Какие химические свойства характерны для крахмала
Крахмал – ценный питательный продукт. Он входит в состав хлеба, картофеля, круп и наряду с сахарозой является важнейшим источником углеводов в человеческом организме.
Химическая формула крахмала (С6(Н2О)5)n.
Строение крахмала
Крахмал состоит из 2 полисахаридов, построенных из остатков циклической a-глюкозы.
Как видно, соединение молекул глюкозы происходит с участием наиболее реакционноспособных гидроксильных групп, а исчезновение последних исключает возможность образования альдегидных групп, и они в молекуле крахмала отсутствуют. Поэтому крахмал не дает реакцию «серебряного зеркала».
Иллюстрация. Фрагмент молекулы крахмала
Крахмал состоит не только из линейных молекул, но и из молекул разветвленной структуры. Этим объясняется зернистое строение крахмала.
В состав крахмала входят:
- амилоза (внутренняя часть крахмального зерна) — 10-20%;
- амилопектин (оболочка крахмального зерна) — 80-90%.
Амилоза
Амилоза растворима в воде и представляет собой линейный полимер, в котором остатки α–глюкозы связаны друг с другом через первый и четвертый атомы углерода (α-1,4-гликозидными связями).
Цепь амилозы включает 200 — 1000 остатков a-глюкозы (средняя мол. масса 160 000) .
Макромолекула амилозы представляет собой спираль, каждый виток которой состоит из 6 звеньев a-глюкозы.
Амилопектин
В отличие от амилозы, амилопектин не растворим в воде, и имеет разветвленное строение.
Подавляющее большинство глюкозных остатков в амилопектине связаны, как и в амилозе α-1,4-гликозидными связями. Однако в точках разветвлений цепи имеются α-1,6-гликозидные связи.
Молекулярная масса амилопектина достигает 1-6 млн.
Молекулы амилопектина также довольно компактны, так как имеют сферическую форму.
Биологическая роль крахмала. Гликоген
Крахмал – главное запасное питательное вещество растений, основной источник резервной энергии в растительных клетках.
Остатки глюкозы в молекулах крахмала соединены достаточно прочно и в то же время под действием ферментов легко могут отщепляться, как только возникает потребность в источнике энергии.
Амилоза и амилопектин гидролизуются под действием кислот или ферментов до глюкозы, которая служит непосредственным источником энергии для клеточных реакций, входит в состав крови и тканей, участвует в обменных процессах.
Гликоген (животный крахмал) – полисахарид, молекулы которого построены из большого числа остатков α–глюкозы. Он имеет сходное строение с амилопектином, но отличается от него большей разветвленностью цепей, а также большей молекулярной массой.
Содержится гликоген главным образом в печени и в мышцах.
Гликоген – белый аморфный порошок, хорошо растворяется даже в холодной воде, легко гидролизуется под действием кислот и ферментов, образуя в качестве промежуточных веществ декстрины, мальтозу и при полном гидролизе – глюкозу.
Превращение крахмала в организме человека и животных
Нахождение в природе
Крахмал широко распространен в природе. Он образуется в растениях в процессе фотосинтезе и накапливается в клубнях, корнях, семенах, а также в листьях и стеблях.
Крахмал содержится в растениях в виде крахмальных зерен. Наиболее богато крахмалом зерно злаков: риса (до 80%), пшеницы (до 70%), кукурузы (до 72%), а также клубни картофеля (до 25%). В клубнях картофеля крахмальные зерна плавают в клеточном соке, в злаках они плотно склеены белковым веществом клейковиной.
Физические свойства
Крахмал – белое аморфное вещество, без вкуса и запаха, нерастворимое в холодной воде, в горячей воде набухает и частично растворяется, образуя вязкий коллоидный раствор (крахмальный клейстер).
Крахмал существует в двух формах: амилоза – линейный полимер, растворимый в горячей воде, амилопектин – разветвлённый полимер, не растворимый в воде, лишь набухает.
Химические свойства крахмала
Химические свойства крахмала объясняются его строением.
