Какие химические свойства можно предположить у этана запишите уравнения

Какие химические свойства можно предположить у этана запишите уравнения thumbnail

Этан C2H6 – это предельный углеводород, содержащий два атома углерода в углеродной цепи. Бесцветный газ без вкуса и запаха, нерастворим в воде и не смешивается с ней.

Все алканы — вещества, схожие по физическим и химическим свойствам, и отличающиеся на одну или несколько групп –СН2– друг от друга. Такие вещества называются гомологами, а ряд веществ, являющихся гомологами, называют гомологическим рядом.

Самый первый представитель гомологического ряда алканов – метан CH4. , или Н–СH2–H.

Продолжить гомологический ряд можно, последовательно добавляя группу –СН2– в углеводородную цепь алкана.

Название алканаФормула алкана
МетанCH4
ЭтанC2H6
ПропанC3H8
БутанC4H10
ПентанC5H12
ГексанC6H14
ГептанC7H16
ОктанC8H18
НонанC9H20
ДеканC10H22

Общая формула гомологического ряда алканов CnH2n+2.

Первые четыре члена гомологического ряда алканов – газы, C5–C17 – жидкости, начиная с C18 – твердые вещества. 

В молекулах алканов встречаются химические связи C–H и С–С.

Связь C–H ковалентная слабополярная, связь С–С – ковалентная неполярная. Это одинарные σ-связи. Атомы углерода в алканах  образуют по четыре σ-связи. Следовательно, гибридизация атомов углерода в молекулах алканов – sp3:

При образовании связи  С–С происходит перекрывание sp3-гибридных орбиталей атомов углерода:

При образовании связи  С–H происходит перекрывание sp3-гибридной орбитали атома углерода и s-орбитали атома водорода:

Четыре sp3-гибридные орбитали атома углерода взаимно отталкиваются, и располагаются в пространстве так, чтобы угол между орбиталями был максимально возможным.

Поэтому четыре гибридные орбитали углерода в алканах направлены в пространстве под углом 109о 28′  друг к другу:

Какие химические свойства можно предположить у этана запишите уравнения

Это соответствует тетраэдрическому строению молекулы.

Например, в молекуле этана C2H6 атомы водорода располагаются в пространстве в вершинах двух тетраэдров, центрами которых являются атомы углерода

Для  этана не характерно наличие изомеров – ни структурных (изомерия углеродного скелета, положения заместителей), ни пространственных. 

Этан – предельный углеводород, поэтому он не может вступать в реакции присоединения.

Для метана характерны реакции:

  • разложения,
  • замещения,
  • окисления.

Разрыв слабо-полярных связей С – Н протекает только по гомолитическому механизму с образованием свободных радикалов.

Поэтому для этана характерны радикальные реакции.

Этан устойчив к действию сильных окислителей (KMnO4, K2Cr2O7 и др.), не реагирует с концентрированными кислотами, щелочами, бромной водой.

1. Реакции замещения

 В молекулах алканов связи С–Н более доступны для атаки другими частицами, чем менее прочные связи С–С.

1.1. Галогенирование

Этан реагирует с хлором и бромом на свету или при нагревании.

При хлорировании этана сначала образуется хлорэтан:

CH3-CH3 + Cl2 = CH3-CH2Cl + HCl

Хлорэтан может взаимодействовать с хлором и дальше с образованием дихлорэтана, трихлорэтана,  тетрахлорметана и т.д.

1.2. Нитрование этана

Этан взаимодействует с разбавленной азотной кислотой по радикальному механизму, при нагревании  и под давлением.  Атом водорода в этане замещается на нитрогруппу NO2.

Например. При нитровании этана образуется преимущественно нитроэтан:

CH3-CH3 + HNO3 = CH3-CH2NO2 + H2O

2. Дегидрирование этана 

Дегидрирование – это реакция отщепления атомов водорода.

В качестве катализаторов дегидрирования используют никель Ni, платину Pt, палладий Pd, оксиды хрома (III), железа (III), цинка и др.

При дегидрировании алканов, содержащих от 2 до 4 атомов углерода в молекуле, разрываются связи С–Н у соседних атомов углерода и образуются двойные и тройные связи.

