Какие химические свойства характерны для серной кислоты
Серная кислота
Строение молекулы и физические свойства
Серная кислота H2SO4 – это сильная кислота, двухосновная, прочная и нелетучая. При обычных условиях серная кислота – тяжелая маслянистая жидкость, хорошо растворимая в воде.
Растворение серной кислоты в воде сопровождается выделением значительного количества кислоты. Поэтому по правилам безопасности в лаборатории при смешивании серной кислоты и воды мы добавляем серную кислоту в воду небольшими порциями при постоянном перемешивании.
Валентность серы в серной кислоте равна VI.
Способы получения
1. Серную кислоту в промышленности производят из серы, сульфидов металлов, сероводорода и др. Один из вариантов — производство серной кислоты из пирита FeS2.
Основные стадии получения серной кислоты :
- Сжигание или обжиг серосодержащего сырья в кислороде с получением сернистого газа.
- Очистка полученного газа от примесей.
- Окисление сернистого газа в серный ангидрид.
- Взаимодействие серного ангидрида с водой.
Рассмотрим основные аппараты, используемые при производстве серной кислоты из пирита (контактный метод):
Аппарат | Назначение и уравнения реакций |
Печь для обжига | 4FeS2 + 11O2 → 2Fe2O3 + 8SO2 + Q Измельченный очищенный пирит сверху засыпают в печь для обжига в «кипящем слое». Снизу (принцип противотока) пропускают воздух, обогащенный кислородом, для более полного обжига пирита. Температура в печи для обжига достигает 800оС |
Циклон | Из печи выходит печной газ, который состоит из SO2, кислорода, паров воды и мельчайших частиц оксида железа. Такой печной газ очищают от примесей. Очистку печного газа проводят в два этапа. Первый этап — очистка газа в циклоне. При этом за счет центробежной силы твердые частички ссыпаются вниз. |
Электрофильтр | Второй этап очистки газа проводится в электрофильтрах. При этом используется электростатическое притяжение, частицы огарка прилипают к наэлектризованным пластинам электрофильтра). |
Сушильная башня | Осушку печного газа проводят в сушильной башне – снизу вверх поднимается печной газ, а сверху вниз льется концентрированная серная кислота. |
Теплообменник | Очищенный обжиговый газ перед поступлением в контактный аппарат нагревают за счет теплоты газов, выходящих из контактного аппарата. |
Контактный аппарат | 2SO2 + O2 ↔ 2SO3 + Q В контактном аппарате производится окисление сернистого газа до серного ангидрида. Процесс является обратимым. Поэтому необходимо выбрать оптимальные условия протекания прямой реакции (получения SO3):
Как только смесь оксида серы и кислорода достигнет слоев катализатора, начинается процесс окисления SO2 в SO3. Образовавшийся оксид серы SO3 выходит из контактного аппарата и через теплообменник попадает в поглотительную башню. |
Поглотительная башня | Получение H2SO4 протекает в поглотительной башне. Однако, если для поглощения оксида серы использовать воду, то образуется серная кислота в виде тумана, состоящего из мельчайших капелек серной кислоты. Для того, чтобы не образовывался сернокислотный туман, используют 98%-ную концентрированную серную кислоту. Оксид серы очень хорошо растворяется в такой кислоте, образуя олеум: H2SO4·nSO3. nSO3 + H2SO4 → H2SO4·nSO3 Образовавшийся олеум сливают в металлические резервуары и отправляют на склад. Затем олеумом заполняют цистерны, формируют железнодорожные составы и отправляют потребителю. |
Общие научные принципы химического производства:
- Непрерывность.
- Противоток
- Катализ
- Увеличение площади соприкосновения реагирующих веществ.
- Теплообмен
- Рациональное использование сырья
Химические свойства
Серная кислота – это сильная двухосновная кислота.
