Какие химические свойства проявляет этан

Какие химические свойства проявляет этан thumbnail

1

H

1,008

1s1

2,1

Бесцветный газ

t°пл=-259°C

t°кип=-253°C

2

He

4,0026

1s2

4,5

Бесцветный газ

t°кип=-269°C

3

Li

6,941

2s1

0,99

Мягкий серебристо-белый металл

t°пл=180°C

t°кип=1317°C

4

Be

9,0122

2s2

1,57

Светло-серый металл

t°пл=1278°C

t°кип=2970°C

5

B

10,811

2s2 2p1

2,04

Темно-коричневое аморфное вещество

t°пл=2300°C

t°кип=2550°C

6

C

12,011

2s2 2p2

2,55

Прозрачный (алмаз) / черный (графит) минерал

t°пл=3550°C

t°кип=4830°C

7

N

14,007

2s2 2p3

3,04

Бесцветный газ

t°пл=-210°C

t°кип=-196°C

8

O

15,999

2s2 2p4

3,44

Бесцветный газ

t°пл=-218°C

t°кип=-183°C

9

F

18,998

2s2 2p5

3,98

Бледно-желтый газ

t°пл=-220°C

t°кип=-188°C

10

Ne

20,180

2s2 2p6

4,4

Бесцветный газ

t°пл=-249°C

t°кип=-246°C

11

Na

22,990

3s1

0,98

Мягкий серебристо-белый металл

t°пл=98°C

t°кип=892°C

12

Mg

24,305

3s2

1,31

Серебристо-белый металл

t°пл=649°C

t°кип=1107°C

13

Al

26,982

3s2 3p1

1,61

Серебристо-белый металл

t°пл=660°C

t°кип=2467°C

14

Si

28,086

3s2 3p2

1,9

Коричневый порошок / минерал

t°пл=1410°C

t°кип=2355°C

15

P

30,974

3s2 3p3

2,2

Белый минерал / красный порошок

t°пл=44°C

t°кип=280°C

16

S

32,065

3s2 3p4

2,58

Светло-желтый порошок

t°пл=113°C

t°кип=445°C

17

Cl

35,453

3s2 3p5

3,16

Желтовато-зеленый газ

t°пл=-101°C

t°кип=-35°C

18

Ar

39,948

3s2 3p6

4,3

Бесцветный газ

t°пл=-189°C

t°кип=-186°C

19

K

39,098

4s1

0,82

Мягкий серебристо-белый металл

t°пл=64°C

t°кип=774°C

20

Ca

40,078

4s2

1,0

Серебристо-белый металл

t°пл=839°C

t°кип=1487°C

21

Sc

44,956

3d1 4s2

1,36

Серебристый металл с желтым отливом

t°пл=1539°C

t°кип=2832°C

22

Ti

47,867

3d2 4s2

1,54

Серебристо-белый металл

t°пл=1660°C

t°кип=3260°C

23

V

50,942

3d3 4s2

1,63

Серебристо-белый металл

t°пл=1890°C

t°кип=3380°C

24

Cr

51,996

3d5 4s1

1,66

Голубовато-белый металл

t°пл=1857°C

t°кип=2482°C

25

Mn

54,938

3d5 4s2

1,55

Хрупкий серебристо-белый металл

t°пл=1244°C

t°кип=2097°C

26

Fe

55,845

3d6 4s2

1,83

Серебристо-белый металл

t°пл=1535°C

t°кип=2750°C

27

Co

58,933

3d7 4s2

1,88

Серебристо-белый металл

t°пл=1495°C

t°кип=2870°C

28

Ni

58,693

3d8 4s2

1,91

Серебристо-белый металл

t°пл=1453°C

t°кип=2732°C

29

Cu

63,546

3d10 4s1

1,9

Золотисто-розовый металл

t°пл=1084°C

t°кип=2595°C

30

Zn

65,409

3d10 4s2

1,65

Голубовато-белый металл

t°пл=420°C

t°кип=907°C

31

Ga

69,723

4s2 4p1

1,81

Белый металл с голубоватым оттенком

t°пл=30°C

t°кип=2403°C

32

Ge

72,64

4s2 4p2

2,0

Светло-серый полуметалл

t°пл=937°C

t°кип=2830°C

33

As

74,922

4s2 4p3

2,18

Зеленоватый полуметалл

t°субл=613°C

(сублимация)

