â ðåçóëüòàòå ÷åãî ïîëó÷àþòñÿ àëêàíû ñ óäâîåííûì ÷èñëîì óãëåðîäíûõ àòîìîâ â öåïè:

Àëêàíû Ñâîéñòâà àëêàíîâ

3. Èç ñîëåé êàðáîíîâûõ êèñëîò. Ïðè âçàèìîäåéñòâèè ñîëè ñ ùåëî÷è, ïîëó÷àþòñÿ àëêàíû, êîòîðûå ñîäåðæàò íà 1 àòîì óãëåðîä ìåíüøå ïî ñðàâíåíèþ ñ èñõîäíîé êàðáîíîâîé êèñëîòîé:

Àëêàíû Ñâîéñòâà àëêàíîâ

4. Ïîëó÷åíèå ìåòàíà.  ýëåêòðè÷åñêîé äóãå â àòìîñôåðå âîäîðîäà:

Ñ + 2Í2 = ÑÍ4.

 ëàáîðàòîðèè ìåòàí ïîëó÷àþò òàê:

Al4C3 + 12H2O = 3CH4 + 4Al(OH)3.

Õèìè÷åñêèå ñâîéñòâà àëêàíîâ.

 íîðìàëüíûõ óñëîâèÿõ àëêàíû – õèìè÷åñêè èíåðòíûå ñîåäèíåíèÿ, îíè íå ðåàãèðóþò ñ êîíöåíòðèðîâàííîé ñåðíîé è àçîòíîé êèñëîòîé, ñ êîíöåíòðèðîâàííîé ùåëî÷üþ, ñ ïåðìàíãàíàòîì êàëèÿ.

Óñòîé÷èâîñòü îáúÿñíÿåòñÿ ïðî÷íîñòüþ ñâÿçåé è èõ íåïîëÿðíîñòüþ.

Ñîåäèíåíèÿ íå ñêëîííû ê ðåàêöèÿõ ðàçðûâà ñâÿçè (ðåàêöèÿ ïðèñîåäèíåíèÿ), äëÿ íèõ ñâîéñòâåííî çàìåùåíèå.

1. Ãàëîãåíèðîâàíèå àëêàíîâ. Ïîä âîçäåéñòâèåì êâàíòà ñâåòà íà÷èíàåòñÿ ðàäèêàëüíîå çàìåùåíèå (õëîðèðîâàíèå) àëêàíà. Îáùàÿ ñõåìà:

Àëêàíû Ñâîéñòâà àëêàíîâ

Ðåàêöèÿ èäåò ïî öåïíîìó ìåõàíèçìó, â êîòîðîé ðàçëè÷àþò:

À) Èíèöèèðîâàíèå öåïè:

Àëêàíû Ñâîéñòâà àëêàíîâ

Á) Ðîñò öåïè:

Àëêàíû Ñâîéñòâà àëêàíîâ

Â) Îáðûâ öåïè:

Àëêàíû Ñâîéñòâà àëêàíîâ

Ñóììàðíî ìîæíî ïðåäñòàâèòü â âèäå:

Àëêàíû Ñâîéñòâà àëêàíîâ

2. Íèòðîâàíèå (ðåàêöèÿ Êîíîâàëîâà) àëêàíîâ. Ðåàêöèÿ ïðîòåêàåò ïðè 140 °Ñ:

Àëêàíû Ñâîéñòâà àëêàíîâ

Ëåã÷å âñåãî ðåàêöèÿ ïðîòåêàåò ñ òðåòèòè÷íûì àòîìîì óãëåðîäà, ÷åì ñ ïåðâè÷íûì è âòîðè÷íûì.