1. Серная кислота практически полностью диссоциирует в разбавленном в растворе по первой ступени:
H2SO4 ⇄ H+ + HSO4–
По второй ступени серная кислота диссоциирует частично, ведет себя, как кислота средней силы:
HSO4– ⇄ H+ + SO42–
2. Серная кислота реагирует с основными оксидами, основаниями, амфотерными оксидами и амфотерными гидроксидами.
Например, серная кислота взаимодействует с оксидом магния:
H2SO4 + MgO → MgSO4 + H2O
Еще пример: при взаимодействии серной кислоты с гидроксидом калия образуются сульфаты или гидросульфаты:
H2SO4 + КОН → KHSО4 + H2O
H2SO4 + 2КОН → К2SО4 + 2H2O
Серная кислота взаимодействует с амфотерным гидроксидом алюминия:
3H2SO4 + 2Al(OH)3 → Al2(SO4)3 + 6H2O
3. Серная кислота вытесняет более слабые из солей в растворе (карбонаты, сульфиды и др.). Также серная кислота вытесняет летучие кислоты из их солей (кроме солей HBr и HI).
Например, серная кислота взаимодействует с гидрокарбонатом натрия:
Н2SO4 + 2NaHCO3 → Na2SO4 + CO2 + H2O
Или с силикатом натрия:
H2SO4 + Na2SiO3 → Na2SO4 + H2SiO3
Концентрированная серная кислота реагирует с твердым нитратом натрия. При этом менее летучая серная кислота вытесняет азотную кислоту:
NaNO3(тв.) + H2SO4 → NaHSO4 + HNO3
Аналогично – концентрированная серная кислота вытесняет хлороводород из твердых хлоридов, например, хлорида натрия:
NaCl(тв.) + H2SO4 → NaHSO4 + HCl
4. Также серная кислота вступает в обменные реакции с солями.
Например, серная кислота взаимодействует с хлоридом бария:
H2SO4 + BaCl2 → BaSO4 + 2HCl
5. Разбавленная серная кислота взаимодействует с металлами, которые расположены в ряду активности металлов до водорода. При этом образуются соль и водород.
Например, серная кислота реагирует с железом. При этом образуется сульфат железа (II):
H2SO4(разб.) + Fe → FeSO4 + H2
Серная кислота взаимодействует с аммиаком с образованием солей аммония:
H2SO4 + NH3 → NH4HSO4
Концентрированная серная кислота является сильным окислителем. При этом она обычно восстанавливается до сернистого газа SO2. С активными металлами может восстанавливаться до серы S, или сероводорода Н2S.
Железо Fe, алюминий Al, хром Cr пассивируются концентрированной серной кислотой на холоде. При нагревании реакция возможна.
6H2SO4(конц.) + 2Fe → Fe2(SO4)3 + 3SO2 + 6H2O
6H2SO4(конц.) + 2Al → Al2(SO4)3 + 3SO2 + 6H2O
При взаимодействии с неактивными металлами концентрированная серная кислота восстанавливается до сернистого газа:
2H2SO4(конц.) + Cu → CuSO4 + SO2 ↑ + 2H2O
2H2SO4(конц.) + Hg → HgSO4 + SO2 ↑ + 2H2O
2H2SO4(конц.) + 2Ag → Ag2SO4 + SO2↑+ 2H2O
При взаимодействии с щелочноземельными металлами и магнием концентрированная серная кислота восстанавливается до серы:
3Mg + 4H2SO4 → 3MgSO4 + S + 4H2O
При взаимодействии с щелочными металлами и цинком концентрированная серная кислота восстанавливается до сероводорода:
5H2SO4(конц.) + 4Zn → 4ZnSO4 + H2S↑ + 4H2O
6. Качественная реакция на сульфат-ионы – взаимодействие с растворимыми солями бария. При этом образуется белый кристаллический осадок сульфата бария:
BaCl2 + Na2SO4 → BaSO4↓ + 2NaCl
Видеоопыт взаимодействия хлорида бария и сульфата натрия в растворе (качественная реакция на сульфат-ион) можно посмотреть здесь.
