Какие химические свойства грунтов

Устойчивость любой конструкции определяется прежде всего от качества поверхности, на которой она находится. Именно поэтому на этапе проектирования строительных конструкций инженеры в первую очередь оценивают тип грунта и его технические характеристики, потому что это определяющий фактор при выборе вида фундамента. Однако грунт в строительной сфере – это не только основание, но и геологическая среда (если речь идет о сооружениях подземных). Помимо этого, сам грунт используется и как строительный материал.

Типы грунтов

В ходе тысячелетних процессов, происходящих в земной коре под влиянием различных физических и химических факторов, возникали разнообразные типы грунтов – композитов из частиц минералов и органических веществ.

Также грунты подразделяются на 3 типа:

– двухкомпонентный
– трехкомпонентный
– четырехкомпонентный

К первому типу относятся:
твердые частицы (зерна минералов или лед), поры заполнены водой.

Ко второму типу относятся:
твердые частицы, вода в порах, воздух или газ, растворенный в воде или в виде пузырьков в пустотах пород

К третьему типу относятся:

твердые частицы, вода, воздух или газ, органические вещества (частицы торфа, ила или гумуса)

Механизм образования грунтов

Геологические образования неоднородны по своему происхождению: это могут быть континентальные или морские отложения. Высокой несущей способностью обладает первый вид грунтов. Он возникает в ходе химического или физического разрушения горных пород (элювиальный) и имеет угловатую форму зерен или в результате вымывания и перемещения (аллювиальный): тогда образуются частицы окатанные.

Неоднородную структуру имеет грунт, образованный вследствие движения ледников и атмосферных вод. Наличие в земле пылеватых и илистых фракций, песка, галечников свидетельствует о том, что она образовалась в ходе выветривания или же это результат морских отложений. Такой грунт не выдерживает большой нагрузки и теряет свои функциональные свойства.

Происхождение определяет не только состав, но и структуру, от них и зависят свойства данного вида грунта.

Состав и структура грунтов

Тип грунта зависит от вида частиц, его составляющих, и химической связи между ними. Разрушение горных пород привело к образованию определенных видов минеральных частиц. Органические вещества, попадающие в грунтовый массив, ухудшают свойства материала, делающие его пригодными для строительства.

Песчаные грунты с разной степенью плотности имеют зернистое сложение, илистые – хлопьевидное, глинистые и мореные – каркасное или сотообразное. Вид связи между минеральными частицами зависит от времени возникновения: для более молодых слоев характерна водноколлоидная связность, созданная молекулами пленочной воды и легко разрушающаяся при намачивании или встряхивании. При этом она обладает высокой степенью восстанавливаемости. Древние грунты обладают кристаллизационным типом связности: это так называемые первичные силикаты, соли, глинистые минералы.

Прочность твердых частиц зависит от характера связи между ними, поэтому одинаковые по составу, но разные по типу связи между компонентами грунты будут отличаться своими характеристиками.

Типы связей и их влияние на характеристики минеральных частей грунта:

· ковалентные связи, характерные для первичных силикатов, придают материалу прочность и твердость, многие из них являются тугоплавкими.

· Ионные связи делают материал растворимым (соли: сульфаты, карбонаты, галоиды).

· Металлические связи (характерны для металлов) придают высокую тепло – и электропроводность.

· Водородные связи характерны для льда, кристаллогидратов, глинистых минералов некоторых видов.

· Молекулярные связи (отвердевшие инертные газы, газогидраты, органические твердые компоненты, глинистые материалы) определяют низкую точку плавления и сублимацию материала.

Грунт в массиве может располагаться в виде слоев, сеток, может иметь структуру ленточную (с чередованием тонких прослоек песка и глины), порфировую (смешение крупных и мельчайших частиц) или однородную.

Грунты, на которых строят здания и сооружения

Грунты по своим физико-химическим свойствам делятся на два типа: сцементированные и несцементированные. К сцементированному типу относятся скальные грунты, которые разрабатываются с помощью взрывчатки или дробления.

Несцементированный тип представляет собой песчаные, глинистые, грунты с органическими частицами.

1. Скальные грунты

Песчаники, граниты и кварциты, представляющие собой сплошной массив, образуют скальный грунт. Это породы со спаянными или сцементированными связями между частицами. Они относятся к метаморфическим или осадочным породам, а также могут образоваться в ходе извержения.