3. Èçîìðèçàöèÿ àëêàíîâ. Ïðè êîíêðåòíûõ óñëîâèÿõ àëêàíû íîðìàëüíîãî ñòðîåíèÿ ìîãóò ïðåâðàùàòüñÿ â ðàçâåòâëåííûå:

Àëêàíû Ñâîéñòâà àëêàíîâ

4. Êðåêèíã àëêàíîâ. Ïðè äåéñâèè âûñîêèõ òåìïåðàòóð è êàòàëèçàòîðîâ âûñøèå àëêàíû ìîãóò ðâàòü ñâîè ñâÿçè, îáðàçóÿ àëêåíû è àëêàíû áîëåå íèçøèå:

Àëêàíû Ñâîéñòâà àëêàíîâ

5. Îêèñëåíèå àëêàíîâ.  ðàçëè÷íûõ óñëîâèÿõ è ïðè ðàçíûõ êàòàëèçàòîðàõ îêèñëåíèå àëêàíà ìîæåò ïðèâåñòè ê îáðàçîâàíèþ ñïèðòà, àëüäåãèäà (êåòîíà) è óêñóñíîé êèñëîòû.  óñëîâèÿõ ïîëíîãî îêèñëåíèÿ ðåàêöèÿ ïðîòåêàåò äî êîíöà – äî îáðàçîâàíèÿ âîäû è óãëåêèñëîãî ãàçà: 

Àëêàíû Ñâîéñòâà àëêàíîâ

Àëêàíû Ñâîéñòâà àëêàíîâ

Ïðèìåíåíèå àëêàíîâ.

Àëêàíû íàøëè øèðîêîå ïðèìåíåíèå â ïðîìûøëåííîñòè, â ñèíòåçå íåôòè, òîïëèâà è ò.ä.

Источник

Алканы образуют гомологический ряд, каждое химическое соединение которого по составу отличается от последующего и предыдущего на одинаковое число атомов углерода и водорода – CH2, а вещества, входящие в гомологический ряд, называются гомологами. Гомологический ряд алканов представлен в таблице 1.

Таблица 1. Гомологический ряд алканов.

Название веществаСтруктурная формула

Метан

CH4

Этан

C2H6

Пропан

C3H8

Бутан

C4H10

Пентан

C5H12

Гексан

C6H14

Гептан

C7H16

Октан

C8H18

Нонан

C9H20

Декан

C10H22

В молекулах алканов выделяют первичные (т.е. связанные одной связью), вторичные (т.е. связанные двумя связями), третичные (т.е. связанные тремя связями) и четвертичные (т.е. связанные четырьмя связями) атомы углерода.

C1H3 – C2H2 – C1H3 (1 – первичные, 2- вторичные атомы углерода)

CH3 –C3H(CH3) – CH3 (3- третичный атом углерода)

CH3 – C4(CH3)3 – CH3 (4- четвертичный атом углерода)

Для алканов характерна структурная изомерия (изомерия углеродного скелета). Так, у пентана имеются следующие изомеры:

CH3-CH2-CH2-CH2-CH3 (пентан)

CH3 –CH(CH3)-CH2-CH3 (2-метилбутан)

CH3-C(CH3)2-CH3 (2,2 – диметилпропан)

Для алканов, начиная с гептана, характерна оптическая изомерия.

Атомы углерода в предельных углеводородах находятся в sp3 –гибридизации. Углы между связями в молекулах алканов 109,5^{circ}.

Химические свойства алканов

При обычных условиях алканы химически инертны — не реагируют ни с кислотами, ни со щелочами. Это объясняется высокой прочностью sigma-связей С-С и С-Н. Неполярные связи С-С и С-Н способны расщепляться только гомолитически под действием активных свободных радикалов. Поэтому алканы вступают в реакции, протекающие по механизму радикального замещения. При радикальных реакция в первую очередь замещаются атомы водорода у третичных, затем у вторичных и первичных атомов углерода.

Реакции радикального замещения имеют цепной характер. Основные стадии: зарождение (инициирование) цепи (1) – происходит под действием УФ-излучения и приводит к образованию свободных радикалов, рост цепи (2) – происходит за счет отрыва атома водорода от молекулы алкана; обрыв цепи (3) – происходит при столкновении двух одинаковых или разных радикалов.