7. Окислительные свойства концентрированной серной кислоты проявляются и при взаимодействии с неметаллами.
Например, концентрированная серная кислота окисляет фосфор, углерод, серу. При этом серная кислота восстанавливается до оксида серы (IV):
5H2SO4(конц.) + 2P → 2H3PO4 + 5SO2↑ + 2H2O
2H2SO4(конц.) + С → СО2↑ + 2SO2↑ + 2H2O
2H2SO4(конц.) + S → 3SO2 ↑ + 2H2O
Уже при комнатной температуре концентрированная серная кислота окисляет галогеноводороды и сероводород:
3H2SO4(конц.) + 2KBr → Br2↓ + SO2↑ + 2KHSO4 + 2H2O
5H2SO4(конц.) + 8KI → 4I2↓ + H2S↑ + K2SO4 + 4H2O
H2SO4(конц.) + 3H2S → 4S↓ + 4H2O
Источник
Серная кислота – сильная двухосновная кислота, при н.у. маслянистая жидкость без цвета и запаха.
Обладает выраженным дегидратационным (водоотнимающим) действием. При попадании на кожу или слизистые оболочки приводит к тяжелым ожогам.
Замечу, что существует олеум – раствор SO3 в безводной серной кислоте, дымящее жидкое или твердое вещество. Олеум применяется
при изготовлении красителей, органическом синтезе и в производстве серной кислот.
Известны несколько способов получения серной кислоты. Применяется промышленный (контактный) способ, основанный на сжигании пирита, окислении
образовавшегося SO2 до SO3 и последующим взаимодействием с водой.
SO2 + O2 ⇄ (кат. – V2O5) SO3
Нитрозный способ получения основан на взаимодействии сернистого газа с диоксидом азота IV в присутствии воды. Он состоит из нескольких этапов:
1. NO + O2 → NO2
Смесь газов подается в башни, орошаемые 75-ной% серной кислотой, здесь смесь оксидов азота поглощается с образованием
нитрозилсерной кислоты:
2. NO + NO2 + 2H2SO4 = 2NO(HSO4) + H2O
3. NO(HSO4) + H2O = H2SO4 + HNO2
В водном растворе диссоциирует ступенчато.
H2SO4 ⇄ H+ + HSO4-
HSO4- ⇄ H+ + SO42-
Сильная кислота. Реагирует с основными оксидами, основаниями, образуя соли – сульфаты.
MgO + H2SO4 → MgSO4 + H2O
KOH + H2SO4 = KHSO4 + H2O (гидросульфат калия, соотношение 1:1 – кислая соль)
2KOH + H2SO4 = K2SO4 + 2H2O (сульфат калия, соотношение 2:1 – средняя соль)
С солями реакция идет, если в результате выпадает осадок, образуется газ или слабый электролит (вода). Серная кислота, как и многие
другие кислоты, способна растворять осадки.
BaBr2 + H2SO4 → BaSO4↓ + 2HBr
MgCO3 + H2SO4 → MgSO4 + CO2↑ + H2O
Na2CO3 + H2SO4 → Na2SO4 + CO2↑ + H2O
Серная кислота окисляет неметаллы – серу и углерод – соответственно до угольной кислоты (нестойкой) и сернистого газа.
S + H2SO4 → SO2 + H2O
C + H2SO4 → CO2 + SO2 + H2O
Реакции разбавленная серной кислоты с металлами не составляют никаких трудностей: она реагирует как самая обычная кислота, например HCl.
Все металлы, стоящие до водорода, вытесняют из серной кислоты водород, а стоящие после – не реагируют с ней.
Подчеркну, что реакции разбавленной серной кислоты с железом и хромом не сопровождаются переходом этих элементов в максимальную степень окисления.
Они окисляются до +2.