Крахмал не дает реакцию «серебряного зеркала», однако ее дают продукты его гидролиза.
1. Гидролиз крахмала
При нагревании в кислой среде крахмал гидролизуется с разрывом связей между остатками α-глюкозы. При этом образуется ряд промежуточных продуктов, в частности мальтоза. Конечным продуктом гидролиза является глюкоза:
Процесс гидролиза протекает ступенчато, схематически его можно изобразить так:
Видеоопыт «Кислотный гидролиз крахмала»
Реакцию превращения крахмала в глюкозу при каталитическом действии серной кислоты открыл в 1811 г. русский ученый К.Кирхгоф (реакция Кирхгофа).
2. Качественная реакция на крахмал
Так как молекула амилозы представляет собой спираль, то при взаимодействии амилозы с йодом в водном растворе молекулы йода входят во внутренний канал спирали, образуя так называемое соединение включения.
Раствор иода окрашивает крахмал в синий цвет. При нагревании окрашивание исчезает (комплекс разрушается), при охлаждении появляется вновь.
Крахмал + J2 – синее окрашивание
Видеоопыт «Реакция крахмала с йодом»
Данная реакция используется в аналитических целях для обнаружения, как крахмала, так и йода (йодкрахмальная проба)
3. Большинство глюкозных остатков в молекулах крахмала имеют по 3 свободных гидроксила (у 2,3,6-го атомов углерода), в точках разветвления – у 2-го и 3-го атомов углерода.
Следовательно, для крахмала возможны реакции, характерные для многоатомных спиртов, в частности образование простых и сложных эфиров. Однако эфиры крахмала большого практического значения не имеют.
Качественную реакцию на многоатомные спирты крахмал не дает, так как плохо растворяется в воде.
Получение крахмала
Из растений извлекают крахмал, разрушая клетки и отмывая его водой. В промышленном масштабе его получают главным образом из клубней картофеля (в виде картофельной муки), а также кукурузы, в меньшей степени – из риса, пшеницы и других растений.
Получение крахмала из картофеля
Картофель моют, измельчают и промывают водой и перекачивают в большие сосуды, где происходит отстаивание. Вода извлекает из измельченного сырья крахмальные зерна, образуя так называемое «крахмальное молоко».
Полученный крахмал ещё раз промывают водой, отстаивают и сушат в струе теплого воздуха.
Получение крахмала из кукурузы
Зерна кукурузы замачивают в теплой воде разбавленной сернистой кислоты с целью размягчения зерна и удаления из него основной части растворимых веществ.
Набухшее зерно дробят для удаления ростков.
Ростки, после всплывания на поверхность воды, отделяют и используют в дальнейшем для получения кукурузного масла.
Кукурузную массу повторно измельчают, обрабатывают водой для вымывания крахмала, затем отделяют отстаиванием или с помощью центрифуги.
Применение крахмала
Крахмал широко применяется в различных отраслях промышленности (пищевой, фармацевтической, текстильной, бумажной и т.п.).
Он является основным углеводом пищи человека – хлеба, круп, картофеля.
В значительных количествах перерабатывается на декстрины, патоку и глюкозу, используемые в кондитерском производстве.
Из крахмала, содержащегося в картофеле и зерне злаков, получают этиловый, н-бутиловый спирты, ацетон, лимонную кислоту, глицерин.
Крахмал используется как клеящее средство, применяется для отделки тканей, крахмаления белья.
В медицине на основе крахмала готовятся мази, присыпки и т.д.
Иллюстрация. Применение крахмала
Углеводы
Полисахариды
Источник
Безвкусный аморфный порошок белого цвета, нерастворимый в холодной воде. Под микроскопом видно, что это зернистый порошок; при сжатии порошка крахмала в руке он издаёт характерный скрип, вызванный трением частиц.
Энергетическая ценность 100 г крахмала (в ккал/кДж): картофельного -299/1251; кукурузного – 329/1377. Крахмал хорошо усваивается организмом.