X:X → 2X. (1)

R:H + X. → HX + R. (2)

R. + X:X → R:X + X. (2)

R. + R. → R:R (3)

R. + X. → R:X (3)

X. + X. → X:X (3)

Читайте также:  Какими свойствами обладает инжир

Галогенирование.
При взаимодействии алканов с хлором и бромом при действии УФ-излучения или высокой температуры образуется смесь продуктов от моно- до полигалогензамещенных алканов:

CH4 + Cl2 = CH3Cl + HCl (хлорметан)

CH3Cl +Cl2 = CH2Cl2 + HCl (дихлорметан)

CH2Cl2 +Cl2 = CHCl3 + HCl (трихлорметан)

CHCl3 +Cl2 = CCl4 + HCl (тетрахлорметан)

Нитрование (реакция Коновалова)
. При действии разбавленной азотной кислоты на алканы при 140^{circ}С и небольшом давлении протекает радикальная реакция:

CH3-CH3 +HNO3 = CH3-CH2-NO2 (нитроэтан) + H2O

Сульфохлорирование и сульфоокисление.
Прямое сульфирование алканов протекает с трудом и чаще всего сопровождается окислением, в результате чего образуются алкансульфонилхлориды:

R-H + SO2 + Cl2 → R-SO3Cl + HCl

Реакция сульфоокисления протекает аналогично, только в этом случае образуются алкансульфоновые кислоты:

R-H + SO2 + ½ O2 → R-SO3H

Крекинг
– радикальный разрыв связей С-С. Протекает при нагревании и в присутствии катализаторов. При крекинге высших алканов образуются алкены, при крекинге метана и этана образуется ацетилен:

С8H18 = C4H10 (бутан)+ C3H8 (пропан)

2CH4 = C2H2 (ацетилен) + 3H2↑

Окисление. При мягком окислении метана кислородом воздуха могут быть получены метанол, муравьиный альдегид или муравьиная кислота. На воздухе алканы сгорают до углекислого газа и воды:

CnH2n+2 + (3n+1)/2 O2 = nCO2 + (n+1)H2O

Физические свойства алканов

При обычных условиях С1-С4 – газы, С5-С17 – жидкости, начиная с С18 – твердые вещества. Алканы практически нерастворимы в воде, но, хорошо растворимы в неполярных растворителях, например, в бензоле. Так, метан СН4 (болотный, рудничий газ)
– газ без цвета и запаха, хорошо растворимый в этаноле, эфире, углеводородах, но плохо растворимый в воде. Метан используют в качестве высококалорийного топлива в составе природного газа, в качестве сырья для производства водорода, ацетилена, хлороформа и других органических веществ в промышленных масштабах.

Пропан С3Н8 и бутан С4Н10 – газы, применяемые в быту, в качестве балонных газов, за счет легкой сжижаемости. Пропан используется в качестве автомобильного топлива, поскольку является более экологически чистым, чем бензин. Бутан – сырье для получения 1,3
–бутадиена, использующегося в производстве синтетического каучука.

Получение алканов

Алканы получают из природных источников – природного газа (80-90% — метан, 2-3% — этан и другие предельные углеводороды), угля, торфа, древесины, нефти и горного воска.

Выделяют лабораторные и промышленные способы получения алканов. В промышленности алканы получают из битумного угля (1) или по реакции Фишера-Тропша (2):

nC + (n+1)H2 = CnH2n+2 (1)

nCO + (2n+1)H2 = CnH2n+2 + H2O (2)

К лабораторным способам получения алканов относят: гидрирование непредельных углеводородов при нагревании и в присутствии катализаторов (Ni, Pt, Pd) (1), взаимодействием воды с металлоорганическими соединениями (2), электролизом карбоновых кислот (3), по реакциям декарбоксилирования (4) и Вюрца (5) и другими способами.

R1-C≡C-R2 (алкин) → R1-CH = CH-R2 (алкен) → R1-CH2 – CH2 -R2 (алкан)
(1)

R-Cl + Mg → R-Mg-Cl + H2O → R-H (алкан) + Mg(OH)Cl (2)

CH3COONa↔ CH3COO— + Na+

2CH3COO— → 2CO2↑ + C2H6 (этан) (3)

CH3COONa + NaOH → CH4 + Na2CO3 (4)

R1-Cl +2Na +Cl-R2 →2NaCl + R1-R2 (5)

Примеры решения задач

Источник

Количество атомов углерода в молекуле вещества определяет физические свойства алканов. Чем длиннее углеродная цепь, тем твёрже вещество. Подробнее о физических свойствах алканов читайте ниже.