Fe + H2SO4(разб.) → FeSO4 + H2↑
Zn + H2SO4(разб.) → ZnSO4 + H2↑
Cu + H2SO4(разб.) ⇸ (реакция не идет, медь не может вытеснить водород из кислоты)
Концентрированная серная кислота ведет себя совершенно по-иному. Водород никогда не выделяется, вместо него с активными металлами
выделяется H2S, с металлами средней активности – S, с малоактивными металлами – SO2.
Na + H2SO4(конц.) → Na2SO4 + H2S + H2O
Zn + H2SO4(конц.) → ZnSO4 + S + H2O
Cu + H2SO4(конц.) → CuSO4 + SO2 + H2O
Холодная концентрированная серная кислота пассивирует Al, Cr, Fe, Ni, Be, Co. При нагревании или амальгамировании
данных металлов реакция идет.
Обратите особое внимание, что при реакции железа, хрома с концентрированной серной кислотой достигается степень окисления +3.
В подобных реакциях с разбавленной серной кислотой (написаны выше) достигается степень окисления +2.
Fe + H2SO4(конц.) → (t) Fe2(SO4)3 + SO2 + H2O
Cr + H2SO4(конц.) → (t) Cr2(SO4)3 + SO2 + H2O
Иногда в тексте задания даны подсказки. Например, если написано, что выделился газ с неприятным запахом тухлых яиц – речь идет
об H2S, если же написано, что выделилось простое вещество – речь о сере (S).
© Беллевич Юрий Сергеевич 2018-2021
Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение
(в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов
без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования,
обратитесь, пожалуйста, к Беллевичу Юрию.
Источник
Оксид серы (VI) – SO3
(серный ангидрид)
Физические свойства
Бесцветная летучая маслянистая жидкость, t°пл. = 17°C; t°кип. = 66°С; на воздухе
“дымит”, сильно поглощает влагу (хранят в запаянных сосудах).
SO3
+ H2O → H2SO4
SO3
хорошо растворяется в 100%-ной серной кислоте, этот раствор называется
олеумом.
Получение
1) 2SO2
+ O2 → 2SO3
(катализатор – V2O5,
при 450˚С)
2)
Fe2(SO4)3 → Fe2O3
+ 3SO3
(разложение при нагревании)
Химические свойства
1)
Серный ангидрид – кислотный оксид.
Взаимодействие
с водой
При растворении в воде дает сильную двухосновную
серную кислоту:
SO3
+ H2O → H2SO4
Диссоциация протекает ступенчато:
H2SO4→
H+
+
HSO4-
(первая ступень, образуется гидросульфат – ион)
HSO4-
→ H+
+
SO42- (вторая ступень, образуется сульфат – ион)
H2SO4
образует два ряда солей – средние (сульфаты) и кислые (гидросульфаты)
Взаимодействие
со щелочами
2NaOH
+ SO3
→ Na2SO4
+ H2O
NaOH
+ SO3
(избыток) → NaHSO4
Взаимодействие
с основными оксидами
Na2O
+ SO3 → Na2SO4
2) SO3 – сильныйокислитель.
СЕРНАЯ КИСЛОТА – H2SO4
Физические свойства
Тяжелая маслянистая жидкость (“купоросное
масло”); r=
1,84 г/см3; нелетучая, хорошо растворима в воде – с сильным
нагревом; t°пл.
= 10,3°C,
t°кип.
= 296°С, очень гигроскопична, обладает водоотнимающими свойствами (обугливание
бумаги, дерева, сахара).
Помните!
Кислоту вливать малыми порциями в воду, а не наоборот!
Производство серной кислоты
1-я стадия.
Печь для обжига колчедана
4FeS2
+ 11O2
→ 2Fe2O3
+ 8SO2
+ Q
Процесс гетерогенный:
1) измельчение железного
колчедана (пирита)
2) метод “кипящего
слоя”
3) 800°С; отвод лишнего
тепла
4) увеличение концентрации
кислорода в воздухе
2-я стадия.
