Какие физические свойства используются при получении вакуума
В науке и технике под вакуумом понимается состояние газа, плотность которого меньше плотности, соответствующей состоянию воздуха на уровне земли. Чем значительнее уменьшение плотности газа, тем лучше вакуум. Вакуум обладает многими полезными свойствами, которые находят широкое применение в различных областях науки и техники. Например, в вакууме резко снижается химическая активность кислорода в процессе окисления металлов.
Другими словами, в вакууме можно сохранять различные химические вещества и использовать их специфические свойства. При очень высоких степенях разрежения поверхности остаются чистыми (без адсорбции хотя бы монослоя газа) в течение нескольких часов, что позволяет проводить исследования таких поверхностей, а также различных явлений, связанных с адсорбированными молекулами газа. Малочисленность молекул остаточного газа в условиях вакуума приводит к тому, что различные частицы могут проходить в таких условиях без столкновений большие расстояния.
Особенно это важно для заряженных частиц — элект
ронов, ионов и протонов, траекториями движения которых в вакууме можно управлять с помощью электрических и/или магнитных полей. Такие физические явления, как распространение звука, тепло- и массопере-нос, которые при атмосферном давлении определяются процессами взаимодействия молекул газа, существенно изменяются с уменьшением давления вплоть до того, что роль таких взаимодействий в механизме переноса становится второстепенной.
Упомянутые эффекты, очевидно, зависят от степени разрежения. Таким образом, плотность остаточного в объеме газа является непосредственной мерой вакуума. Однако еще из работ Бойля было известно, что плотность газа прямо пропорциональна давлению, поэтому сложилась общепринятая практика определять степень вакуума по давлению остаточного газа.
Современная вакуумная техника позволяет создавать вакуум, характеризующийся давлением, в 1015 раз меньшим атмосферного. Для удобства весь диапазон достижимых величин разрежения делят на несколько поддиапазонов. Схематично это деление представлено на рис. 1.1, где давление измеряется в Паскалях. На этом рисунке также показаны основные области применения вакуума в зависимости от степени разрежения. Использование вакуума, например в прессах и подъемных механизмах,
обусловлено значительными силами, возникающими вследствие разности
давлений по обе стороны поршня, а не каких-то особенностей вакуума.
Использование упомянутых выше свойств вакуума предусматривает обеспечение соответствующей степени разрежения, что, в свою очередь, требует применения правильно подобранного оборудования вакуумной системы. Чтобы сконструировать вакуумную систему, обладающую оптимальными характеристиками, необходимо знать не только параметры оборудования, но и все те факторы, которые могут влиять на них. Например, совершенно недостаточно знать, что насос имеет скорость откачки, равную 10-1 м3*с-1, и позволяет достигать предельного давления 10-6 Па.
В неудачно сконструированных вакуумных системах параметры оборудования могут оказаться значительно хуже (на порядок величины) по сравнению с оптимальными. Поэтому для достижения оптимальных характеристик оборудования необходимо понимать основные принципы работы вакуумной техники. Это особенно важно для сверхвысокого вакуума (ниже 10-6 Па), когда число молекул газа, адсорбированных поверхностями вакуумной камеры, может значительно превышать число молекул, находящихся в объеме.
В данной главе в конспективной форме рассмотрены основные законы и понятия, относящиеся к вакуумной технике. Более подробные сведения читатель может получить3′ из книги П. Редхеда с соавторам
Источник
Главная
Случайная страница
Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать неотразимый комплимент
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
Для нас сейчас физический вакуум — это то, что остается в пространстве, когда из него удаляют весь воздух и все до последней элементарные частицы. В результате получается не пустота, а своеобразная материя – Прародитель всего во Вселенной, рождающий элементарные частицы, из которых потом формируются атомы и молекулы.