Какие физические свойства имеют алканы

Гомологи

Алканы имеют общую формулу CnH2n+2. Самое простое вещество, относящееся к алканам – метан. Его также называют болотным газом. Метан образует гомологический ряд, в котором каждое последующее вещество отличается на одну группу CH2. Всего насчитывается 390 алканов.

Гомологи имеют схожие названия, состоящие из суффикса -ан и приставки, указывающей на число атомов в веществе:

  • ун- или ген- – один;
  • до- – два;
  • три- – три;
  • тетра- – четыре;
  • пент- – пять;
  • гекс- – шесть;
  • гепт- – семь;
  • окт- – восемь;
  • нон- – девять;
  • дек- – десять.

Приставки отсутствуют у первых четырёх гомологов. Их нужно запомнить: метан, этан, пропан, бутан.

Гомологический ряд

Рис. 1. Гомологический ряд.

Начиная с бутана, все алканы имеют изомеры. Их названия соответствуют основным названиям алканов с приставкой изо-. Для указания расположения метильной группы используются более точные длинные названия. Например, диметилпропан, 3-метилпентан, 2,2-диметилоктан. Цифры в названии соответствуют атомам, к которым примыкают метильные группы.

Изомеры с названиями

Рис. 2. Изомеры с названиями.

Алканы – предельные углеводороды, получаемые из природных ископаемых – нефти, каменного угля, газа. Также их могут выделять из солей карбоновых кислот, путём превращения алкенов и алкинов.

Физические свойства

От положения в гомологическом ряду зависят физические свойства алканов. В таблице указано физическое состояние первых 20 алканов.

Название

Формула

Агрегатное состояние

Метан

CH4

Бесцветные газы, без запаха и вкуса. Горят бледным или голубым пламенем (пламя газовой горелки) с большим выделением тепла

Этан

C2H6

Пропан

C3H8

Бутан

C4H10

Пентан

C5H12

Бесцветные маслянистые жидкости с резким бензиновым запахом

Гексан

C6H14

Гептан

C7H16

Октан

C8H18

Нонан

C9H20

Декан

C10H22

Ундекан

C11H24

Додекан

C12H26

Тридекан

C13H28

Тетрадекан

C14H30

Пентадекан

C15H32

Гексадекан

C16H34

Воскоподобные и твёрдые легкоплавкие вещества

Гептадекан

C17H36

Октадекан

C18H38

Нанадекан

C19H40

Эйкозан

C20H42

Все вещества, содержащие больше 15 атомов углерода, являются твёрдыми соединениями. Чем больше содержится в молекуле атомов углерода, тем выше температуры плавления и кипения. Однако чем меньше разветвлён изомер, тем выше его температуры плавления и кипения, поэтому разветвлённые изомеры кипят при более низких температурах, чем линейные аналоги.

Плотность всех алканов находится в пределах единицы (у воды – 1 г/см3), поэтому алканы плохо растворимы в воде и плавают на её поверхности. Растворяются в органических растворителях.

Другое название алканов – парафины. Обычные парафиновые свечи – смесь гомологичных алканов от октадекана (C18H38) до пентатриоконтана (С35Н72).

Парафин

Рис. 3. Парафин.

Что мы узнали?

Узнали кратко о получении и физических свойствах алканов. Это предельные углеводороды, выделяемые из нефти и газа. Гомологический ряд алканов образует метан. Каждое последующее вещество отличается от предыдущего на одну СН2-группу. Физические свойства гомологов зависят от количества атомов углерода в молекуле. Первые четыре гомолога – бесцветные газы, алканы с 5-15 атомами углерода – маслянистые жидкости с резким запахом, остальные вещества – воскообразные и твёрдые соединения.

Читайте также:  Какими свойствами обладают плоскости проецирующие и уровня

Тест по теме

Доска почёта

Чтобы попасть сюда – пройдите тест.

    Пока никого нет. Будьте первым!

Оценка доклада

Средняя оценка: 3.9. Всего получено оценок: 82.