Контактный аппарат
После очистки, осушки и теплообмена сернистый газ поступает в контактный
аппарат, где окисляется в серный ангидрид (450°С – 500°С; катализатор V2O5):
2SO2
+ O2
→ 2SO3
3-я стадия.
Поглотительная башня
nSO3
+ H2SO4(конц) → (H2SO4 • nSO3) (олеум)
Воду использовать нельзя из-за образования тумана. Применяют
керамические насадки и принцип противотока.
Химические свойства разбавленной серной кислоты
H2SO4
– сильная двухосновная кислота, водный раствор изменяет окраску индикаторов
(лакмус и универсальный индикатор краснеют)
1)
Диссоциация протекает ступенчато:
H2SO4→
H+
+
HSO4-
(первая ступень, образуется гидросульфат – ион)
HSO4-
→ H+
+
SO42- (вторая ступень, образуется сульфат – ион)
H2SO4
образует два ряда солей – средние (сульфаты) и кислые (гидросульфаты)
2)
Взаимодействие с металлами:
Разбавленная серная кислота растворяет только
металлы, стоящие в ряду напряжений левее водорода:
Zn0 +
H2+1SO4(разб) → Zn+2SO4
+ H20↑
Zn0
+ 2H+
→ Zn2+
+ H20↑
3)
Взаимодействие с основными и амфотерными оксидами:
CuO + H2SO4
→ CuSO4 + H2O
CuO + 2H+ →
Cu2+ + H2O
4) Взаимодействие
с основаниями:
·
H2SO4
+ 2NaOH
→
Na2SO4
+ 2H2O (реакция нейтрализации)
H+ +
OH-
→
H2O
Если
кислота в избытке, то образуется кислая соль:
H2SO4 + NaOH → NaНSO4 + H2O
·
H2SO4
+ Cu(OH)2 → CuSO4 + 2H2O
2H+ +
Cu(OH)2 → Cu2+ +
2H2O
5)
Обменные реакции с солями:
образование
осадка
BaCl2
+ H2SO4 → BaSO4↓ + 2HCl
Ba2+
+
SO42-
→ BaSO4↓
Качественная реакция
на сульфат-ион:
Образование белого
осадка BaSO4 (нерастворимого в
кислотах) используется для идентификации серной кислоты и растворимых
сульфатов.
образование
газа – как
сильная нелетучая кислота серная вытесняет из солей другие менее сильные
кислоты, например, угольную
MgCO3
+ H2SO4 → MgSO4 + H2O + CO2↑
MgCO3
+ 2H+ → Mg2+ + H2O + CO2↑
Серную кислоту применяют
- в
производстве минеральных удобрений; - как
электролит в свинцовых аккумуляторах; - для
получения различных минеральных кислот и солей; - в
производстве химических волокон, красителей, дымообразующих веществ и
взрывчатых веществ; - в
нефтяной, металлообрабатывающей, текстильной, кожевенной и др. отраслях
промышленности; - в
пищевой промышленности — зарегистрирована в качестве пищевой добавки E513(эмульгатор); - в
промышленном органическом синтезе в реакциях: - дегидратации
(получение диэтилового эфира, сложных эфиров); - гидратации
(получение этанола); - сульфирования
(получение СМС и промежуточные продукты в производстве красителей); - и
др.
Самый крупный потребитель серной кислоты —
производство минеральных удобрений. На 1 т P₂O₅ фосфорных удобрений
расходуется 2,2-3,4 т серной кислоты, а на 1 т (NH₄)₂SO₄ — 0,75 т серной
кислоты. Поэтому сернокислотные заводы стремятся строить в комплексе с заводами
по производству минеральных удобрений.
Применение солей серной кислоты
Железный купорос FеSО4•7Н2O применяли раньше
для лечения чесотки, гельминтоза и опухолей желез, в настоящее время используют
для борьбы с сельскохозяйственными вредителями.
Медный купорос CuSO4•5Н2O широко используют
в сельском хозяйстве для борьбы с вредителями растений.
