Какие физические свойства меди и алюминия

Тяжело представить современный мир без такого металла, как алюминий. Благодаря таким своим качествам, как лёгкость, стойкость к коррозии, прочность и возможности входить в соединения с другими металлами алюминий стал важнейшим конструкционным материалом XX и XXI века.
Этот серебристый металл применяется во многих отраслях промышленности: в автомобилестроении, самолётостроении, в строительстве и безусловно, в электроэнергетике. Алюминий является 13 элементом в периодической таблице Дмитрия Ивановича Менделеева. На данный момент подсчитано, что на него приходится примерно 8% от всей массы твёрдой земной коры и он является 3 химическим элементом по распространённости на планете Земля, уступая место только кислороду и кремнию.
История открытия
Но так как алюминий обладает высокой химической активностью, то в чистом виде он практически не встречается в природе, поэтому в отличие от многих других металлов о нём стало известно только в начале XIX века, когда алюминий был формально получен.
В 1824 году датский физик в процессе электролиза впервые получил алюминий. Хотя металл и содержал примеси ртути и калия, этот случай является первым доказанным случаем получения алюминия в лабораторных условиях.
Имя учёного, привёдшего к революционному методу, было Ханс Кристиан Эрстед. Но понадобилось ещё почти полвека, чтобы разработать технологии для получения его в промышленном производстве. Больше всего природный алюминий встречается в составе минералов квасцов. Именно благодаря этому минералу алюминий и получил своё название, которое на латыни звучит Alumen.
Алюминиевая руда
В современном мире при производстве алюминия применяют широко распространённую в природе алюминиевую руду — бокситы. Бокситы являются глинистой горной породой, в состав которой входят разнообразные модификации гидроксида с такими примесями, как хром, кремний, титан, сера, ванадий, карбонатные соли магния, кальций, железо.
В бокситах можно встретить почти половину таблицы химических элементов Менделеева. Ценность этой руды состоит в том, что помимо одной тонны алюминия, добытой из четырёх тонн бокситов, ценность для промышленности имеют и примеси. Из бокситов в процессе переработки получают белый порошок — оксид алюминия (Al2O3), который ещё имеет название «глинозём». Именно из глинозёма путём электролиза на современных предприятиях производят металл.
Роль электроэнергетики в производстве
При производстве алюминия затрачивается колоссальное количество электроэнергии. Для того чтобы получить одну тонну металла, энергии тратится столько, что её хватило бы на нужды 100-квартирного дома на протяжении целого месяца. А именно 15 МВт*ч. Поэтому большинство алюминиевых заводов располагаются недалеко от гидроэлектростанций, атомных электростанций или имеют собственные тепловые электростанции, а также развитую структуру электроэнергетических систем и сетей.
Свойства алюминия
В алюминии заложено редкое сочетание таких свойств, как:
- небольшой вес;
- пластика, электропроводность;
- возможность образовывать сплавы с другими металлами.
Поверхность алюминия всегда покрыта тончайшей оксидной плёнкой, которая является очень прочной и не позволяет алюминию подвергаться коррозии. Этот материал и в горячем, и в холодном состоянии легко поддаётся обработке давлением. Такие методы обработки, как прокатка, штамповка, волочение часто производятся на предприятии при производстве тех или иных деталей.
Ещё одна ценность алюминия заключается в том, что он не токсичен, не подвержен горению и не нуждается в дополнительной окраске: это делает его применение в авто- и авиастроении незаменимым элементом. Ковкость алюминия удивляет: из него удалось изготовить лист и очень тонкую проволоку толщиной всего в 4 микрона, а толщины фольги — добиться в три раза тоньше волоса человека.
Благодаря возможности алюминия образовывать соединения с большой группой химических элементов появилась большая группа сплавов. Например, сочетание алюминия и цинка используется в создании корпусов различных видов планшетов и телефонов, алюминий в сочетании магния и кремния используется при производстве различных типов двигателей, в составе элементов шасси и всевозможных двигателей. Различные сплавы применяются и в электроэнергетике.