Источник

Алканы

Содержание:

  • Что такое алканы
  • Формула алканов
  • Изомерия алканов
  • Изомерия углеродного скелета алканов
  • Получение алканов
  • Физические свойства алканов
  • Химические свойства алканов
  • Применение алканов
  • Алканы, видео
  • Что такое алканы

    Алканами в химии называют предельные углеводороды, у которых углеродная цепь является незамкнутой и состоит из атомов углерода, связанных друг с другом при помощи одинарных связей. Также характерной особенностью алканов есть то, что они совсем не содержат двойных либо тройных связей. Порой алканы называют парафинами, дело в том, что парафины собственно и являются смесью предельных углеродов, то есть алканов.

    Формула алканов

    Формулу алкана можно записать как:

    СnР2n+2

    При этом n больше или равно 1.

    Изомерия алканов

    Алканам свойственна изомерия углеродного скелета. При этом соединения могут принимать разные геометрические формы, как например это показано на картинке ниже.

    Изомерия алканов

    Изомерия углеродного скелета алканов

    С увеличением роста углеродной цепи увеличивается и количество изомеров. Так, например, у бутана есть два изомера.

    изомеры бутана

    Получение алканов

    Алкан как правило получают различными синтетическими методами. Скажем, один из способов получения алкана предполагает реакцию «гидрирования», когда алканы добываются из ненасыщенных углеводов под воздействием катализатора и при температуре.

    Физические свойства алканов

    Алканы от других веществ отличаются полным отсутствием цвета, также они не растворим в воде. Температура плавления алканов повышается с увеличением их молекулярной массы и длины углеводородной цепи. То есть чем более разветвленным является алкан, тем у него большая температура горения и плавления. Газообразные алканы и вовсе горят бледно-голубым или бесцветным пламенем, при этом выделяя много тепла.

    Химические свойства алканов

    Алканы в химическом плане малоактивные вещества, по причине прочности крепких сигма связей С-С и С-Н. При этом связи С-С неполярны, а С-Н малополярны. А так как все это малополяризируемые виды связей, которые относятся к сигма виду, то разрываться они будут по механизму гомолитическому, в результате чего образуются радикалы. И как следствия химические свойства алканов представляют собой в основном реакции радикального замещения.

    Алканы

    Так выглядит формула химической реакции радикального замещения алканов (галогенирование алканов).

    Помимо этого также можно выделить такие химические реакции как нитрирование алканов (реакция Коновалова).

    нитрирование алканов

    Реакция эта протекает при температуре 140 С, причем лучше всего именно с третичным атомом углерода.

    Крекинг алканов – эта реакция протекает при действии высоких температур и катализаторов. Тогда создаются условия, когда высшие алканы могут рвать свои связи образуя алканы более низкого порядка.

    Крекинг алканов

    Окисление алканов – в различных условиях эта химическая реакция может привести к образованию спирта, альдегида и уксусной кислоты. При полном окислении реакция протекает вплоть до образования воды и углекислого газа.

    Применение алканов

    Алканы имеют широкое применение в таких промышленных сферах как синтез нефти, топлива и т. д.

    Алканы, видео

    И в завершение видео урок о сущности алканов.

    Какие физические свойства имеют алканы

    Автор: Павел Чайка, главный редактор журнала Познавайка

    При написании статьи старался сделать ее максимально интересной, полезной и качественной. Буду благодарен за любую обратную связь и конструктивную критику в виде комментариев к статье. Также Ваше пожелание/вопрос/предложение можете написать на мою почту pavelchaika1983@gmail.com или в Фейсбук, с уважением автор.

    Источник

    Алканы: физические и химические свойстваОдним из первых типов химических соединений, изучаемых в школьной программе по органической химии, являются алканы. Они относятся к группе предельных (иначе — алифатических) углеводородов. В их молекулах присутствуют только одинарные связи. Атомам углерода свойственна sp³-гибридизация.

    Гомологический ряд метана

    Гомологический ряд метанаГомологами называют химические вещества, которые имеют общие свойства и химическое строение, но при этом отличающиеся на одну или несколько CH2-групп.

    В случае с метаном CH4 можно привести общую формулу для алканов: CnH (2n+2), где n — это количество атомов углерода в соединении.