«Глауберова соль» (мирабилит) Nа2SO4•10Н2O
была получена немецким химиком И. Р. Глаубером
при действии серной кислоты на хлорид натрия, в медицине ее используют как
слабительное средство.
«Бариевая каша» BaSO4обладает способностью задерживать
рентгеновские лучи в значительно большей степени, чем ткани организма. Это
позволяет рентгенологам при заполнении «бариевой кашей» полых органов
определить в них наличие анатомических изменений.
Гипс СаSO4•2Н2O находит широкое применение в
строительном деле, в медицинской практике для накладывания гипсовых повязок,
для изготовления гипсовых скульптур.
Тренажёр №1 – Сероводород. Оксиды серы
Тренажёр №2 – Свойства разбавленной серной кислоты
Это интересно:
ГЛАУБЕР, ИОГАНН РУДОЛЬФ
ГЛАУБЕРОВА СОЛЬ
Задания для закрепления
№1. Осуществите превращения по схеме:
1) Zn →ZnSO4→Zn(OH)2 →ZnSO4 → BaSO4
2)
S →SO2 →SO3→H2SO4 →K2SO4
№2. Закончите уравнения практически осуществимых
реакций в полном и кратком ионном виде:
Na2CO3
+ H2SO4→
Cu
+ H2SO4 (раствор) →
Al(OH)3
+ H2SO4 →
MgCl2
+ H2SO4 →
№3. Запишите уравнения реакций взаимодействия
разбавленной серной кислоты с магнием, гидроксидом железа (III), оксидом
алюминия, нитратом бария и сульфитом калия в молекулярном, полном и кратком
ионном виде.
Источник
Молекула серной кислоты имеет крестовидную форму:
Физические свойства серной кислоты:
- плотная маслянистая жидкость без цвета и запаха;
- плотность 1,83 г/см3;
- температура плавления 10,3°C;
- температура кипения 296,2°C;
- очень гигроскопична, смешивается с водой в любых отношениях;
- при растворении концентрированной серной кислоты в воде происходит выделение большого кол-ва тепла (ВАЖНО! Приливают кислоту в воду! Воду в кислоту приливать нельзя!!!)
Серная кислота бывает двух видов:
- разбавленная H2SO4(разб) – водный раствор кислоты, в котором процентное содержание H2SO4 не превышает 70%;
- концентрированная H2SO4(конц) – водный раствор кислоты, в котором процентное содержание H2SO4 превышает 70%;
Химические свойства H2SO4
Серная кислота полностью диссоциирует в водных растворах в две ступени:
H2SO4 ↔ H++HSO4-
HSO4- ↔ H++SO4-
Разбавленная серная кислота проявляет все характерные свойства сильных кислот, вступая в реакции:
- с основными оксидами:
MgO+H2SO4 = MgSO4+H2O
- с основаниями:
H2SO4+2NaOH = Na2SO4+2H2O
- с солями:
H2SO4+BaCl2 = BaSO4↓+2HCl
качественная реакция на сульфат-ион:
SO42-+Ba2+ = BaSO4↓
В окислительно-восстановительных реакциях серная кислота выступает в роли окислителя, при этом, в разбавленной H2SO4 роль окислителей играют катионы водорода (H+), а в концентрированной – сульфат-ионы (SO42-) (более сильные окислители, чем катионы водорода).
- разбавленная серная кислота:
H2+1S+6O4-2
окислитель H+: 2H++2e- → H20↑ - концентрированная серная кислота:
H2+1S+6O4-2
окислитель S+6:- S+6+2e- → S+4 (SO2)
- S+6+6e- → S0 (S)
- S+6+8e- → S-2 (H2S)
Разбавленная серная кислота реагирует с металлами, стоящими в электрохимическом ряду напряжений левее водорода (реакция проходит с образованием сульфатов и выделением водорода):
H2SO4(разб)+Fe = FeSO4+H2↑
С металлами, стоящими правее водорода (медь, серебро, ртуть, золото), разбавленная серная кислота не реагирует.