Например, при дегидрировании этана образуются этилен или ацетилен:

3. Окисление этана

Этан – слабополярное соединение, поэтому при обычных условиях он не окисляется даже сильными окислителями (перманганат калия, хромат или дихромат калия и др.).

3.1. Полное окисление – горение

Этан горит с образованием углекислого газа и воды. Реакция горения этана сопровождается выделением большого количества теплоты.

C2H4 + 3O2  → 2CO2 + 2H2O + Q

Уравнение сгорания алканов в общем виде:

CnH2n+2 + (3n+1)/2O2 → nCO2 + (n+1)H2O + Q

При горении этана в недостатке кислорода может образоваться угарный газ СО или сажа С.

1. Взаимодействие галогеналканов с металлическим натрием (реакция Вюрца)

Это один из лабораторных способов получения этана из хлорметана или бромметана. При этом происходит удвоение углеродного скелета.

Например, хлорметан реагирует с натрием с образованием этана:

Читайте также:  Какими свойствами обладает алгоритм и почему

2. Декарбоксилирование солей карбоновых кислот (реакция Дюма)

Реакция Дюма — это взаимодействие солей карбоновых кислот с щелочами при сплавлении.

R–COONa + NaOH  R–H + Na2CO3

Декарбоксилирование — это отщепление (элиминирование) молекулы углекислого газа из карбоксильной группы (-COOH) или органической кислоты или карбоксилатной группы (-COOMe)  соли органической кислоты.

При взаимодействии пропионата натрия с гидроксидом натрия при сплавлении образуется этан и карбонат натрия:

CH3–CH2–COONa + NaOH  CH3–CH2–H + Na2CO3

3. Гидрирование алкенов и алкинов

Этан можно получить из этилена или ацетилена:

При гидрировании этилена образуется этан:

При полном гидрировании ацетилена также образуется этан:

4. Синтез Фишера-Тропша

 Из синтез-газа (смесь угарного газа и водорода) при определенных условиях (катализатор, температура и давление) можно получить различные углеводороды:

nCO + (3n+1)H2 = CnH2n+2 + nH2O

Это промышленный процесс получения алканов.

Синтезом Фишера-Тропша можно получить этан:

2CO + 5H2 = C2H6 + 2H2O

5. Получение этана в промышленности

В промышленности этан получают из нефти, каменного угля, природного и попутного газа. При переработке нефти используют ректификацию, крекинг и другие способы.

Источник

Этан, получение, свойства, химические реакции.

Этан, C2H6 – органическое вещество класса алканов. В природе содержится в природном газе, добываемом из газовых и газоконденсатных месторождений, в попутном нефтяном газе. Образуется также при крекинге нефтепродуктов.

Этан, формула, газ, характеристики

Физические свойства этана

Химические свойства этана

Получение этана в промышленности и лаборатории

Химические реакции – уравнения получения этана

Применение и использование этана

Этан, формула, газ, характеристики:

Этан (лат. ethanum) –  органическое вещество класса алканов, состоящий из двух атомов углерода и шести атомов водорода.

Химическая формула этана C2H6, рациональная формула H3CCH3. Изомеров не имеет.

Строение молекулы:

Этан

Этан – бесцветный газ, без вкуса и запаха.

В природе содержится в природном газе, добываемом из газовых и газоконденсатных месторождений, в попутном нефтяном газе. Для выделения из природного и попутного нефтяного газа производят их очистку и сепарацию газа.

Образуется также при крекинге нефтепродуктов., в т.ч. сланцевой нефти.

Также содержится в сланцевом газе и сжиженном газе (сжиженном природном газе).

Пожаро- и взрывоопасен.

Не растворяется в воде и других полярных растворителях. Зато растворяется в некоторых неполярных органических веществах (метанол, ацетон, бензол, тетрахлорметан, диэтиловый эфир и другие).

Этан по токсикологической характеристике относится к веществам 4-го класса опасности (малоопасным веществам) по ГОСТ 12.1.007.