Основные виды крахмала: картофельный — получают из клубней картофеля, образует вязкий прозрачный клейстер; кукурузный — молочно-белый непрозрачный клейстер, имеет невысокую взякость, с запахом и привкусом, характерными для зерна кукурузы; пшеничный — обладает невысокой вязкостью, клейстер более прозрачный по сравнению с кукурузным.
Амилопектиновый крахмал получают из восковидной кукурузы. Клейстер из такого крахмала обладает хорошей вязкостью и влаго-удерживающей способностью. С раствором йода амилопектиновый крахмал дает характерное красно-коричневое окрашивание.
Высокоамилозный крахмал получают из высокоамилозных сортов кукурузы. Такой крахмал применяется в виде прозрачных пленок и съедобной пищевой оболочки в пищевой промышленности.
Кроме традиционных видов сырья (Картофеля, кукурузы, пшеницы) для производства крахмала в некоторых регионах используют и такие виды крахмалосодержащего сырья, как ячмень, рожь, рис (рисовая дробленка), горох.
В горячей воде набухает (растворяется), образуя коллоидный раствор -клейстер. В воде, при добавлении кислот (разбавленная H2SO4 и др.) как катализатора, постепенно гидролизуется с уменьшением молекулярной массы, с образованием т. н. «растворимого крахмала», декстринов, вплоть до глюкозы.
Молекулы крахмала неоднородны по размерам. Крахмал представляет собой смесь линейных и разветвлённых макромолекул.
При действии ферментов или нагревании с кислотами подвергается гидролизу. Уравнение:
Крахмал – растительный полисахарид со сложным строением. Он состоит из амилозы и амилопектина; их соотношение различно в различных крахмалах (амилозы 13 – 30%; амилопектина 70 – 85%).
Амилоза и амилопектин (их свойства приведены в таблице 1) в растениях формируются в виде крахмальных зерен, структура которых до конца не выяснена.
Таблица 1. Свойства амилозы и амилопектина
Свойства | Амилоза | Амилопектин |
Молекулярная масса | 50 тыс. – 2 млн. | От 1 до нескольких млн |
Способность к ретроградции | Высокая | Низкая |
Продукты действия в-амилазы | Мальтоза | Мальтоза; в-предельный декстрин |
Продукты действия глюкоамилазы | D-глюкоза | D-глюкоза |
Форма молекулы | Линейная | Разветвленная |
Крахмал является важным компонентом пищевых продуктов, исполняя роль загустителя и связывающего агента.
В одних случаях он присутствует в сырье, которое перерабатывается в пищевые продукты (например, хлебобулочные изделия).
В других его добавляют для придания продукту тех или иных свойств – он используется широко при производстве пудингов, концентратов супов, киселей, соусов, салатных приправ, начинок, майонеза; один из компонентов крахмала – амилоза используется для пищевых оболочек и покрытий.
К основным физико-химическим свойствам крахмала, имеющим большое значение для пищевых продуктов относятся способность крахмала к клейстеризации, вязкость клейстеризованных растворов и их способность давать студни.
Неповрежденные крахмальные зерна нерастворимы в воде, но могут обратимо впитывать влагу и легко набухают. Увеличение диаметра зерен при набухании зависит от вида крахмала. Например, для обычного кукурузного крахмала – 9,1%, для восковидного – 22,7%.
Клейстеризация крахмала проявляется при его нагревании в воде, и эта его способность к клейстерообразованию обусловлена наличием в нем амилопектина. крахмал клейстерообразование амилоза
В первой фазе нагревания вода медленно и обратимо поглощается зернами крахмала, причем происходит их ограниченное набухание.
Вторая фаза характеризуется тем, что зерна быстро набухают, во много раз увеличиваясь, поглощая большое количество влаги и быстро теряя двойное лучепреломление, т. е. свою кристаллическую структуру.
При этом вязкость крахмальной суспензии быстро возрастает, и небольшое количество крахмала растворяется в воде.
В третьей фазе набухания, протекающей при повышенных температурах, зерна становятся почти бесформенными мешочками, из которых вымылась наиболее растворимая часть крахмала.