    Приведём таблицу алканов, в которых n находится в пределах от 1 до 10.

    Изомерия алканов

    Изомерами называют те вещества, молекулярная формула которых совпадает, однако строение или структура отличается.

    Для класса алканов характерны 2 типа изомерии: углеродного скелета и оптическая изомерия.

    Приведём пример структурного изомера (т. е. вещества, отличающимся лишь строением углеродного скелета) для бутана C4H10.

    Оптическими изомерами называют такие 2 вещества, молекулы которых имеют похожую структуру, но не могут быть совмещены в пространстве. Явление оптической или зеркальной изомерии возникает у алканов, начиная с гептана C7H16.

    Номенклатура веществ

    Чтобы дать алкану правильное название, необходимо воспользоваться номенклатурой ИЮПАК. Для этого использоваться следующая последовательность действий:

    1. Номенклатура веществВыбрать самую длинную неразветвленную цепь из атомов углерода.
    2. Пронумеровать атомы в цепи. Нумерацию необходимо начинать с той стороны, к которой ближе находится заместитель (ответвление).
    3. Сформировать и записать название вещества. В его начале цифрами нужно указать, при каких атомах находятся заместители. После номера указывается их количество («ди» — 2 заместителя, «три» — 3, «тетра» — 4), затем через дефис — их названия, перечислять которые нужно в алфавитном порядке. После этого указывается наименование главной цепи. Названия заместителей формируются при помощи суффикса -ил: так, заместитель -CH3 получит название метил, а -CH2-CH2-CH3 — пропил. Главная цепь именуется так же, как и алкан с соответствующим количеством углеродных атомов.
    Читайте также:  Какое общее свойство у квадрата и треугольника

    По приведённому выше плану попробуем дать название следующему алкану.

    1. Шестиэтапная реакция этана с хлоромНужно выбрать самую длинную цепь. Очевидно, что ей является последовательность из 7 атомов углерода.
    2. Следует определить, с какой стороны пойдёт нумерация. В конкретном случае она начнётся с того конца, ближе к которому находится ответвление, т. е. с левого края.
    3. В приведённой молекуле есть 4 заместителя с 1 атомом углерода (при 2, 4 и дважды при 5 атомах) и 1 заместитель с 2 атомами (при 4 атоме в главной цепи). Основная цепь состоит из 7 атомов, её название — гептан. Сформулированное для вещества имеет название: 2,3,5,5-тетраметил-4-этилгептан.

    Физические свойства алканов

    Физические свойства алкановВ обычных условиях неразветвленные алканы с CH4 до C4H10 — это газообразные вещества, начиная с С5Н12 и до C13H28 — жидкие и обладающие специфическим запахом, все последующие — твёрдые. Получается, что с увеличением длины углеродной цепи растут температуры кипения и плавления. Чем сильнее разветвлена структура алкана, тем при более низкой температуре он кипит и плавится.

    Газообразные алканы не обладают цветом. А также все представители этого класса не могут растворяться в воде.

    Алканы, имеющие агрегатное состояние газа, могут гореть, при этом пламя будет либо бесцветным, либо обладать бледно-голубым оттенком.

    Химические свойства

    В обычных условиях алканы достаточно малоактивны. Это объясняется прочностью σ-связей между атомами C-C и C-H. Поэтому необходимо обеспечить специальные условия (например, довольно высокую температуру или свет), чтобы проведение химической реакции стало возможным.

    Реакции замещения

    К реакциям этого типа относятся галогенирование и нитрование. Галогенирование (взаимодействие с Cl2 или Br2) происходит при нагревании или же под воздействием света. Во время реакции, протекающей последовательно, образуются галогеналканы.

    Для примера можно записать реакцию хлорирования этана.

    Бромирование будет проходить аналогичным образом.

    Нитрование — это реакция со слабым (10%) раствором HNO3 или с оксидом азота (IV) NO2. Условия для проведения реакций — температура 140 °C и давление.

    C3H8 + HNO3 = C3H7NO2 + H2O.

    В результате образуются два продукта — вода и аминокислота.

    Реакции разложения

    При проведении реакций разложения всегда требуется обеспечивать высокую температуру. Это необходимо для разрыва связей между атомами углерода и водорода.