А. Е. Акимов (11,с.24)
Так как в понятие вакуума вкладывается всепроникающая среда, находящаяся между частицами, то вакуум занимает все межчастичное пространство; следовательно, эту среду можно определить как бесчастичную форму материи, плотность которой изменяется соответственно действующим на вакуум силам. Плотность вакуума имеет весьма малое значение по сравнению с привычными для нас значениями плотности вещества: например, плотность вакуума, находящегося между молекулами газа при давлении в одну атмосферу составляет 10-15 г/см3, а плотность дистиллированной воды при тех же условиях – 1 г/см3 (20, с. 60).
Гравитация, присущая любым массам, присуща и массе вакуума. На основании этого постулата сила взаимодействия тела с любой частью вакуума будет определяться законом всемирного тяготения. То есть тела притягивают к себе вакуум подобно тому, как Земля притягивает находящиеся на ней тела. Поэтому при движении какого-либо тела вместе с ним будет двигаться (увлекаться) и окружающий его вакуум. Разумеется, это увлечение будет только в том случае, если на этот вакуум не действует большая сила (от гравитационного воздействия других тел), удерживающая вакуум от этого увлечения. Однако вакуум не просто увлекается за движущимся телом, а “выполняет роль подлинного управителя всякого движения. В образном представлении, вакуум, словно бульдог, вцепляется в любой макрообъект с тем большим усилием, чем массивнее его жертва. Вцепившись, он уже никогда не отпускает ее, сопровождая во всех странствиях по космическому пространству. Физически это означает, что вакуум и контролируемый им объект представляют собой замкнутую систему” (21, с, 27).
Уникальные опыты Физо и Майкельсона показали, что в природе нет абсолютно неподвижного вакуума. Вакуум, обладая массой, всегда увлекается тем телом, гравитационные силы которого преобладают, В указанных опытах таким телом является Земля, увлекающая околоземной вакуум (в опыте Майкельсона) и не позволяющая движущемуся на Земле телу увлекать вакуум, находящийся между частицами тела (в опыте Физо).
В современной интерпретации физический вакуум представляется сложным квантовым динамическим объектом, который проявляет себя через флуктуации. Физический вакуум рассматривают как материальную среду, изотропно (равномерно) заполняющую все пространство (и свободное пространство и вещество), имеющую квантовую структуру, ненаблюдаемую в невозмущенном состоянии (33. с. 4).
Для лучшего понимания физического вакуума было признано целесообразным рассматривать его как электронно-позитронную модель Дирака в ее несколько измененной интерпретации.
Представим физический вакуум как материальную среду, состоящую из элементов, образуемых парами частиц и античастиц (по Дираку – электронно-позитронная пара).
Если частицу и античастицу вложить друг в друга, то такая система будет истинно электронейтральной. А так как обе частицы обладают спином, то система “частица-античастица” должна представлять пару вложенных друг в друга частиц с противоположно направленными спинами. Вследствие истинной электронейтральности и противоположности спинов такая система не будет обладать и магнитным моментом (33, с. 5). Систему из частиц и античастиц в указанном выше виде, обладающую указанными свойствами, называют фитоном. Плотная упаковка фитонов и образует среду, называемую физическим вакуумом. Однако следует помнить, что эта модель весьма упрощена, и было бы наивно усматривать в построенной модели истинную структуру физического вакуума (рис. 1, а, б).
Рассмотрим наиболее важные в практическом отношении случаи возмущения физического вакуума разными внешними источниками (86. с, 940).
1. Пусть источником возмущения является заряд q (рис. 1, в). Действие заряда будет выражено в зарядовой поляризации физического вакуума, и это его состояние проявляется как электромагнитное поле (Е-поле). Именно на это указывал ранее в своих работах академик АН СССР Я. Б. Зельдович.