Современная наука продолжает изучать и изобретать новейшие типы алюминиевых сплавов. Сегодня не существует ни одной отрасли промышленности, где бы не использовался алюминий. Можно с уверенностью сказать, что такие виды промышленности, как авиационная, космическая, энергетическая, автомобильная, пищевая, электронная получили своё современное развитие благодаря алюминию и его сплавам.
Нельзя не упомянуть о таком важном свойстве, как теплопроводность. Ведь именно это свойство металла требуется при производстве систем отопления, электропродукции, в авто- и авиастроении, при изготовлении тормозных систем и тому подобных. Теплоёмкость — это процесс переноса тепловой энергии в физических телах или их частицах от горячих объектов к холодным на основе закона Фурье. Конкурентом алюминия в данной области является медь.
Так какой же металл имеет большую теплопроводность? Это не совсем однозначный вопрос. Известно, что алюминий по теплопроводности уступает меди при средних температурах, но когда заходит речь о низких температурах, а именно при 50 К, тогда теплопроводность алюминия значительно возрастает, в то время как у меди теплопроводность становится ниже. Температура плавления алюминия составляет 933,61 К, это примерно 660 °C, в этот момент свойства Al, такие как теплопроводность и плотность, уменьшаются.
Плотность серебристого металла определяется его температурой и зависит от его состояния. Так, при температуре в 27 °C, плотность алюминия соответственно равна 2697 кг/м3, а при температуре плавления, равной 660 °C, его плотность равняется 2368 кг/м3. Снижение плотности метала в зависимости от температуры обуславливается его расширением при непосредственном нагревании.
Таблицы свойств алюминия и меди
Далее, рассмотрим таблицы физических свойств и теплопроводности алюминия и меди при соответствии разных температур.
- плотность Cu и Al, кг/м3;
- удельная теплоёмкость Cu и Al, Дж/(кг·K);
- температуропроводность Cu и Al, м2/с;
- теплопроводность Cu и Al, Вт/(м·K);
- удельное электрическое сопротивление Cu и Al, Ом·м;
- функция Лоренца Cu и Al;
Таблица физических свойств алюминия
T, K | кг/м3 | Дж/(кг·K) | м2 /с | Вт/(м·K) | Ом·м | L/L0 |
50 | – | – | 358 | 1350 | 0.0478/0.0476 | – |
100 | 2.725 | 483.6 | 228 | 300.4/302 | 0.442/0.440 | – |
200 | 2.715 | 800.2 | 109 | 236.8/237 | 1.587/1.584 | 0.78 |
300 | 2.697 | 903.7 | 93.8 | 235.9/237 | 2.733/2.733 | 0.88 |
400 | 2.675 | 951.3 | 93.6 | 238.8/240 | 3.866/3.875 | 0.94 |
500 | 2.665 | 991.8 | 88.8 | 234.7/236 | 4.995/5.020 | 0.96 |
600 | 2.652 | 1036.7 | 83.7 | 230.1/230 | 6.130/6.122 | 0.95 |
700 | 2.626 | 1090.2 | 78.4 | 224.4/225 | 7.350/7.322 | 0.96 |
800 | 2.595 | 1153.8 | 73.6 | 220.4/218 | 8.700/8.614 | 0.97 |
900 | 2.560 | 1228.2 | 69.2 | 217.6/210 | 10.18/10.005 | 0.99 |
933.61s | 2.550 | 1255.8 | 68.0 | 217.7/208 | 10.74/10.565 | 1 |
933.61l | 2.368 | 1176.7 | 35.2 | 98.1 | — 24.77 | 1.06 |
1000 | 2.350 | 1176.7 | 36.4 | 100.6 | — 25.88 | 1.06 |