Свойства:

· водоустойчивость (содержащие кремнистый цемент породы не растворяются в воде, труднорастворимы, например, известняки, доломиты, средней растворимостью обладают гипс и ангидрит)

· несжимаемость

Бывает, что в скальных породах образуются карстовые полости вследствие просачивания воды сквозь трещины. Если массив не содержит таких дефектов, то он является идеальным основанием для строительства.

2. Крупноблочные грунты

Крупнообломочные грунты, как следует из названия, состоят из обломков кристаллических или осадочных пород, не имеющих жесткой связи между частицами.

Свойства:

· хорошая водопроницаемость

· низкий уровень сжимаемости

· при воздействии воды набухания не происходит

Вид крупнообломочного грунта определяется, исходя из размера преобладающих в нем зерен:

1. валунный или глыбовый содержит более 50% крупных частиц (от 200 мм)

2. галечниковый или щебенистый – частицы от 10 мм

3. гравийный или дресвяный – от 2 мм

В качестве основания для здания подходит при условии, что грунт залегает плотным слоем и не подвержен размыванию водой.

Кроме того, гравий и щебень могут использовать для уплотнения более слабого грунта.

3.Песчаные грунты

Песчаный грунт содержит до 50% от общего веса частицы размером до 2 мм и обладает следующими свойствами:

· сыпучесть в сухом состоянии

· отсутствие пластичности

· низкий коэффициент сжатия

· высокая скорость уплотнения при давлении

· хорошая водопроницаемость

Выраженность тех или иных свойств зависит от качества песка, которое определяется размером его частиц: он может быть гравелистый, крупный, средний, мелкий, пылеватый.

Такие физические качества делают песчаный грунт прочным основанием для строительства зданий при соблюдении следующих условий: он должен иметь равномерную плотность; отсутствие в данной локации грунтовых вод, которые могут воздействовать на грунт. Преимуществами песчаного основания являются устойчивость к воздействию низких температур (кроме мелких песков); значительное сокращение времени оседания строений, возведенных на таком основании.

Следует обратить внимание на то, что песчаный грунт может содержать пылеватые частицы размером от 0,05 до 0,005 мм, которые образовались в ходе выветривания. Если их много (от четверти до половины общей массы), то грунт называется пылеватым. Это приводит к снижению несущей способности материала, поскольку песок становится непрочным, теряет устойчивость в откосах, под воздействием воды теряет связность и может набухать и пучиться.

Чтобы увеличить способность песчаного грунта выдерживать статическую нагрузку, используют искусственное закрепление. Для уплотнения крупного и среднего песка в заранее забитые полые сваи заливают жидкий раствор цемента, а затем сваи вынимают. В трудных случаях используют силикатизацию грунта при помощи жидкого стекла и кальция хлористого.

Сам песчаный грунт, уплотненный вибрацией и увлажненный, используется и в качестве подушки при строительстве на более слабом основании. При этом толщина подушки рассчитывается в зависимости от несущей способности слабого грунта.

4. Суглинки и супеси

Этот вид грунта пригоден для строительства. Он содержит 30% глинистых частиц, песок и пылеватые частицы.

5. Глинистые грунты

Глинистые грунты состоят из чешуек или иголок (размером до 0,005 мм) и капиллярных каналов, по которым в поры проникает вода, образующая вокруг зерен водоколлоидные пленки.

Свойства:

· вязкость

· пластичность

· набухаемость

· липкость

· водонепроницаемость

· высокое сжатие

Недостатки:

· при замерзании вода в порах увеличивается в объеме, что приводит к вспучиванию

· низкая скорость осадки

· низкая несущая способность у глины в разжиженном состоянии и глины с прослойками песка

Влажные глинистые грунты можно закрепить при помощи постоянного электрического тока, под воздействием которого глина теряет влагу и уплотняется. Параллельно можно вводить в него химические добавки.

6. Лёсс

Лёсс – вид глинистого грунта с преобладанием пылеватых частиц с крупными порами.

Свойства:

· высокая степень влагопроницаемости

· быстрое размокание и неравномерная осадка

При возведении здания на лёссе необходимо принять меры для предотвращения контакта его с водой. Закрепляется такой грунт при помощи химических растворов или обжига раскаленными газами через специальные трубы, проложенные в специальных скважинах.

