Какие физические свойства меди и алюминия

Какие физические свойства меди и алюминия thumbnail

Теплопроводность алюминияТяжело представить современный мир без такого металла, как алюминий. Благодаря таким своим качествам, как лёгкость, стойкость к коррозии, прочность и возможности входить в соединения с другими металлами алюминий стал важнейшим конструкционным материалом XX и XXI века.

Этот серебристый металл применяется во многих отраслях промышленности: в автомобилестроении, самолётостроении, в строительстве и безусловно, в электроэнергетике. Алюминий является 13 элементом в периодической таблице Дмитрия Ивановича Менделеева. На данный момент подсчитано, что на него приходится примерно 8% от всей массы твёрдой земной коры и он является 3 химическим элементом по распространённости на планете Земля, уступая место только кислороду и кремнию.

История открытия

История открытия алюминияНо так как алюминий обладает высокой химической активностью, то в чистом виде он практически не встречается в природе, поэтому в отличие от многих других металлов о нём стало известно только в начале XIX века, когда алюминий был формально получен.

В 1824 году датский физик в процессе электролиза впервые получил алюминий. Хотя металл и содержал примеси ртути и калия, этот случай является первым доказанным случаем получения алюминия в лабораторных условиях.

Имя учёного, привёдшего к революционному методу, было Ханс Кристиан Эрстед. Но понадобилось ещё почти полвека, чтобы разработать технологии для получения его в промышленном производстве. Больше всего природный алюминий встречается в составе минералов квасцов. Именно благодаря этому минералу алюминий и получил своё название, которое на латыни звучит Alumen.

Алюминиевая руда

В современном мире при производстве алюминия применяют широко распространённую в природе алюминиевую руду — бокситы. Бокситы являются глинистой горной породой, в состав которой входят разнообразные модификации гидроксида с такими примесями, как хром, кремний, титан, сера, ванадий, карбонатные соли магния, кальций, железо.

В бокситах можно встретить почти половину таблицы химических элементов Менделеева. Ценность этой руды состоит в том, что помимо одной тонны алюминия, добытой из четырёх тонн бокситов, ценность для промышленности имеют и примеси. Из бокситов в процессе переработки получают белый порошок — оксид алюминия (Al2O3), который ещё имеет название «глинозём». Именно из глинозёма путём электролиза на современных предприятиях производят металл.

Роль электроэнергетики в производстве

Провода из алюминия на производствеПри производстве алюминия затрачивается колоссальное количество электроэнергии. Для того чтобы получить одну тонну металла, энергии тратится столько, что её хватило бы на нужды 100-квартирного дома на протяжении целого месяца. А именно 15 МВт*ч. Поэтому большинство алюминиевых заводов располагаются недалеко от гидроэлектростанций, атомных электростанций или имеют собственные тепловые электростанции, а также развитую структуру электроэнергетических систем и сетей.

Свойства алюминия

В алюминии заложено редкое сочетание таких свойств, как:

  • небольшой вес;
  • пластика, электропроводность;
  • возможность образовывать сплавы с другими металлами.

Поверхность алюминия всегда покрыта тончайшей оксидной плёнкой, которая является очень прочной и не позволяет алюминию подвергаться коррозии. Этот материал и в горячем, и в холодном состоянии легко поддаётся обработке давлением. Такие методы обработки, как прокатка, штамповка, волочение часто производятся на предприятии при производстве тех или иных деталей.

Свойства и преимущества алюминияЕщё одна ценность алюминия заключается в том, что он не токсичен, не подвержен горению и не нуждается в дополнительной окраске: это делает его применение в авто- и авиастроении незаменимым элементом. Ковкость алюминия удивляет: из него удалось изготовить лист и очень тонкую проволоку толщиной всего в 4 микрона, а толщины фольги — добиться в три раза тоньше волоса человека.

Благодаря возможности алюминия образовывать соединения с большой группой химических элементов появилась большая группа сплавов. Например, сочетание алюминия и цинка используется в создании корпусов различных видов планшетов и телефонов, алюминий в сочетании магния и кремния используется при производстве различных типов двигателей, в составе элементов шасси и всевозможных двигателей. Различные сплавы применяются и в электроэнергетике.

Современная наука продолжает изучать и изобретать новейшие типы алюминиевых сплавов. Сегодня не существует ни одной отрасли промышленности, где бы не использовался алюминий. Можно с уверенностью сказать, что такие виды промышленности, как авиационная, космическая, энергетическая, автомобильная, пищевая, электронная получили своё современное развитие благодаря алюминию и его сплавам.