Физические свойства этана:

Наименование параметра:Значение:
Цветбез цвета
Запахбез запаха
Вкусбез вкуса
Агрегатное состояние (при 20 °C и атмосферном давлении 1 атм.)газ
Плотность (при 20 °C и атмосферном давлении 1 атм.), кг/м31,2601
Плотность (при 0 °C и атмосферном давлении 1 атм.), кг/м31,342
Плотность (при температуре кипения и атмосферном давлении 1 атм.), кг/м3544
Температура плавления, °C-182,81
Температура кипения, °C-88,63
Температура самовоспламенения, °C472
Критическая температура*, °C32,18
Критическое давление, МПа4,8714
Критический удельный объём,  м3/кг4891·10-6
Взрывоопасные концентрации смеси газа с воздухом, % объёмныхот 3,2 до 12,5
Удельная теплота сгорания, МДж/кг47,5
Коэффициент теплопроводности (при 0 °C и атмосферном давлении 1 атм.), Вт/(м·К)0,018
Коэффициент теплопроводности (при 20 °C и атмосферном давлении 1 атм.), Вт/(м·К)0,0206
Молярная масса, г/моль30,07

* при температуре выше критической температуры газ невозможно сконденсировать ни при каком давлении.

Химические свойства этана:

Этан трудно вступает в химические реакции. В обычных условиях не реагирует с концентрированными кислотами, расплавленными и концентрированными щелочами, щелочными металлами, галогенами (кроме фтора), перманганатом калия и дихроматом калия в кислой среде.

Химические свойства этана аналогичны свойствам других представителей ряда алканов. Поэтому для него характерны следующие химические реакции:

  1. 1. каталитическое дегидрирование этана:

CH3-CH3 → CH2=CH2 + H2 (kat = Pt, Ni, Al2O3, Cr2O3, to = 400-600 °C).

  1. 2. галогенирование этана:

CH3-CH3 + Br2 → CH3-CH2Br + HBr (hv или повышенная to);

CH3-CH3 + I2 → CH3-CH2I + HI (hv или повышенная to).

Реакция носит цепной характер. Молекула брома или йода под действием света распадается на радикалы, затем они атакуют молекулы этана, отрывая у них атом водорода, в результате этого образуется свободный этил  CH3-CH2·, который сталкиваются с молекулами брома (йода), разрушая их и образуя новые радикалы йода или брома:

Читайте также:  Какие полезные свойства есть в воде

Br2 → Br·+ Br· (hv); – инициирование реакции галогенирования;

CH3-CH3 + Br· → CH3-CH2· + HBr; – рост цепи реакции галогенирования;

CH3-CH2· + Br2 → CH3-CH2Br + Br·;

CH3-CH2· + Br· → CH3-CH2Br; – обрыв цепи реакции галогенирования.

Галогенирование — это одна из реакций замещения. В первую очередь галогенируется наименее гидрированый атом углерода (третичный атом, затем вторичный, первичные атомы галогенируются в последнюю очередь). Галогенирование этана проходит поэтапно – за один этап замещается не более одного атома водорода.

CH3-CH3 + Br2 → CH3-CH2Br + HBr (hv или повышенная to);

CH3-CH2Br + Br2 → CH3-CHBr2 + HBr (hv или повышенная to);

и т.д.

Галогенирование будет происходить и далее, пока не будут замещены все атомы водорода.

  1. 3. нитрование этана:

CH3-CH3 + HONO2 (dilute) → CH3-C(NO2)H2 + H2O (повышенная to).

  1. 4. окисление (горение) этана:

При избытке кислорода:

2C2H6 + 7O2 → 4CO2 + 6H2O.

Горит бесцветным пламенем.

При нехватке кислорода вместо углекислого газа (СО2) получается оксид углерода (СО), при еще меньшем количестве кислорода выделяется мелкодисперсный углерод (в различном виде, в т.ч. в виде графена, фуллерена и пр.) либо их смесь.

  1. 5. сульфохлорирование этана:

C2H6 + SO2 + Cl2 → C2H5-SO2Cl + … (hv).

  1. 6. сульфоокисление этана:

2C2H6 + 2SO2 + О2 → 2C2H5-SO2ОН  (повышенная to).

Получение этана в промышленности и лаборатории. Химические реакции – уравнения получения этана:

Так как этан в достаточном количестве  содержится в природном газе (до 30 % и более), попутном нефтяном газе и выделяется при крекинге нефтепродуктов, его не получают искусственно. Его выделяют при очистке и сепарации из природного газа, ПНГ и нефти при перегонке.