Концентрированная серная кислота является более сильным окислителем, особенно это проявляется при нагревании. Концентрированная серная кислота не реагирует только с золотом, с остальными металлами, стоящими правее водорода, кислота взаимодействует с образованием сульфатов и сернистого газа. Более активными металлами (цинк, алюминий, магний) концентрированная серная кислота восстанавливается до свободной серы или сероводорода.
С остальными металлами серная кислота взаимодействует с образованием сернистого газа, серы или сероводорода (конкретный продукт восстановления серной кислоты зависит от ее концентрации):
2H2SO4(конц)+Cu = CuSO4+SO2↑+2H2O
5H2SO4(конц)+4Mg = 4MgSO4+H2S↑+4H2O
4H2SO4(конц)+3Zn = 3ZnSO4+S↓+4H2O
Концентрированная серная кислота окисляет некоторые неметаллы, восстанавливаясь до сернистого газа:
2H2S+6O4(конц)+S0 = 3SO2↑+2H2O
2H2S+6O4(конц)+C = C+4O2↑+2S+4O2↑+2H2O
При низких температурах концентрированная серная кислота пассивирует некоторые металлы (железо, алюминий, никель, хром, титан), что дает возможность ее промышленной перевозки в железных цистернах.
Подробнее см. Уравнения окислительно-восстановительных реакций серной кислоты…
Получение и применение серной кислоты
Серную кислоту в промышленности получают двумя способами: контактным и нитрозным.
Контактный способ получения H2SO4:
- На первом этапе получают сернистый газ путем обжига серного колчедана:
4FeS2+11O2 = 2Fe2O3+8SO2↑
- На втором этапе, сернистый газ окисляют кислородом воздуха до серного ангидрида, реакция идет в присутствии оксида ванадия, играющего роль катализатора:
2SO2+O2 = 2SO3
- На третьем, последнем этапе, получают олеум, для этого серный ангидрид растворяют в концентрированной серной кислоте:
H2SO4+nSO3 ↔ H2SO4·nSO3
- В дальнейшем олеум транспортируется в железных цистернах, а серная кислота получается из олеума разбавлением водой:
H2SO4·nSO3+H2O → H2SO4
Нитрозный способ получения H2SO4:
- На первом этапе очищенный от пыли сернистый газ обрабатывается серной кислотой, в которой растворена нитроза (оксид азота):
SO2+H2O+N2O3 = H2SO4+2NO↑
- Выделившийся оксид азота окисляется кислородом и снова поглощается серной кислотой:
2NO+O2 = 2NO2
NO2+NO = N2O3
Применение серной кислоты:
- для осушки газов;
- в производстве других кислот, солей, щелочей и проч.;
- для получения удобрений, красителей, моющих средств;
- в органическом синтезе;
- в производстве органических веществ.
Соли серной кислоты
Поскольку серная кислота является двухосновной кислотой, она дает два вида солей: средние соли (сульфаты) и кислые соли (гидросульфаты).
Сульфаты хорошо растворяются в воде, исключение составляют CaSO4, PbSO4, BaSO4 – первые два плохо растворяются, а сульфат бария практически нерастворим. Сульфаты, в состав которых входит вода, называются купоросами (медный купорос – CuSO4·5H2O).
Отличительной особенностью солей серной кислоты является их отношение к нагреванию, например, сульфаты натрия, калия, бария устойчивы к нагреванию, не разлагаясь даже при 1000°C, в то же время, сульфаты меди, алюминия, железа разлагаются даже при незначительном нагревании с образованием оксида металла и серного ангидрида: CuSO4 = CuO+SO3.
Горькая (MgSO4·7H2O) и глауберова (Na2SO4·10H2O) соль используются в качестве слабительного средства. Сульфат кальция (CaSO4·2H2O) – при изготовлении гипсовых повязок.
Источник