Нельзя не упомянуть о таком важном свойстве, как теплопроводность. Ведь именно это свойство металла требуется при производстве систем отопления, электропродукции, в авто- и авиастроении, при изготовлении тормозных систем и тому подобных. Теплоёмкость — это процесс переноса тепловой энергии в физических телах или их частицах от горячих объектов к холодным на основе закона Фурье. Конкурентом алюминия в данной области является медь.

Трубы из алюминия - особенностиТак какой же металл имеет большую теплопроводность? Это не совсем однозначный вопрос. Известно, что алюминий по теплопроводности уступает меди при средних температурах, но когда заходит речь о низких температурах, а именно при 50 К, тогда теплопроводность алюминия значительно возрастает, в то время как у меди теплопроводность становится ниже. Температура плавления алюминия составляет 933,61 К, это примерно 660 °C, в этот момент свойства Al, такие как теплопроводность и плотность, уменьшаются.

Читайте также:  Какие есть свойства натуры

Плотность серебристого металла определяется его температурой и зависит от его состояния. Так, при температуре в 27 °C, плотность алюминия соответственно равна 2697 кг/м3, а при температуре плавления, равной 660 °C, его плотность равняется 2368 кг/м3. Снижение плотности метала в зависимости от температуры обуславливается его расширением при непосредственном нагревании.

Таблицы свойств алюминия и меди

Далее, рассмотрим таблицы физических свойств и теплопроводности алюминия и меди при соответствии разных температур.

  • плотность Cu и Al, кг/м3;
  • удельная теплоёмкость Cu и Al, Дж/(кг·K);
  • температуропроводность Cu и Al, м2/с;
  • теплопроводность Cu и Al, Вт/(м·K);
  • удельное электрическое сопротивление Cu и Al, Ом·м;
  • функция Лоренца Cu и Al;

Таблица физических свойств алюминия

T, Kкг/м3Дж/(кг·K)м2 /сВт/(м·K)Ом·мL/L0
5035813500.0478/0.0476
1002.725483.6228300.4/3020.442/0.440
2002.715800.2109236.8/2371.587/1.5840.78
3002.697903.793.8235.9/2372.733/2.7330.88
4002.675951.393.6238.8/2403.866/3.8750.94
5002.665991.888.8234.7/2364.995/5.0200.96
6002.6521036.783.7230.1/2306.130/6.1220.95
7002.6261090.278.4224.4/2257.350/7.3220.96
8002.5951153.873.6220.4/2188.700/8.6140.97
9002.5601228.269.2217.6/21010.18/10.0050.99
933.61s2.5501255.868.0217.7/20810.74/10.5651
933.61l2.3681176.735.298.1— 24.771.06
10002.3501176.736.4100.6— 25.881.06
12002.2901176.739.5106.4— 28.951.04
14001176.742.4— 31.77
16001176.744.8— 34.40
18001176.746.8— 36.93

Таблица физических свойств меди

T, Kкг/м3Дж/(кг·K)м2 /сВт/(м·K)Ом·мL/L0
5012500.0518
1004820.348
2001304131.048
3008.933385.0117401.9/4011.7250.945
4008.8703.97.7111391.5/3932.4020.961
5008.628408.0107385.4/3863.0900.976
6008.779416.9103376.9/3793.7920.976
7008.726425.199.7369.7/3734.5140.976
8008.656432.996.3360.8/3665.2620.973
9008.622441.793.3355.3/3596.0410.979
10008.567451.490.3349.2/3526.8680.979
11008.509464.385.5337.6/3467.7170.972
12008.451480.880.6327.5/3398.6260.970
13008.394506.575.8322.1/3329.5920.972
1357.6s8.361525.272.331710.1710.972
1357.6l8.00513.941.217521.011.08
14007.98513.942.717521.431.08

Из всего вышеперечисленного ясно видно, что алюминий является одним из приоритетных металлов в промышленности, но у него есть ещё одно свойство: этот металл и его сплавы можно переплавлять, причём неоднократно, без потерь его характеристик. Помимо прочего, это экономически выгоднее, чем добыча из руды. Так, на одной электроэнергии экономия превышает 14 кВт/ч. По подсчётам, 75% добытого за всё время алюминия и его сплавов используются по настоящее время.

Источник

Только два металла – медь и алюминий нашли широкое применение в качестве проводников электрического тока.