Этан в лабораторных условиях получается в результате следующих химических реакций:

  1. 1. гидрирования непредельных углеводородов, например, этилен (этен):

CH2=CH2 + H2 → CH3-CH3 (kat = Ni, Pt или Pd, повышенная to).

  1. 2. восстановления галогеналканов:

C2H5I + HI → C2H6 + I2 (повышенная to);

C2H5Br + H2 → C2H6 + HBr.

  1. 3. взаимодействия галогеналканов с металлическим щелочным металлом, например, натрием (реакция Вюрца):

2CH3Br + 2Na → CH3-CH3 + 2NaBr;

2CH3Cl + 2Na → CH3-CH3 + 2NaCl.

Суть данной реакции в том, что две молекулы галогеналкана связываются в одну, реагируя с щелочным металлом.

  1. 4. щелочного плавления солей одноосновных органических кислот

C2H5-COONa + NaOH → C2H6 + Na2CO3 (повышенная to).

Применение и использование этана:

– как сырье в химической промышленности для производства в основном этилена (этена).

Примечание: © Фото //www.pexels.com, //pixabay.com

карта сайта

как получить этан этилен реакция ацетилен этен 1 2 вещество хлорэтан этанол кислород водород связь является углекислый газ бромная вода
уравнение реакции масса объем полное сгорание моль молекула смесь превращение горение получение этана
напишите уравнение реакций этан

Коэффициент востребованности
11 914

Источник

Этилен (этен), получение, свойства, химические реакции.

Этилен (этен), C2H4 –  органическое вещество класса алкенов. Этилен имеет двойную углерод-углеродную связь и поэтому относится к ненасыщенным или непредельным углеводородам.

Этилен (этен), формула, газ, характеристики

Физические свойства этилена (этена)

Химические свойства этилена (этена)

Получение этилена (этена)

Химические реакции – уравнения получения этилена (этена)

Применение и использование этилена (этена)

Этилен (этен), формула, газ, характеристики:

Этилен (этен) –  органическое вещество класса алкенов, состоящий из двух атомов углерода и четырех атомов водорода. Этилен имеет двойную углерод-углеродную связь и поэтому относится к ненасыщенным или непредельным углеводородам.

Химическая формула этилена C2H4, рациональная формула H2CCH2, структурная формула CH2=CH2. Изомеров не имеет.

Строение молекулы:

Этилен

Этилен – бесцветный газ, без вкуса, со слабым запахом. Легче воздуха.

Этилен является фитогормоном, т.е. низкомолекулярным органическим веществом, вырабатываемым растениями и имеющим регуляторные функции. Он образуется в тканях самого растения и выполняет в жизненном цикле растений многообразные функции, среди которых контроль развития проростка, созревание плодов (в частности, фруктов), распускание бутонов (процесс цветения), старение и опадание листьев и цветков, участие в реакции растений на биотический и абиотический стресс, коммуникации между разными органами растений и между растениями в популяции.

Читайте также:  Какие свойства у нервной ткани

Пожаро- и взрывоопасен.

Плохо растворяется в воде. Зато хорошо растворяется в диэтиловом эфире и углеводородах.

Этилен по токсикологической характеристике относится к веществам 4-го класса опасности (малоопасным веществам) по ГОСТ 12.1.007.

Этилен — самое производимое органическое соединение в мире.

Физические свойства этилена (этена):

Наименование параметра:Значение:
Цветбез цвета
Запахсо слабым запахом
Вкусбез вкуса
Агрегатное состояние (при 20 °C и атмосферном давлении 1 атм.)газ
Плотность (при 20 °C и атмосферном давлении 1 атм.), кг/м31,178
Плотность (при 0 °C и атмосферном давлении 1 атм.), кг/м31,26
Температура плавления, °C-169,2
Температура кипения, °C-103,7
Температура вспышки, °C136,1
Температура самовоспламенения, °C475,6
Критическая температура*, °C9,6
Критическое давление, МПа5,033
Взрывоопасные концентрации смеси газа с воздухом, % объёмныхот 2,75 до 36,35
Удельная теплота сгорания, МДж/кг46,988
Коэффициент теплопроводности (при 0 °C и атмосферном давлении 1 атм.), Вт/(м·К)0,0163
Коэффициент теплопроводности (при 50 °C и атмосферном давлении 1 атм.), Вт/(м·К)0,0209
Молярная масса, г/моль28,05

* при температуре выше критической температуры газ невозможно сконденсировать ни при каком давлении.