7. Грунты с органическими примесями

Эту группу составляют ил, торф, растительный грунт.

Образуются они в результате микробиологических процессов.

Свойства:

· влажность на грани текучести

· высокий коэффициент пористости

· высокая неравномерность сжатия

В связи с этим такой вид непригоден для строительства.

8. Насыпные грунты

Насыпные грунты имеют искусственное происхождение и неравномерное сжатие, поэтому практически не используются в качестве основания в строительстве.

9. Плывуны

Плывуны – мелкозернистый грунт глинистого типа в подвижном состоянии. Он малопригоден для возведения на нем любых конструкций.

Заключение

Итак, выбирая строительную площадку, необходимо тщательно исследовать физико-химические свойства грунта: состав зерен, влажность, пористость, пластичность, тип связи между частицами и т.д. Эти параметры определяются специалистами в лабораторных условиях и определяют возможность и технологию строительства.

Например, скальные и крупнообломочные грунты идеально подходят в качестве оснований для строительства. А вот при использовании глинистых и песчаных необходимо учитывать их особенности: при взаимодействии с грунтовыми водами глинистые основания медленнее теряют свои качества, чем песчаные, зато при высыхании и под воздействием статической нагрузки глинистый грунт сильно уменьшается в объеме. Некоторые виды грунтов (илистые, заторфованные, пылеватые, искусственные) нецелесообразно использовать для возведения на них зданий.

Улучшить качество материала можно, уплотнив его при помощи укатывания, трамбовки, вибрирования, дренажа, подушек из более сильного грунта.

Ссылка на статью https://burosi.ru/sostav-i-svojstva-gruntov

Строительная лаборатория ООО “Бюро “Строительные исследования” занимается испытаниями конструкций и материалов в Санкт-Петербурге и Москве

Основная специализация лаборатории:

Бесплатно вызвать лаборанта на объект или задать вопрос эксперту можно:

1. Заполнив форму на нашем сайте https://burosi.ru/

2. По телефонам:

+7(812)386-11-75 – главный офис в Санкт-Петербурге

+7(965)006-94-59 (WhatsApp, Telegramm) – отдел по работе с клиентами Санкт-Петербург и Москва

3. Написать нам на почту

4. А также в комментариях к публикации.

Подписывайтесь на наши социальные сети и YouTube канал, там много интересной информации и лайфхаков.

Источник

Химические свойства грунтов характеризуют происходящие в них химические изменения, их способность участвовать в химических взаимодействиях с различными веществами. Они проявляются во всевозможных химических реакциях, протекающих в грунтах, но наиболее важными из них являются растворимость грунтов, особенности кислотно-основных свойств, их химическая агрессивность.

Растворимость грунтов, ее основные характеристики и методы их определения

Растворимостью грунтов называется их способность образовывать с другими веществами растворы, т. е. гомогенные смеси переменного состава. Количественно растворимость характеризуется максимальным количеством грунта (или минерала), способным растворяться в данном растворителе при определенных Р и Т, т. е. концентрацией насыщенного, или равновесного, раствора, измеряемой, например, в мг/л, в молярной (моль/м3) или моляльной (кмоль/1000 кг) формах. Растворимость минералов и веществ в грунтах удобно также характеризовать произведением растворимости (ПР) – произведением молярных концентраций (активностей) катионов и анионов минерала или вещества в его насыщенном растворе [50].

В инженерно-геологических целях важно знать наиболее растворимые разности, к которым относятся, прежде всего, галоидные грунты, содержащие галит, сильвин, некоторые типы карбонатных грунтов (известняк, доломит, мел, мергель), сульфатные грунты, содержащие гипс, ангидрит, а также засоленные грунты и др. Во всех случаях примесь в грунтах хорошо растворимых в воде минералов класса простых солей с ионным типом связей и обладающих сравнительно невысокими энергиями кристаллических решеток повышает их растворимость.

К засоленным грунтам следует относить грунты, в которых содержание легко- и среднерастворимых (водорастворимых) солей превышает величины, указанные в табл. 7.1.