2. Пусть источником возмущения является масса m (рис, 1, г). Возмущение физического вакуума массой т будет выражаться в симметричных колебаниях элементов фитонов вдоль оси на центр объекта возмущения, как это условно изображено на рисунке. Такое состояние физического вакуума характеризуется как спиновая продольная поляризация и интерпретируется как гравитационное поле (G-поле). Такая идея была высказана еще А. Д. Сахаровым (87, с. 70). По его мнению, гравитация вообще не является отдельной действующей силой, а возникает в результате изменений квантово-флуктуационной энергии вакуума, когда имеется какая-либо материя, подобно тому, как это происходило с образованием сил в опыте Г. Казимира. А. Д. Сахаров считал, что присутствие материи в море частиц с абсолютно нулевой энергией вызывает появление несбалансированных сил, движущих материю, называемых гравитацией (86,с.940).
3. Пусть источником возмущения является классический спин (рис. 1, д). Спины фитонов, которые совпадают с ориентацией спина источника, сохраняют свою ориентацию. Спины фитонов, которые противоположны спину источника, под действием этого источника испытывают инверсию. В результате физический вакуум перейдет в состояние поперечной спиновой поляризации. Это состояние интерпретируется как спиновое поле (S-поле), то есть поле, порождаемое классическим спином. Такое поле называют еще торсионным полем (31, с. 31).
В соответствии с изложенным можно считать, что единая среда – физический вакуум может находиться в разных поляризационных состояниях, EQS-состояниях. Причем физический вакуум в фазовом состоянии, соответствующем электромагнитному полю, обычно рассматривается как сверхтекучая жидкость. В фазовом состоянии спиновой поляризации физический вакуум ведет себя как твердое тело.
Указанные соображения примиряют две взаимоисключающие точки зрения – точку зрения конца XIX века и начала XX века, когда эфир рассматривали как твердое тело, и представление современной физики о физическом вакууме как о сверхтекучей жидкости. Правильны обе точки зрения, но каждая для своего фазового состояния (33, с. 13).
РИС. 1 Диаграмма поляризационных состояний физического вакуума
Все три поля: гравитационное, электромагнитное и спиновое – являются универсальными. Эти поля проявляются себя и на микро-, и на макроуровнях. Здесь уместно вспомнить слова академика АН СССР Я. И. Померанчука; Вся физика – это физика вакуума”, или академика ЭАН Г. И. Наана: “Вакуум есть все, и все есть вакуум” (63,с.14).
В результате знакомства с теорией физического вакуума становится ясно, что современная природа не нуждается в “объединениях”. В природе есть только физический вакуум и его поляризационные состояния, а “объединения” лишь отражают степень нашего понимания взаимосвязи полей (31, с. 32).
Следует отметить еще один чрезвычайно важный факт, касающийся физического вакуума как источника энергии.
Традиционная точка зрения сводилась к утверждению, что, так как физический вакуум является системой с минимальной энергией, то никакую энергию из такой системы извлечь нельзя. При этом, однако, не учитывалось, что физический вакуум – это динамическая система, обладающая интенсивными флуктуациями, которые и могут быть источником энергии. Возможность эффективного взаимодействия спинирующих (вращающихся) объектов с физическим вакуумом позволяет с новых позиций рассмотреть возможность создания торсионных источников энергии.
Согласно Дж, Уиллеру, планковская плотность энергии физического вакуума составляет 1095 г/см3, в то время как плотность энергии ядерного вещества равна 1014 г/см3. Известны и другие оценки энергии вакуумных флуктуации, но все они существенно больше оценки Дж. Уиллера (31, с. 34). Следовательно, можно сделать следующие многообещающие выводы:
• энергия вакуумных флуктуации весьма велика в сравнении с любым другим видом энергии;
• через торсионные возмущения возможно высвободить энергию вакуумных флуктуации.
Российские ученые полагают, что в физическом вакууме “упрятаны” скрытая материя и скрытая энергия, равные чуть ли не половине тех, что реализованы в виде Вселенной (113, с. 7).
Date: 2015-08-15; view: 1857; Нарушение авторских прав
Источник
Для нас сейчас физический вакуум -— это то, что остается в пространстве, когда из него удаляют весь воздух и все до последней элементарные частицы. В результате получается не пустота, а своеобразная материя — Прародитель всего во Вселенной, рождающий элементарные частицы, из которых потом формируются атомы и молекулы.