Химические свойства этилена (этена):

Этилен — химически активное вещество. Так как в молекуле между атомами углерода имеется двойная связь, то одна из них, менее прочная, легко разрывается, и по месту разрыва связи происходит присоединение, замещение, окисление, полимеризация молекул.

Химические свойства этилена аналогичны свойствам других представителей ряда алкенов. Поэтому для него характерны следующие химические реакции:

  1. 1. каталитическое гидрирование (восстановление) этилена:

CH2=CH2 + H2 → CH3-CH3 (kat = Ni, Pd, Pt, to).

  1. 2. галогенирование этилена:

CH2=CH2 + Br2 → CH2Br -CH2Br.

Однако при нагревании этилена до температуры 300 oC разрыва двойной углерод-углеродной связи не происходит – реакция галогенирования протекает по механизму радикального замещения:

CH2=CH2  + Br2 → CH2=CH-Br + HBr (t = 300 oC).

  1. 3. гидрогалогенирование этилена:

CH2=CH2 + HBr → CH3-CH2Br.

  1. 4. гидратация этилена:

CH2=CH2 + H2O → CH3-CH2ОН (H+, to).

Реакция происходит в присутствии минеральных кислот (серной, фосфорной). В результате данной химической реакции образуется этанол.

  1. 5. окисление этилена:

Этилен легко окисляется. В зависимости от условий проведения реакции окисления этилена могут быть получены различные вещества: многоатомные спирты, эпоксиды или альдегиды.

Например,

2CH2=CH2 + O2 → 2C2OH4 (kat = Ag, to).

В результате образуется эпоксид.

2CH2=CH2 + O2 → 2CH3-C(O)H (kat = PdCl2, CuCl, t =  200oС ).

В результате образуется ацетальдегид.

  1. 6. горение этилена:

CH2=CH2 + 3O2 → 2CO2 + 2H2O.

В результате горения этилена происходит разрыв всех связей в молекуле, а продуктами реакции являются углекислый газ и вода.

  1. 7. полимеризация этилена:

nCH2=CH2 → (-CH2-CH2-)n (kat, to).

Получение этилена (этена). Химические реакции – уравнения получения этилена (этена):

Этилен получают как в лабораторных условиях, так и в промышленных масштабах.

В промышленных масштабах этилен получается в результате следующей химической реакции:

  1. 1. каталитическое дегидрирование этана:

CH3-CH3 → CH2=CH2 + H2 (kat = Pt, Ni, Al2O3, Cr2O3, to = 400-600 °C).

Этилен в лабораторных условиях получается в результате следующих химических реакций:

  1. 1. дегидратация этанола:

CH3-CH2-OH → CH2=CH2 + H2O (H2SO4(conc), to = 170).

  1. 2. дегалогенирования дигалогенпроизводных этана:

CH3-CH2-Br + NaOH → CH2=CH2 + NaBr + H2O (to);

Cl-CH2-CH2-Cl + Zn → CH2=CH2 + ZnCl2.

Cl-CH2-CH2-Cl + Mg → CH2=CH2 + MgCl2.

  1. 3. неполное гидрирование ацетилена:

CH≡CH + H2 → CH2=CH2 (Pd, to).

  1. 4. дегидрогалогенирование галогенпроизводных алканов под действием спиртовых растворов щелочей:

CH3-CH2-Br + KOH → CH2 = CH2 + KBr + H2O.

Применение и использование этилена (этена):

– как сырье в химической промышленности для органического синтеза различных органических соединений: галогенпроизводных, спиртов (этанола, этиленгликоля), винилацетата, дихлорэтан, винилхлорида, окиси этилена, полиэтилена, стирола, уксусной кислоты, этилбензола, этиленгликоля и пр.,

– в производстве полимеров.

Примечание: © Фото //www.pexels.com, //pixabay.com

карта сайта

как получить этилен реакция ацетилен этен 1 2 вещество этилен кислород водород связь является углекислый газ бромная вода
уравнение реакции масса объем полное сгорание моль молекула смесь превращение горение получение этилена
напишите уравнение реакций этилен

Коэффициент востребованности
17 426

Источник