Таблица 7.1

Минимальное содержание легко- и среднерастворимых солей в грунтах [111]

Наименование засоленных грунтов

Минимальное суммарное содержание солей в % от веса воздушно-сухого грунта

Крупнообломочный:

при Содержании песчаного заполнителя 40 % и более

3

при содержании заполнителя в виде суглинка 30 % и более

10

при содержании заполнителя в виде супеси 30 % и более

5

Песок

3

Супесь

5

Суглинок

10

К легкорастворимым солям относятся: хлориды NaCl, К.С1, СаСЬ, MgCb; бикарбонаты: NaHCC>3, Са(НСОз), Mg(HC(>3); карбонат натрия NaiCCb; сульфаты магния и натрия MgSOa, NaiSOj. К среднерастворимым солям относятся гипс CaSOj • 2НСЬ и ангидрит CaSCb.

Засоленные грунты приурочены к пустынным и полупустынным, реже – к степным зонам, то есть к районам с отрицательным водным балансом, а также к участкам, расположенным в зонах гипергенеза горных пород, содержащих нестойкие компоненты (сульфатные, галлоидные и др.). Они слагают солончаки, солоди, солонцы, такыры, которые различаются составом и содержанием легкорастворимых солей и формируются на пониженных элементах рельефа: шлейфах склонов, низменностях, берегах соленых озер и лиманов, во впадинах на поймах, в днищах степных блюдец суффозионного происхождения, где минерализованные воды стоят близко к земной поверхности (1…3 м).

Содержание водорастворимых солей в грунтах зоны аэрации зависит от многих факторов, прежде всего от климатических условий, которые определяют количество выпадающих осадков, способных вымывать соли. Процесс засоления грунтов проявляется в следующих условиях:

  • • при горизонтальной миграции солей и осаждении их из подземных вод в районах юр и предгорий, в субаэральных дельтах и предгорных равнинах;
  • • в результате вертикальной миграции солей при испарении поровых растворов; вследствие выветривания горных пород, содержащих нестойкие компоненты (карбонатные, сульфатные, галлоидные горные породы);
  • • при фильтрации через грунты жидких отходов из шламонакопителей, солеотвалов, растворонесущих коммуникаций промышленных предприятий и т. п.

Засоленные грунты, залегающие в основании сооружений на континентальном шельфе, как правило, не оказывают негативного воздействия на устойчивость сооружений, поскольку в морских условиях невозможно их рассоление и возникновение деформаций суффозионного сжатия.

Засоленные грунты характеризуют следующие показатели [111):

  • • степень растворимости в воде (q$r)
  • • степень засоленности (Dsal);
  • • абсолютное суффозионное сжатие (Δhsf);
  • • относительное суффозионное сжатие (esf);
  • • начальное давление суффозионного сжатия (psf);
  • • степень выщелачивания солей (β).

Степень растворимости в воде qsr, г/л, – характеристика, отражающая способность грунтов растворяться в воде и выражающаяся в количестве водорастворимых солей. По степени растворимости грунты подразделяют согласно табл. 7.2.

Таблица 7.2

Классификация грунтов по степени растворимости в воде

Разновидность грунтов

Количество воднорастворимых солей </,,, г/л

Нерастворимый

q„<0.01

Труднорастворимый

0.01 <<qг< 1

Среднерастеоримый

1 <<q’-< 10

Легкорастворимый

10 <q„.< 100

Сильнорастворимый

q„> 100

Степенью засоленности Dsal %, называется отношение массы водорастворимых солей в определенном объеме грунта к массе сухого грунта данного объема. По степени засоленности D грунты подразделяются согласно табл. 7.3 (113].

Степенью выщелачивания солей β называется отношение массы выщелоченных из грунта солей к их начальной массе.

Абсолютным суффозионным сжатием Δhф мм, называется уменьшение первоначальной высоты образца грунта за счет химической суффозии при постоянном вертикальном давлении и непрерывной фильтрации воды или растворов, фильтрация которых возможна в основании сооружения.

Относительным суффозионным сжатием es/ называется отношение абсолютного суффозионного сжатия к высоте образца грунта природной влажности при природном давлении.

Начальным давлением суффозионного сжатия pd, МПа, называется минимальное давление, при котором проявляется суффозионное сжатие грунта.

Таблица 7.3

Классификация грунтов по степени засоленности [34]

Разновидность

грунтов

Степень засоленности грунтов D , %

легко растворимыми солями

среднерастворимыми (гипс, ангидрит) солями

хлорндное суль- фатно-хлоридное засоление

сульфатное.