Как правило, большие крахмальные зерна клейстеризуются при более низкой температуре, чем мелкие.
Температуру, соответствующую разрушению внутренней структуры крахмальных зерен, называют температурой клейстеризации. Она зависит от источника получения крахмала (табл. 2).
Таблица 2. Зависимость температуры клейстеризации крахмала от источника получения
Источник | Содержание амилозы, % | Температуры клейстеризации, °С |
Кукуруза | 28 | 62 – 70 |
Картофель | 23 | 58 – 66 |
Тапиока | – | 52 – 64 |
Пшеница | 26 | 53 – 65 |
Рис | 18 | 61 – 78 |
Рожь | – | 57 – 70 |
Ячмень | 22 | 56 – 62 |
Овес | 27 | 56 – 62 |
Сорго | 25 | 69 – 75 |
Горох | 35 | 57 – 70 |
Фасоль | 24 | 64 – 67 |
Восковидная кукуруза | 1 | 63 – 72 |
Вязкость крахмальных клейстеров имеет очень важное практическое значение. При этом вязкость амилопектиновой фракции выше, чем амилозной, вследствие своего ветвистого строения молекулы амилопектина (внутреннее трение, у растворов с такими объемистыми молекулами больше).
Кривые вязкости, полученные на ротационном вискозиметре, показывают, что сначала увеличение температуры ведет к крутому подъему вязкости, что связано с набуханием крахмальных зерен.
Затем набухшие крахмальные зерна разрываются и дезинтегрируют, вызывая падение вязкости (рис. 1). Наклон кривых сильно различается для различных краxмалов.
Пищевые кулинарные изделия, получаемые из крахмала (соусы, подливки, кисели и пр.), должны обладать необходимой вязкостью.
Чем большую вязкость имеет клейстер, содержащий определенное количество крахмала, тем меньше его надо расходовать для получения продуктов с требуемой вязкостью.
Картофельный крахмал дает клейстеры со значительно большей (в среднем) вязкостью, чем кукурузный.
Для получения клейстеров с одинаковой вязкостью нужно брать разные количества того или иного крахмала.
Рис. 1. Изменение вязкости в процессе клейстеризации крахмальной суспензии.
Клейстеризация крахмала, вязкость крахмальных растворов, характеристика крахмальных гелей зависят не только от температуры, но и от вида и количества других присутствующих компонентов. С этим необходимо считаться, поскольку в процессе производства пищевых продуктов крахмал находится в присутствии таких веществ, как сахар, белки, жиры, пищевые кислоты и вода.
Высокие содержания сахара уменьшают скорость клейстеризации крахмала, снижают пик вязкости. Дисахариды являются более эффективными с точки зрения замедления клейстеризации и снижения пика вязкости, чем моносахариды. Кроме того, сахара уменьшают силу крахмальных гелей, играя роль пластификатора и вмешиваясь в образование зон связывания.
На клейстеризацию крахмала при производстве пищевых продуктов оказывают влияние и липиды – триглицериды (жиры, масла), моно- и диглицериды. Жиры, которые могут давать комплексы с амилозой, тормозят набухание крахмальных зерен. Вследствие этого в белом хлебе, в котором мало жира, 96% крахмала обычно полностью клейстеризовано. При производстве пекарских изделий эти два фактора (большие концентрации жира и низкая аw) вносят большой вклад в неклейстеризацию крахмала.
Моноглицериды жирных кислот (С16 – С18) приводят к увеличению температуры клейстеризации, увеличению температуры, соответствующей пику вязкости, уменьшению силы геля. Это связано с тем, что компоненты жирных кислот в моноацилглицеридах могут образовывать соединения включения с амилозой, а, возможно, и с длинными внешними цепями амилопектина.
Кислоты присутствуют во многих продуктах, где используется крахмал в качестве загустителя. При низких рН (салатные приправы, фруктовые начинки) имеет место значительное снижение пика вязкости крахмальных клейстеров и быстрое снижение вязкости при нагревании.