Их использование в этом качестве обусловливается комплексом физических свойств самих металлов и их ценой.

Кабель АВВГ

Кабель АВВГможно устанавливать в вертикальном, наклонном и горизонтальном положениях. Изделие активно используется в канализациях, шахтах и туннелях. Возможна прокладка внутри помещений и по стенам зданий. Товар проявляет устойчивость к вибрационным нагрузкам.

ЗКАЗАТЬ Кабель АВВГ

Физические основы протекания электрического тока в проводниках

Как известно из физики, электрический ток – это упорядоченное движение электрических зарядов в проводнике, под действием сил электрического поля.

При перемещении электрических зарядов в проводнике они подвергаются противодействию, которое оценивают величиной электрического сопротивления и которое измеряется в омах (Ом).

Электрическое сопротивление для цилиндрических проводников определяется формулой r=ρ*l/s,  где

r – электрическое сопротивление проводника, Ом,

ρ – удельное электрическое сопротивление материала проводника, Ом*мм2/м,

l – длина проводника, м,

s – площадь поперечного сечения проводника, мм2

Поэтому, в электротехнике, для изготовления проводов используются материалы с низким удельным сопротивлением (медь, алюминий, сталь).

Например, удельное сопротивление меди – 0, 0175 ом*мм2/м, удельное сопротивление алюминия – 0, 0294 ом*мм2/м

Иногда вместо электрического сопротивления r употребляют обратную величину – проводимость g=1/r, а вместо удельного сопротивления – удельную проводимость γ=1/ρ. Электрическая проводимость измеряется в сименсах (См).

При перемещении электрических зарядов в проводнике, электрическое сопротивление вызывает нагревание проводника. Это нагревание является вредным и, при эксплуатации проводника, должно быть ограничено, с учётом физических свойств проводника и класса изоляции.

Установившаяся температура проводника с током, зависит от плотности тока, которая определяется по формуле: δ=I/s, где

Читайте также:  Какие свойства огурца для лица

δ  – плотность тока, а/мм2,

I — величина тока,

s — площадь поперечного сечения проводника, мм2

Что же выгоднее применять в качестве электрических проводов — медь или алюминий?

Кабель ПвБП

Кабель ПвБП предлагается для качественной и быстрой передачи электричества в фиксированных электролиниях. Изделия разрешается прокладывать в зонах, где на него не будут оказываться механические воздействия и растягивающие усилия. Его можно размещать в воде и в почве.

ЗАКАЗАТЬ Кабель ПвБП

При сравнительном рассмотрении тенденций роста стоимости алюминия и меди в течение ХХ и начала ХХI веков, очевидно, что стоимость алюминия растёт медленнее, чем меди.

Эта разница особенно видна в начале ХХI века. С 2006 года стоимость меди на Лондонской бирже металлов доходила до 8500 долл/тонну, в то время как алюминия — 2500 долл/тонну.

Это связано с усовершенствованием и увеличением производства алюминия, при доступном и недорогом сырье, которое, в стоимости конечного продукта, составляет 25%.

Для меди – ситуация иная. Медные рудные запасы ухудшаются, содержание меди руде падает, новые месторождения бедны металлом и сложнее в его извлечении.

Кроме того, эти месторождения географически более труднодоступны. Поэтому, затраты на сырьё в стоимости конечного продукта, составляют более 50 % и ещё растут.

Эти тенденции не изменяются, так же, как и сравнительная динамика цен, а изменения не предвидятся. Всё это говорит в пользу использования алюминия.

Научное открытие сверхпроводимости и её промышленное применение пока ещё недостижимы для мировой практики.

В свете того, что электрическая проводимость алюминия ниже, чем у меди, сечение алюминиевого провода и, следовательно его объём, должны быть больше чем у медного, причём диаметр алюминиевого провода, для той же плотности тока, должен быть больше, чем медного на 25%.

Однако, увеличение объёма, а следовательно массы алюминиевого провода, нивелируется невысокой плотностью металла (2,7 т/м3 — алюминий, 8,9 т/м3 — медь). Поэтому масса алюминиевого провода, для той же плотности тока, в три раза меньше чем медного.

Однако выигрыша по массе, при применении алюминиевого кабеля вместо медного, из-за требований СНИПа, нет. Например, масса меди в проложенных проводах и кабелях, в панелях современной трёхкомнатной квартиры, составляет 10 кг.