А. Е. Акимов (11,с.24)
Так как в понятие вакуума вкладывается всепроникающая среда, находящаяся между частицами, то вакуум занимает все межчастичное пространство; следовательно, эту среду можно определить как бесчастичную форму материи, плотность которой изменяется соответственно действующим на вакуум силам. Плотность вакуума имеет весьма малое значение по сравнению с привычными для нас значениями плотности вещества: например, плотность вакуума, находящегося между молекулами газа при давлении в одну атмосферу составляет 10-15 г/см3, а плотность дистиллированной воды при тех же условиях — 1 г/см3 (20, с. 60).
Гравитация, присущая любым массам, присуща и массе вакуума. На основании этого постулата сила взаимодействия тела с любой частью вакуума будет определяться законом всемирного тяготения. То есть тела притягивают к себе вакуум подобно тому, как Земля притягивает находящиеся на ней тела. Поэтому при движении какого-либо тела вместе с ним будет двигаться (увлекаться) и окружающий его вакуум. Разумеется, это увлечение будет только в том случае, если на этот вакуум не действует большая сила (от гравитационного воздействия других тел), удерживающая вакуум от этого увлечения. Однако вакуум не просто увлекается за движущимся телом, а “выполняет роль подлинного управителя всякого движения. В образном представлении, вакуум, словно бульдог, вцепляется в любой макрообъект с тем большим усилием, чем массивнее его жертва. Вцепившись, он уже никогда не отпускает ее, сопровождая во всех странствиях по космическому пространству. Физически это означает, что вакуум и контролируемый им объект представляют собой замкнутую систему” (21, с, 27).
Уникальные опыты Физо и Майкельсона показали, что в природе нет абсолютно неподвижного вакуума. Вакуум, обладая массой, всегда увлекается тем телом, гравитационные силы которого преобладают, В указанных опытах таким телом является Земля, увлекающая околоземной вакуум (в опыте Майкельсона) и не позволяющая движущемуся на Земле телу увлекать вакуум, находящийся между частицами тела (в опыте Физо).
В современной интерпретации физический вакуум представляется сложным квантовым динамическим объектом, который проявляет себя через флуктуации. Физический вакуум рассматривают как материальную среду, изотропно (равномерно) заполняющую все пространство (и свободное пространство и вещество), имеющую квантовую структуру, ненаблюдаемую в невозмущенном состоянии (33. с. 4).
Для лучшего понимания физического вакуума было признано целесообразным рассматривать его как электронно-позитронную модель Дирака в ее несколько измененной интерпретации.
Представим физический вакуум как материальную среду, состоящую из элементов, образуемых парами частиц и античастиц (по Дираку — электронно-позитронная пара).
Если частицу и античастицу вложить друг в друга, то такая система будет истинно электронейтральной. А так как обе частицы обладают спином, то система “частица—античастица” должна представлять пару вложенных друг в друга частиц с противоположно направленными спинами. Вследствие истинной электронейтральности и противоположности спинов такая система не будет обладать и магнитным моментом (33, с. 5). Систему из частиц и античастиц в указанном выше виде, обладающую указанными свойствами, называют фитоном. Плотная упаковка фитонов и образует среду, называемую физическим вакуумом. Однако следует помнить, что эта модель весьма упрощена, и было бы наивно усматривать в построенной модели истинную структуру физического вакуума (рис. 1, а, б).
Рассмотрим наиболее важные в практическом отношении случаи возмущения физического вакуума разными внешними источниками (86. с, 940).
1. Пусть источником возмущения является заряд q (рис. 1, в). Действие заряда будет выражено в зарядовой поляризации физического вакуума, и это его состояние проявляется как электромагнитное поле (Е-поле). Именно на это указывал ранее в своих работах академик АН СССР Я. Б. Зельдович.