1200 | 2.290 | 1176.7 | 39.5 | 106.4 | — 28.95 | 1.04 |
1400 | – | 1176.7 | 42.4 | – | — 31.77 | – |
1600 | – | 1176.7 | 44.8 | – | — 34.40 | – |
1800 | – | 1176.7 | 46.8 | – | — 36.93 | – |
Таблица физических свойств меди
T, K | кг/м3 | Дж/(кг·K) | м2 /с | Вт/(м·K) | Ом·м | L/L0 |
50 | – | – | – | 1250 | 0.0518 | – |
100 | – | – | – | 482 | 0.348 | – |
200 | – | – | 130 | 413 | 1.048 | – |
300 | 8.933 | 385.0 | 117 | 401.9/401 | 1.725 | 0.945 |
400 | 8.870 | 3.97.7 | 111 | 391.5/393 | 2.402 | 0.961 |
500 | 8.628 | 408.0 | 107 | 385.4/386 | 3.090 | 0.976 |
600 | 8.779 | 416.9 | 103 | 376.9/379 | 3.792 | 0.976 |
700 | 8.726 | 425.1 | 99.7 | 369.7/373 | 4.514 | 0.976 |
800 | 8.656 | 432.9 | 96.3 | 360.8/366 | 5.262 | 0.973 |
900 | 8.622 | 441.7 | 93.3 | 355.3/359 | 6.041 | 0.979 |
1000 | 8.567 | 451.4 | 90.3 | 349.2/352 | 6.868 | 0.979 |
1100 | 8.509 | 464.3 | 85.5 | 337.6/346 | 7.717 | 0.972 |
1200 | 8.451 | 480.8 | 80.6 | 327.5/339 | 8.626 | 0.970 |
1300 | 8.394 | 506.5 | 75.8 | 322.1/332 | 9.592 | 0.972 |
1357.6s | 8.361 | 525.2 | 72.3 | 317 | 10.171 | 0.972 |
1357.6l | 8.00 | 513.9 | 41.2 | 175 | 21.01 | 1.08 |
1400 | 7.98 | 513.9 | 42.7 | 175 | 21.43 | 1.08 |
Из всего вышеперечисленного ясно видно, что алюминий является одним из приоритетных металлов в промышленности, но у него есть ещё одно свойство: этот металл и его сплавы можно переплавлять, причём неоднократно, без потерь его характеристик. Помимо прочего, это экономически выгоднее, чем добыча из руды. Так, на одной электроэнергии экономия превышает 14 кВт/ч. По подсчётам, 75% добытого за всё время алюминия и его сплавов используются по настоящее время.
Источник
Только два металла – медь и алюминий нашли широкое применение в качестве проводников электрического тока.
Их использование в этом качестве обусловливается комплексом физических свойств самих металлов и их ценой.
Кабель АВВГ
Кабель АВВГможно устанавливать в вертикальном, наклонном и горизонтальном положениях. Изделие активно используется в канализациях, шахтах и туннелях. Возможна прокладка внутри помещений и по стенам зданий. Товар проявляет устойчивость к вибрационным нагрузкам.
ЗКАЗАТЬ Кабель АВВГ
Физические основы протекания электрического тока в проводниках
Как известно из физики, электрический ток – это упорядоченное движение электрических зарядов в проводнике, под действием сил электрического поля.
При перемещении электрических зарядов в проводнике они подвергаются противодействию, которое оценивают величиной электрического сопротивления и которое измеряется в омах (Ом).
Электрическое сопротивление для цилиндрических проводников определяется формулой r=ρ*l/s, где
r – электрическое сопротивление проводника, Ом,
ρ – удельное электрическое сопротивление материала проводника, Ом*мм2/м,
l – длина проводника, м,
s – площадь поперечного сечения проводника, мм2
Поэтому, в электротехнике, для изготовления проводов используются материалы с низким удельным сопротивлением (медь, алюминий, сталь).