Кабель АВВГ

Кабель АВВГможно устанавливать в вертикальном, наклонном и горизонтальном положениях. Изделие активно используется в канализациях, шахтах и туннелях. Возможна прокладка внутри помещений и по стенам зданий. Товар проявляет устойчивость к вибрационным нагрузкам.

ЗКАЗАТЬ Кабель АВВГ

Масса трехжильного кабеля длиной в 1000 метров кабеля ВВГ (медь) сечением 1,5 мм2 составляет 93 кг, а масса эквивалентного ему кабеля АВВГ (алюминий) сечением 2,5 мм2 составляет 101 кг. Выгода от применения алюминиевых проводов получается из-за гораздо меньших цен на алюминий.

При существующих на сегодня ценах, применение алюминиевых проводов в несколько раз выгоднее, чем медных кабелей, например ПвБП!

Кабель ПвБП

Кабель ПвБП предлагается для качественной и быстрой передачи электричества в фиксированных электролиниях. Изделия разрешается прокладывать в зонах, где на него не будут оказываться механические воздействия и растягивающие усилия. Его можно размещать в воде и в почве.

ЗАКАЗАТЬ Кабель ПвБП

Для высоковольтных линий и для подвесных кабельных систем алюминий используется уже давно. Но в изолированных проводах увеличение диаметра жилы требует увеличения расхода кабельного ПВХ пластиката, цена которого (1800 долл/тонну) приближается к цене алюминия.

Чем тоньше жила провода, тем больше сравнительные затраты на электроизоляцию, а выгоды от перехода с меди на алюминий – ниже. Однако, при текущих ценах, экономия всё равно получается значительной!

Проектировщики, архитекторы, электрики должны преодолеть предвзятость по отношению к применению алюминиевых проводов при новом строительстве. Это позволит применять выгодный, но трудоёмкий алюминий при разводках в панелях и в подводах к точкам внешней нагрузки (розетки и выключатели), что даст значительную экономию.

Алюминиевые обмоточные провода, могут с заметной выгодой, применяться в производстве маломощных трансформаторов, электродвигателей и других электрических машин.

Всё это определит огромный спрос на алюминий на мировом рынке и использование «крылатого металла» на земле.

Источник: https://n-kabel.ru/article/med-ili-alyuminij-chto-vygodnee-/

Источник

На чтение 5 мин.

Сплавы алюминия и меди востребованы в различных производственных сферах, так как обладают относительно небольшим весом, высокой прочностью, пластическими свойствами, однородной плотностью. Хорошо поддаются литью, ковке и другим видам обработки. Отличаются относительно простой технологией получения.

Алюминий и медьСплав алюминия и меди

История открытия

История сплавов алюминия с медью начинается с опытов Х. Эрстеда в 1825 году, когда он хотел получить чистый Al методом электролиза. В действительности он получил некий состав, в который входили и другие элементы, участвующие в эксперименте.

Дальнейшие опыты по открытию чистого алюминия провёл Ф. Велер в 1827 году, когда получил 30 грамм порошка Al, а в 1845 году — расплавленные шарики. Однако метод получения был слишком трудоёмким и требовал усовершенствования.

Читайте также:  Какими свойствами обладают четырехугольники описанные около окружности

В 1856 году А. Девиль разработал со своей исследовательской группой промышленный метод получения алюминия и открыл первое его массовое производство. В 1886 году П. Эру и Ч. Холл открыли электролитический способ, который оказался дешевле и эффективнее химического.

С 1888 по 1895 в Нейгаузене (Швейцария) открываются предприятия по массовому производству Al.

В 1906 году А. Вильм на собственном предприятии начинает разрабатывать высокопрочные алюминиево-медные сплавы. Путем опытов он получил образец, который обладал свойством самоупрочнения. Его производство было продолжено в 1911 году в Германии.

Массовые исследования сплавов пришлись на период с 1920 по 1940 год в СССР, Германии, США. Стали явно разделяться два направления экспериментов — изучение чистых и легированных составов.