    Так, при проведении крекинга потребуется температура в интервале от 700 до 1000 °C. Во время реакции разрушаются -С-С- связи, образуется новый алкан и алкен:

    C8H18 = C4H10 + C4H8

    Исключение — крекинг метана и этана. В результате этих реакций выделяется водород и образуется алкин ацетилен. Обязательным условием является нагревание до 1500 °C.

    C2H4 = C2H2 + H2

    Если превысить температуру в 1000 °C, можно добиться пиролиза с полным разрывом связей в соединении:

    C3H8 = 3C + 4H2

    Во время пиролиза пропила был получен углерод C, а также выделился водород H2.

    Реакции дегидрирования

    Дегидрирование (отщепление водорода) происходит по-разному для различных алканов. Условия проведения реакции — температура в пределах от 400 до 600 °C, а также присутствие катализатора, в роли которого могут выступать никель или платина.

    Из соединения, в углеродном скелете которого 2 или 3 атома C, образуется алкен:

    C2H6 = C2H4 + H2.

    Если в цепи молекулы 4—5 атомов углерода, то после дегидрирования получится алкадиен и водород.

    C5H12 = C4H8 + 2H2.

    Начиная с гексана, во время реакции образуется бензол или производные от него вещества.

    C6H14 = C6H6 + 4H2

    Следует также упомянуть реакцию конверсии, проводящуюся для метана при температуре 800 °C и в присутствии никеля:

    CH4 + H2O = CO + 3H2

    Для других алканов конверсия нехарактерна.

    Окисление и горение

    Если алкан, нагретый до температуры не более 200 °C, будет взаимодействовать с кислородом в присутствии катализатора, то в зависимости от прочих условий проведения реакции будут различаться получаемые продукты: это могут быть представители классов альдегидов, карбоновых кислот, спиртов или кетонов.

    В случае полного окисления алкан сгорает до конечных продуктов — воды и CO2:

    C9H20 + 14O2 = 9CO2 + 10H2O

    Если во время окисления количество кислорода оказалось недостаточным, конечным продуктом вместо углекислого газа станет уголь или CO.

    Проведение изомеризации

    Если обеспечить температуру около 100—200 градусов, для неразветвленных алканов становится возможна реакция перегруппировки. Второе обязательное условие для проведения изомеризации — присутствие катализатора AlCl3. В таком случае происходит изменение структуры молекул вещества и образуется его изомер.

    Получение и применение алканов

    Получение и применение алкановЗначительную долю алканов получают, выделяя их из природного сырья. Чаще всего перерабатывают природный газ, главным компонентом, которого является метан или же подвергают крекингу и ректификации нефть.

    А также следует вспомнить о химических свойствах алкенов. В 10 классе одним из первых лабораторных способов, изучаемых на уроках химии, является гидрирование непредельных углеводородов.

    C3H6 + H2 = C3H8

    Например, в результате присоединения водорода к пропилену получается единственный продукт — пропан.

    При помощи реакции Вюрца из моногалогеналканов получают алканы, в структурной цепи которых число углеродных атомов удвоено:

    2CH4H9Br + 2Na = C8H18 + 2NaBr.

    Ещё один способ получения — взаимодействие соли карбоновой кислоты со щёлочью при нагревании:

    C2H5COONa + NaOH = Na2CO3 + C2H6.

    Кроме того, метан иногда получают в электрической дуге (C + 2H2 = CH4) или при взаимодействии карбида алюминия с водой:

    Al4C3 + 12H2O = 3CH4 + 4Al (OH)3.

    Алканы широко применяются в промышленности в качестве низкого по стоимости топлива. А также их используют как сырьё для синтеза других органических веществ. С этой целью обычно применяют метан, необходимый для получения аммиака и синтез-газа. Некоторые другие предельные углеводороды используют, чтобы получать синтетические жиры, а также как основу для смазочных материалов.

    Для наилучшего понимания темы «Алканы» создан не один видеоурок, в котором подробно рассмотрены такие темы, как структура вещества, изомеры и номенклатура, а также показаны механизмы химических реакций.

    Источник