Например, удельное сопротивление меди – 0, 0175 ом*мм2/м, удельное сопротивление алюминия – 0, 0294 ом*мм2/м
Иногда вместо электрического сопротивления r употребляют обратную величину – проводимость g=1/r, а вместо удельного сопротивления – удельную проводимость γ=1/ρ. Электрическая проводимость измеряется в сименсах (См).
При перемещении электрических зарядов в проводнике, электрическое сопротивление вызывает нагревание проводника. Это нагревание является вредным и, при эксплуатации проводника, должно быть ограничено, с учётом физических свойств проводника и класса изоляции.
Установившаяся температура проводника с током, зависит от плотности тока, которая определяется по формуле: δ=I/s, где
δ – плотность тока, а/мм2,
I — величина тока,
s — площадь поперечного сечения проводника, мм2
Что же выгоднее применять в качестве электрических проводов — медь или алюминий?
Кабель ПвБП
Кабель ПвБП предлагается для качественной и быстрой передачи электричества в фиксированных электролиниях. Изделия разрешается прокладывать в зонах, где на него не будут оказываться механические воздействия и растягивающие усилия. Его можно размещать в воде и в почве.
ЗАКАЗАТЬ Кабель ПвБП
При сравнительном рассмотрении тенденций роста стоимости алюминия и меди в течение ХХ и начала ХХI веков, очевидно, что стоимость алюминия растёт медленнее, чем меди.
Эта разница особенно видна в начале ХХI века. С 2006 года стоимость меди на Лондонской бирже металлов доходила до 8500 долл/тонну, в то время как алюминия — 2500 долл/тонну.
Это связано с усовершенствованием и увеличением производства алюминия, при доступном и недорогом сырье, которое, в стоимости конечного продукта, составляет 25%.
Для меди – ситуация иная. Медные рудные запасы ухудшаются, содержание меди руде падает, новые месторождения бедны металлом и сложнее в его извлечении.
Кроме того, эти месторождения географически более труднодоступны. Поэтому, затраты на сырьё в стоимости конечного продукта, составляют более 50 % и ещё растут.
Эти тенденции не изменяются, так же, как и сравнительная динамика цен, а изменения не предвидятся. Всё это говорит в пользу использования алюминия.
Научное открытие сверхпроводимости и её промышленное применение пока ещё недостижимы для мировой практики.
В свете того, что электрическая проводимость алюминия ниже, чем у меди, сечение алюминиевого провода и, следовательно его объём, должны быть больше чем у медного, причём диаметр алюминиевого провода, для той же плотности тока, должен быть больше, чем медного на 25%.
Однако, увеличение объёма, а следовательно массы алюминиевого провода, нивелируется невысокой плотностью металла (2,7 т/м3 — алюминий, 8,9 т/м3 — медь). Поэтому масса алюминиевого провода, для той же плотности тока, в три раза меньше чем медного.
Однако выигрыша по массе, при применении алюминиевого кабеля вместо медного, из-за требований СНИПа, нет. Например, масса меди в проложенных проводах и кабелях, в панелях современной трёхкомнатной квартиры, составляет 10 кг.
Кабель АВВГ
Кабель АВВГможно устанавливать в вертикальном, наклонном и горизонтальном положениях. Изделие активно используется в канализациях, шахтах и туннелях. Возможна прокладка внутри помещений и по стенам зданий. Товар проявляет устойчивость к вибрационным нагрузкам.
ЗКАЗАТЬ Кабель АВВГ
Масса трехжильного кабеля длиной в 1000 метров кабеля ВВГ (медь) сечением 1,5 мм2 составляет 93 кг, а масса эквивалентного ему кабеля АВВГ (алюминий) сечением 2,5 мм2 составляет 101 кг. Выгода от применения алюминиевых проводов получается из-за гораздо меньших цен на алюминий.
При существующих на сегодня ценах, применение алюминиевых проводов в несколько раз выгоднее, чем медных кабелей, например ПвБП!