Поскольку при низких рН имеет место интенсивный гидролиз с образованием незагустевающих декстринов, необходимо, чтобы избежать кислотного разжижения, использовать в качестве загустителя в кислых продуктах модифицированные поперечно-сшитые крахмалы.
Студнеобразующая способность проявляется при достаточном содержании крахмала в клейстерах, а образование и свойства студней из них зависят, в основном, от амилозной фракции. Известно, что студни образуются в тех случаях, когда молекулы имеют цепочное (линейное) строение.
Образование студней используется, например, при изготовлении киселей, запеканок, конфет, колбас и др.
Свойства крахмальных студней зависят от концентрации крахмала, продолжительности выстойки и других факторов. Прочность студней быстро возрастает при их хранении и выстойке, причем наиболее быстро у концентрированных студней.
Студни из крахмалов разных видов по своим свойствам не одинаковы.
Студни, изменившие первоначальную прочность во время хранения, после вторичного нагревания приобретают ее снова, т. е. явления структурообразования обратимы при нагревании, причем у рисовых и пшеничных крахмалов наблюдается полная обратимость, а у картофельных – ограниченная.
У крахмальных студней, особенно из картофельного крахмала, с течением времени наблюдается синерезис, проявляющийся в том, что в результате уплотнения гелевой структуры выделяется свободная вода на поверхности.
В молекуле крахмала имеется много свободных гидроксильных групп, которые способны вступать в химические реакции со многими соединениями и давать эфиры и различные производные. На этом основано получение различных модифицированных его производных.
Модифицированные, или измененные, крахмалы, обладающие новыми свойствами, находят все большее и разнообразное применение в различных отраслях пищевой промышленности.
Модифицированные крахмалы имеют, как правило, такой же внешний вид, как и обычный (нативный) крахмал. Однако, воздействуя на него различными физическими, химическими и биологическими реагентами, изменяющими направленно такие его свойства, как растворимость, вязкость, прозрачность, стабильность клейстеров и другие физико-химические параметры, получают крахмалы с удивительными свойствами. Крахмалы, свойства которых изменены в результате специальной обработки, называют модифицированными крахмалами.
Основными превращениями, которые претерпевают крахмалы:
- 1. Расщепление (деполимеризация) полисахаридных компонентов крахмала с сохранением или без сохранения зернистой структуры.
- 2. Увеличение количества существующих или появление новых функциональных групп, перестройка структуры полисахаридных цепей в результате трансгликолизирования.
- 3. Потеря зернами крахмала первоначальной структуры и приобретение ими после дегидратации новой структуры.
- 4. Взаимодействие гидроксильных групп крахмала с различными химическими веществами с образованием эфирных связей и присоединением их остатков.
- 5. Одновременная полимеризация блоков частичного гидролиза крахмала и других мономеров (сополимеризация) с образованием новых соединений.
Модифицированные крахмалы могут быть получены путем одного из указанных превращений или в результате двух и более превращений, протекающих одновременно или последовательно.
Набухающие крахмалы получают полной или частичной клейстеризацией нативного или модифицированного крахмала в воде при нагревании с последующим высушиванием клейстера и измельчением. Они способны набухать в холодной воде, полностью или частично переходить в растворимое состояние. Набухающие крахмалы вводят в сухие смеси мороженного, пудингов, кремов и других изделий быстрого приготовления.
Крахмал, модифицированный кислотой, получают при нагревании слабо подкисленной водной суспензии крахмальных зерен до температуры 45 – 50 °С. В зернах ослабляются межмолекулярные связи и происходит частичное расщепление гликозидных связей. Молекулы амилопектина становятся менее разветвленными, вследствие чего крахмал дает более прозрачные студни. Этот крахмал практически нерастворим в холодной воде, но хорошо растворим в кипящей воде. Для этого крахмала, по сравнению с исходным, характерна более низкая вязкость горячих клейстеров, уменьшение силы геля, увеличение температуры клейстеризации. Крахмал, модифицированный кислотой, широко применяют в пищевой промышленности: кукурузный и пшеничный – для приготовления конфет, рахат-лукума и других кондитерских изделий; картофельный – для пудинговых смесей.