хлоридно-

сульфатное

засоление

суглинок

супесь

песок

Незасоленный

<0,5

<0,5

D sal 5 5

D sal 5 5

ІЛ

Слабозасоленный

0.5 < D sal <2,0

0.5 < D sal < 1.0

5< D sal< 10

5 < D sal < 10

3<D sal<7

Среди езасоленный

2,0 < D”/ < 5.0

1.0 < D sal < 3.0

10 < D sal 5 20

10 < D sal <20

7<D sal< 10

Сильнозасолен 11 ы й

5,0 < D sal < 10,0

3,0 < D sal <8,0

20 < D sal <35

20 < D sal <30

10 < D sal < 15

Избыточно

Засоленный

Аа/>10,0

D sal > 8,0

D> 35

D sal >30

D sal> 15

Последние три характеристики (Дh, ef/, psj) определяют по результатам испытаний образцов грунта в компрессионно-фильтрационных приборах (см. п. 8.3.2.2), исключающих возможность бокового расширения образца грунта при нагружении его вертикальной нагрузкой. Для детального изучения отдельных участков строительной площадки показатели определяют полевыми испытаниями статической нагрузкой с длительным замачиванием основания. При наличии результатов полевых испытаний и опыта строительства в аналогичных инженерно-геологических условиях указанные характеристики допускается определять только лабораторными методами. Нормативные значения характеристик засоленных грунтов £х/ и pst вычисляют как средние значения результатов их определений. Расчетные значения допускается принимать равными нормативным (yg= 1).

При проведении инженерно-геологических изысканий в районах распространения засоленных грунтов следует устанавливать качественный состав и количественное содержание водорастворимых солей и их способность к растворению.

Определение содержания солей в грунтах. Содержание легкорастворимых солей следует определять с помощью водной вытяжки, а среднерастворимых – с помощью солянокислой вытяжки.

Водная вытяжка. Отбирают среднюю пробу грунта (300…500 г), растирают и просеивают через сито с отверстиями в 1 мм. Определяют гигроскопическую влажность грунта. Отбирают “среднюю аналитическую пробу” 50 или 100 г (в зависимости от качественно-количественной пробы на СГ и S04’“). К навеске прибавляют пятикратное (1:5) количество дистиллированной воды, лишенной СО: (если в грунте содержится большое количество сульфата натрия, то лучше приготовить вытяжку 1:10). Смесь взбалтывают в течение 5 мин, после чего вытяжку полностью отфильтровывают через фильтр из плотной бумаги. Анализ водной вытяжки производят по общепринятым методикам с определением величины сухого остатка, pH и содержания ионов СОз2 , НСОз”, СГ, S042-, Са2′, Mg2+, Na К+ в мг-экв на 100 г породы или в процентах к массе породы.

Солянокислая вытяжка. Из воздушно-сухого грунта, просеянного через сито 0,25 мм, берут навеску 2,5 г из расчета на абсолютно сухую массу. Разрушают карбонаты крепкой соляной кислотой (1:1). Замачивают навеску в 125 см2 соляной кислоты 0,2 н концентрации (соотношение грунта к кислоте 1:50), тщательно перемешивают и оставляют на 12 ч. Затем раствор отфильтровывают в мерную колбу (250 мл). Остаток на фильтре промывают соляной кислотой (0,2 н) до отрицательной реакции на Са2′ и S04 . Фильтр с осадком прокаливают в тигле и определяют силикатную часть грунта. Фильтрат в колбе доливают до отметки дистиллированной водой и используют для дальнейших определений. По результатам анализа солянокислой вытяжки определяют содержание гипса, а также сульфат-, кальций- и магний-ионов в процентах к массе абсолютно сухого грунта.

Состав и содержание легкорастворимых солей следует определять по результатам анализов водных вытяжек по следующим стандартам: сухой остаток и pH – по ГОСТ 26423, ионов карбонатов и бикарбонатов – по ГОСТ 26424, иона хлорида – аргентометрическим методом или ионометрическим титрованием по ГОСТ 26425, иона сульфата – весовым способом по ГОСТ 26426, ионов кальция и магния – комплексометрическим методом по ГОСТ 26428, ионов калия и натрия – по ГОСТ 26427 с применениям пламенного фотометра.

Для исследования состава поровых вод их следует выделять из грунта следующими методами (в зависимости от влажности, консистенции и гранулометрического состава грунтов): центрифугированием, отжатием под давлением, замещением порового раствора нейтральной жидкостью и др.

Источник