Кабель ПвБП
Кабель ПвБП предлагается для качественной и быстрой передачи электричества в фиксированных электролиниях. Изделия разрешается прокладывать в зонах, где на него не будут оказываться механические воздействия и растягивающие усилия. Его можно размещать в воде и в почве.
ЗАКАЗАТЬ Кабель ПвБП
Для высоковольтных линий и для подвесных кабельных систем алюминий используется уже давно. Но в изолированных проводах увеличение диаметра жилы требует увеличения расхода кабельного ПВХ пластиката, цена которого (1800 долл/тонну) приближается к цене алюминия.
Чем тоньше жила провода, тем больше сравнительные затраты на электроизоляцию, а выгоды от перехода с меди на алюминий – ниже. Однако, при текущих ценах, экономия всё равно получается значительной!
Проектировщики, архитекторы, электрики должны преодолеть предвзятость по отношению к применению алюминиевых проводов при новом строительстве. Это позволит применять выгодный, но трудоёмкий алюминий при разводках в панелях и в подводах к точкам внешней нагрузки (розетки и выключатели), что даст значительную экономию.
Алюминиевые обмоточные провода, могут с заметной выгодой, применяться в производстве маломощных трансформаторов, электродвигателей и других электрических машин.
Всё это определит огромный спрос на алюминий на мировом рынке и использование «крылатого металла» на земле.
Источник: https://n-kabel.ru/article/med-ili-alyuminij-chto-vygodnee-/
Источник
На чтение 5 мин.
Сплавы алюминия и меди востребованы в различных производственных сферах, так как обладают относительно небольшим весом, высокой прочностью, пластическими свойствами, однородной плотностью. Хорошо поддаются литью, ковке и другим видам обработки. Отличаются относительно простой технологией получения.
Сплав алюминия и меди
История открытия
История сплавов алюминия с медью начинается с опытов Х. Эрстеда в 1825 году, когда он хотел получить чистый Al методом электролиза. В действительности он получил некий состав, в который входили и другие элементы, участвующие в эксперименте.
Дальнейшие опыты по открытию чистого алюминия провёл Ф. Велер в 1827 году, когда получил 30 грамм порошка Al, а в 1845 году — расплавленные шарики. Однако метод получения был слишком трудоёмким и требовал усовершенствования.
В 1856 году А. Девиль разработал со своей исследовательской группой промышленный метод получения алюминия и открыл первое его массовое производство. В 1886 году П. Эру и Ч. Холл открыли электролитический способ, который оказался дешевле и эффективнее химического.
С 1888 по 1895 в Нейгаузене (Швейцария) открываются предприятия по массовому производству Al.
В 1906 году А. Вильм на собственном предприятии начинает разрабатывать высокопрочные алюминиево-медные сплавы. Путем опытов он получил образец, который обладал свойством самоупрочнения. Его производство было продолжено в 1911 году в Германии.
Массовые исследования сплавов пришлись на период с 1920 по 1940 год в СССР, Германии, США. Стали явно разделяться два направления экспериментов — изучение чистых и легированных составов.
Состав и структура
Фазовая диаграмма состояния алюминиевых сплавов Al-Cu имеет следующие особенности:
- Максимальная растворимость меди в алюминии в твёрдой фазе составляет 5,65%, которая снижается с понижением температуры. Это делает возможным проведение закалки и старения. Фаза CuAl2 играет роль упрочняющей по методу растворов, придаёт механическую и термическую прочность.
- Эвтектическая точка находится на 33% концентрации меди, состоит из хрупкой, но прочной фазы CuAl2, которая делает материал непригодным для практического применения. Большое количество меди существенно повышает плотность образцов. Для литья используются сплавы с концентрацией от 1 до 1,5% (для получения упрочнения) и от 6 до 8% (чтобы исключить количество хрупкой фазы CuAl2).
- Хорошая растворимость Cu в Al и низкая температура плавления эвтектики +5480С становятся причиной появления широкого интервала кристаллизации.