Этерифицированные крахмалы. Известно, что крахмал может быть подвергнут этерификации. В пищевой промышленности чаще применяют крахмалофосфаты – эфиры крахмала и солей фосфорной кислоты. Их используют в качестве загустителей, стабилизаторов, эмульгаторов, не имеющих запаха и вкуса
Монофосфаты получают при нагревании крахмала с водорастворимыми фосфатами, солями орто-, пиро- или метафосфорной кислоты в течение 1 – 6 ч при повышенной температуре (обычно 50 – 60 °С). По сравнению с обычным крахмалом этот крахмал имеет более низкую температуру клейстеризации, набухает в холодной воде (СЗ = 0,07 и выше), имеет пониженную способность к ретроградации. Характеристика фосфатных зерновых крахмалов в принципе подобна картофельному крахмалу, который тоже содержит фосфатные группы. Монофосфатный крахмал применяют в замороженных продуктах в качестве загустителя, благодаря его исключительной стабильности при замораживании-оттаивании. Предварительно клейстеризованныи фосфатный крахмал диспергируется в холодной воде, благодаря чему может успешно использоваться в инстант-десертных порошкообразных продуктах и в мороженом.
В отличие от монофосфатного крахмала, в дифосфатном крахмале фосфат этерифицируется с двумя гидроксильными группами, часто из двух соседних крахмальных цепей. Таким образом, образуется химический мост между близлежащими цепями, и эти крахмалы относят к поперечно-сшитым крахмалам. Наличие ковалентной связи между двумя крахмальными цепями предохраняет крахмальные зерна от набухания, дает большую стабильность при нагревании и возможном гидролизе.
Поперечно-сшитые крахмалы могут быть получены реакцией крахмала (R-ОН) с би- и полифункциональными агентами, такими как триметафосфат натрия, оксихлорид фосфора, смешанные ангидриды уксусной и дикарбоновой (например, адипиновой) кислот.
Наиболее значительное изменение в свойствах поперечно-сшитого крахмала – высокая стабильность при повышенных температурах, низких значениях рН, механических воздействиях, снижение способности к ретроградации, стабильность при замораживании – оттаивании; при хранении клейстеров поперечно-сшитых крахмалов не наблюдается синерезис. Благодаря этим свойствам поперечно-сшитые крахмалы применяют в детском питании, салатных приправах, фруктовых начинках, в кремах.
Ацетаты крахмала низкой степени замещения получают путем обработки зерен крахмала уксусной кислотой или, предпочтительнее, ацетангидридом в присутствии катализатора (как правило при рН 7-11; t = 25 °С; СЗ = 0,5). Растворы ацетатов крахмала очень стабильны, поскольку наличие ацетил-групп препятствует ассоциации двух амилозных молекул и длинных боковых цепей амилопектина. Ацетаты крахмала по сравнению с обычным кукурузным крахмалом имеют пониженную температуру клейстеризации, пониженную способность к ретроградации, образуют прозрачные и стабильные клейстеры. Благодаря этим качествам ацетаты крахмала применяют в замороженных продуктах, пекарских изделиях, инстант-порошках и т.д.
Окисленные крахмалы вырабатывают с применением перманганата, гипохлорита, перекисей, йодной кислоты. Окислители вызывают гидролитическое расщепление гликозидных связей, окисление спиртовых групп в карбонильные и карбоксильные. Крахмал окисляют в водных суспензиях и полусухой. Окисленные крахмалы, по сравнению с исходным, способны давать менее вязкие, но более прозрачные и стабильные клейстеры. Их применяют в качестве заменителей агара, агароида при производстве желейных кондитерских изделий, для стабилизации мороженого и др. Диальдегидный крахмал, полученный под действием йодной кислоты (со степенью окисления до 2%), используют в хлебопечении, он оказывает укрепляющее действие на клейковину муки.
Источник