2. Пусть источником возмущения является масса m (рис, 1, г). Возмущение физического вакуума массой т будет выражаться в симметричных колебаниях элементов фитонов вдоль оси на центр объекта возмущения, как это условно изображено на рисунке. Такое состояние физического вакуума характеризуется как спиновая продольная поляризация и интерпретируется как гравитационное поле (G-поле). Такая идея была высказана еще А. Д. Сахаровым (87, с. 70). По его мнению, гравитация вообще не является отдельной действующей силой, а возникает в результате изменений квантово-флуктуационной энергии вакуума, когда имеется какая-либо материя, подобно тому, как это происходило с образованием сил в опыте Г. Казимира. А. Д. Сахаров считал, что присутствие материи в море частиц с абсолютно нулевой энергией вызывает появление несбалансированных сил, движущих материю, называемых гравитацией (86,с.940).
3. Пусть источником возмущения является классический спин (рис. 1, д). Спины фитонов, которые совпадают с ориентацией спина источника, сохраняют свою ориентацию. Спины фитонов, которые противоположны спину источника, под действием этого источника испытывают инверсию. В результате физический вакуум перейдет в состояние поперечной спиновой поляризации. Это состояние интерпретируется как спиновое поле (S-поле), то есть поле, порождаемое классическим спином. Такое поле называют еще торсионным полем (31, с. 31).
В соответствии с изложенным можно считать, что единая среда — физический вакуум может находиться в разных поляризационных состояниях, EQS-состояниях. Причем физический вакуум в фазовом состоянии, соответствующем электромагнитному полю, обычно рассматривается как сверхтекучая жидкость. В фазовом состоянии спиновой поляризации физический вакуум ведет себя как твердое тело.
Указанные соображения примиряют две взаимоисключающие точки зрения — точку зрения конца XIX века и начала XX века, когда эфир рассматривали как твердое тело, и представление современной физики о физическом вакууме как о сверхтекучей жидкости. Правильны обе точки зрения, но каждая для своего фазового состояния (33, с. 13).
РИС. 1 Диаграмма поляризационных состояний физического вакуума
Все три поля: гравитационное, электромагнитное и спиновое — являются универсальными. Эти поля проявляются себя и на микро-, и на макроуровнях. Здесь уместно вспомнить слова академика АН СССР Я. И. Померанчука; Вся физика — это физика вакуума”, или академика ЭАН Г. И. Наана: “Вакуум есть все, и все есть вакуум” (63,с.14).
В результате знакомства с теорией физического вакуума становится ясно, что современная природа не нуждается в “объединениях”. В природе есть только физический вакуум и его поляризационные состояния, а “объединения” лишь отражают степень нашего понимания взаимосвязи полей (31, с. 32).
Следует отметить еще один чрезвычайно важный факт, касающийся физического вакуума как источника энергии.
Традиционная точка зрения сводилась к утверждению, что, так как физический вакуум является системой с минимальной энергией, то никакую энергию из такой системы извлечь нельзя. При этом, однако, не учитывалось, что физический вакуум — это динамическая система, обладающая интенсивными флуктуациями, которые и могут быть источником энергии. Возможность эффективного взаимодействия спинирующих (вращающихся) объектов с физическим вакуумом позволяет с новых позиций рассмотреть возможность создания торсионных источников энергии.
Согласно Дж, Уиллеру, планковская плотность энергии физического вакуума составляет 1095 г/см3, в то время как плотность энергии ядерного вещества равна 1014 г/см3. Известны и другие оценки энергии вакуумных флуктуации, но все они существенно больше оценки Дж. Уиллера (31, с. 34). Следовательно, можно сделать следующие многообещающие выводы:
• энергия вакуумных флуктуации весьма велика в сравнении с любым другим видом энергии;
• через торсионные возмущения возможно высвободить энергию вакуумных флуктуации.
Российские ученые полагают, что в физическом вакууме “упрятаны” скрытая материя и скрытая энергия, равные чуть ли не половине тех, что реализованы в виде Вселенной (113, с. 7).
Источник