Низкая жидкотекучесть, образование пор, трещин, ликвация — характерные признаки необходимости поиска компромисса между литейными и прочностными свойствами.
Основным легирующим элементом является медь, которая приводит к созданию неравновесной эвтектической фазы. Поэтому при термообработке закалкой проводят ступенчатый нагрев расплава до +5300С с последующей выдержкой до получения стабильной фазы.
Значительное количество электронов проводимости в сплавах Cu-Al существенно снижают удельное электросопротивление до уровня менее 0,02 мкОм*м. Наличие примесей железа или легирующих элементов на данную величину практически не влияют.
Алюминий
Характеристики и свойства сплава
Применение алюминия в чистом виде не выгодно по причине его малой прочности. Даже в изготовлении электронных компонентов он практически не применяется.
Свойства алюминия при добавлении меди существенно улучшаются: сохраняется пластичность, повышается прочность. В однофазных сплавах отсутствует текучая жидкая фаза, которая способна заполнять пустоты, образуемых в процессе усадки, снимать внутренние напряжения. Трудные составы имеют сложный процесс твердения и необходимо применять особые меры в процессе литья.
Существуют такие виды сплавов:
- деформируемые, получаемые путём термической закалки и последующего старения — используются в средне нагружаемых конструкциях, выпускаются в виде проволоки, прутка, листов, профилей и труб;
- литейные — используются для отливки сложных конструкций, обладают высокой прочностью, плохо поддаются пайке.
Чтобы улучшить литейные свойства смеси, в состав добавляют немного кремния, который увеличивает текучесть, снижает вероятность растрескивания. Негативным фактором является понижение уровня пластичности.
Механические свойства сплавов с содержанием меди от 9 до 11%:
- высокая прочность от 500 МПа;
- износостойкость;
- самоупрочнение;
- жаростойкость.
Для улучшения характеристик используются легирующие элементы:
- марганец и титан формируют интерметаллиды, которые находятся по границам дендритных ячеек Cu-Al образуют твёрдый каркас, применяются для повышения жаропрочности образцов;
- кремний повышает механические свойства, на снижает литейные, может применяться без термической обработки.
Изготовление
Медные сплавы с алюминием производят методом расплавления в электрических печах. Особенностью является возможность многократных циклов плавки и твердения, при которых не теряются основные свойства.
Сначала расплавляют алюминий, затем в него добавляют медь, а после получения однородного состава и легирующие элементы (железо, марганец, магний). Следующим этапом является закалка, которая позволяет избавиться от метастабильных фаз и добиться однородной плотности. Время выдержки выбирается на основе используемых легирующих компонентов и процентного содержания меди.
Где применяют сплав
Применение конструкций из алюминиево-медных сплавов:
- пищевая промышленность;
- автомобиле-, корабле- и самолётостроение;
- отделочные декоративные материалы;
- для защиты металлических изделий от коррозии;
- в электротехнике — радиоэлементы, высоковольтные линии передач, кабеля;
- в качестве отражателей света в лампах;
- для изготовления дорожных знаков, указателей, таблиц.
Изделия из сплава
Достоинства и недостатки
Основные преимущества:
- высокая прочность, пластичность;
- хорошая обрабатываемость —резание, штамповка, ковка, вытяжка, литьё;
- сохранение механических свойств до температуры +1750С;
- сверхпроводимость, позволяющая использовать образцы в научных исследованиях или применять в инновационных разработках;
- высокая коррозионная стойкость;
- возможность эксплуатации в деталях конструкций с повышенной взрывоопасностью;
- химическая нейтральность;
- простота сварки.
Основным недостатком является низкая коррозионная стойкость.
После закалки некоторое время сплав имеет отличную пластичность и ему можно придавать необходимую форму. Чтобы избежать чрезмерного образования дислокаций, требуется прогрев до +3500С с последующим остыванием в воздушной среде.
Источник