Состав и структура

Фазовая диаграмма состояния алюминиевых сплавов Al-Cu имеет следующие особенности:

  1. Максимальная растворимость меди в алюминии в твёрдой фазе составляет 5,65%, которая снижается с понижением температуры. Это делает возможным проведение закалки и старения. Фаза CuAl2 играет роль упрочняющей по методу растворов, придаёт механическую и термическую прочность.
  2. Эвтектическая точка находится на 33% концентрации меди, состоит из хрупкой, но прочной фазы CuAl2, которая делает материал непригодным для практического применения. Большое количество меди существенно повышает плотность образцов. Для литья используются сплавы с концентрацией от 1 до 1,5% (для получения упрочнения) и от 6 до 8% (чтобы исключить количество хрупкой фазы CuAl2).
  3. Хорошая растворимость Cu в Al и низкая температура плавления эвтектики +5480С становятся причиной появления широкого интервала кристаллизации.

Низкая жидкотекучесть, образование пор, трещин, ликвация — характерные признаки необходимости поиска компромисса между литейными и прочностными свойствами.

Основным легирующим элементом является медь, которая приводит к созданию неравновесной эвтектической фазы. Поэтому при термообработке закалкой проводят ступенчатый нагрев расплава до +5300С с последующей выдержкой до получения стабильной фазы.

Значительное количество электронов проводимости в сплавах Cu-Al существенно снижают удельное электросопротивление до уровня менее 0,02 мкОм*м. Наличие примесей железа или легирующих элементов на данную величину практически не влияют.

Алюминиевые стержниАлюминий

Характеристики и свойства сплава

Применение алюминия в чистом виде не выгодно по причине его малой прочности. Даже в изготовлении электронных компонентов он практически не применяется.

Свойства алюминия при добавлении меди существенно улучшаются: сохраняется пластичность, повышается прочность. В однофазных сплавах отсутствует текучая жидкая фаза, которая способна заполнять пустоты, образуемых в процессе усадки, снимать внутренние напряжения. Трудные составы имеют сложный процесс твердения и необходимо применять особые меры в процессе литья.

Существуют такие виды сплавов:

  • деформируемые, получаемые путём термической закалки и последующего старения — используются в средне нагружаемых конструкциях, выпускаются в виде проволоки, прутка, листов, профилей и труб;
  • литейные — используются для отливки сложных конструкций, обладают высокой прочностью, плохо поддаются пайке.

Чтобы улучшить литейные свойства смеси, в состав добавляют немного кремния, который увеличивает текучесть, снижает вероятность растрескивания. Негативным фактором является понижение уровня пластичности.

Механические свойства сплавов с содержанием меди от 9 до 11%:

  • высокая прочность от 500 МПа;
  • износостойкость;
  • самоупрочнение;
  • жаростойкость.

Для улучшения характеристик используются легирующие элементы:

  • марганец и титан формируют интерметаллиды, которые находятся по границам дендритных ячеек Cu-Al образуют твёрдый каркас, применяются для повышения жаропрочности образцов;
  • кремний повышает механические свойства, на снижает литейные, может применяться без термической обработки.

Изготовление

Медные сплавы с алюминием производят методом расплавления в электрических печах. Особенностью является возможность многократных циклов плавки и твердения, при которых не теряются основные свойства.

Сначала расплавляют алюминий, затем в него добавляют медь, а после получения однородного состава и легирующие элементы (железо, марганец, магний). Следующим этапом является закалка, которая позволяет избавиться от метастабильных фаз и добиться однородной плотности. Время выдержки выбирается на основе используемых легирующих компонентов и процентного содержания меди.

Где применяют сплав

Применение конструкций из алюминиево-медных сплавов:

  • пищевая промышленность;
  • автомобиле-, корабле- и самолётостроение;
  • отделочные декоративные материалы;
  • для защиты металлических изделий от коррозии;
  • в электротехнике — радиоэлементы, высоковольтные линии передач, кабеля;
  • в качестве отражателей света в лампах;
  • для изготовления дорожных знаков, указателей, таблиц.

ИзделияИзделия из сплава

Достоинства и недостатки

Основные преимущества:

  • высокая прочность, пластичность;
  • хорошая обрабатываемость —резание, штамповка, ковка, вытяжка, литьё;
  • сохранение механических свойств до температуры +1750С;
  • сверхпроводимость, позволяющая использовать образцы в научных исследованиях или применять в инновационных разработках;
  • высокая коррозионная стойкость;
  • возможность эксплуатации в деталях конструкций с повышенной взрывоопасностью;
  • химическая нейтральность;
  • простота сварки.

Основным недостатком является низкая коррозионная стойкость.

После закалки некоторое время сплав имеет отличную пластичность и ему можно придавать необходимую форму. Чтобы избежать чрезмерного образования дислокаций, требуется прогрев до +3500С с последующим остыванием в воздушной среде.

Источник