34

Se

78,96

4s2 4p4

2,55

Хрупкий черный минерал

t°пл=217°C

t°кип=685°C

35

Br

79,904

4s2 4p5

2,96

Красно-бурая едкая жидкость

t°пл=-7°C

t°кип=59°C

36

Kr

83,798

4s2 4p6

3,0

Бесцветный газ

t°пл=-157°C

t°кип=-152°C

37

Rb

85,468

5s1

0,82

Серебристо-белый металл

t°пл=39°C

t°кип=688°C

38

Sr

87,62

5s2

0,95

Серебристо-белый металл

t°пл=769°C

t°кип=1384°C

39

Y

88,906

4d1 5s2

1,22

Серебристо-белый металл

t°пл=1523°C

t°кип=3337°C

40

Zr

91,224

4d2 5s2

1,33

Серебристо-белый металл

t°пл=1852°C

t°кип=4377°C

41

Nb

92,906

4d4 5s1

1,6

Блестящий серебристый металл

t°пл=2468°C

t°кип=4927°C

42

Mo

95,94

4d5 5s1

2,16

Блестящий серебристый металл

t°пл=2617°C

t°кип=5560°C

43

Tc

98,906

4d6 5s1

1,9

Синтетический радиоактивный металл

t°пл=2172°C

t°кип=5030°C

44

Ru

101,07

4d7 5s1

2,2

Серебристо-белый металл

t°пл=2310°C

t°кип=3900°C

45

Rh

102,91

4d8 5s1

2,28

Серебристо-белый металл

t°пл=1966°C

t°кип=3727°C

46

Pd

106,42

4d10

2,2

Мягкий серебристо-белый металл

t°пл=1552°C

t°кип=3140°C

47

Ag

107,87

4d10 5s1

1,93

Серебристо-белый металл

t°пл=962°C

t°кип=2212°C

48

Cd

112,41

4d10 5s2

1,69

Серебристо-серый металл

t°пл=321°C

t°кип=765°C

49

In

114,82

5s2 5p1

1,78

Мягкий серебристо-белый металл

t°пл=156°C

t°кип=2080°C

50

Sn

118,71

5s2 5p2

1,96

Мягкий серебристо-белый металл

t°пл=232°C

t°кип=2270°C

51

Sb

121,76

5s2 5p3

2,05

Серебристо-белый полуметалл

t°пл=631°C

t°кип=1750°C

52

Te

127,60

5s2 5p4

2,1

Серебристый блестящий неметалл

t°пл=450°C

t°кип=990°C

53

I

126,90

5s2 5p5

2,66

Черно-серые кристаллы

t°пл=114°C

t°кип=184°C

54

Xe

131,29

5s2 5p6

2,6

Бесцветный газ

t°пл=-112°C

t°кип=-107°C

55

Cs

132,91

6s1

0,79

Мягкий серебристо-желтый металл

t°пл=28°C

t°кип=690°C

56

Ba

137,33

6s2

0,89

Серебристо-белый металл

t°пл=725°C

t°кип=1640°C

57

La

138,91

5d1 6s2

1,1

Серебристый металл

t°пл=920°C

t°кип=3454°C

58

Ce

140,12

f-элемент

Серебристый металл

t°пл=798°C

t°кип=3257°C

59

Pr

140,91

f-элемент

Серебристый металл

t°пл=931°C

t°кип=3212°C

60

Nd

144,24

f-элемент

Серебристый металл

t°пл=1010°C

t°кип=3127°C

61

Pm

146,92

f-элемент

Светло-серый радиоактивный металл

t°пл=1080°C

t°кип=2730°C

62

Sm

150,36

f-элемент

Серебристый металл

t°пл=1072°C

t°кип=1778°C

63

Eu

151,96

f-элемент

Серебристый металл

t°пл=822°C

t°кип=1597°C

64

Gd

157,25

f-элемент

Серебристый металл

t°пл=1311°C

t°кип=3233°C

65

Tb

158,93

f-элемент

Серебристый металл

t°пл=1360°C

t°кип=3041°C

66

Dy

162,50

f-элемент

Серебристый металл

t°пл=1409°C

t°кип=2335°C

67

Ho

164,93

f-элемент

Серебристый металл

t°пл=1470°C

t°кип=2720°C

68

Er

167,26

f-элемент

Серебристый металл

t°пл=1522°C

t°кип=2510°C

69

Tm

168,93

f-элемент

Серебристый металл

t°пл=1545°C

t°кип=1727°C

70

Yb

173,04

f-элемент

Серебристый металл

t°пл=824°C

t°кип=1193°C

71

Lu

174,96

f-элемент

Серебристый металл

t°пл=1656°C

t°кип=3315°C

72

Hf

178,49

5d2 6s2

Серебристый металл

t°пл=2150°C

t°кип=5400°C

73

Ta

180,95

5d3 6s2

Серый металл

t°пл=2996°C

t°кип=5425°C

75

Re

186,21

5d5 6s2

Серебристо-белый металл

t°пл=3180°C

t°кип=5873°C

76

Os

190,23

5d6 6s2

Серебристый металл с голубоватым оттенком

t°пл=3045°C

t°кип=5027°C

77

Ir

192,22

5d7 6s2

Серебристый металл

t°пл=2410°C

t°кип=4130°C

78

Pt

195,08

5d9 6s1

2,28

Мягкий серебристо-белый металл

t°пл=1772°C

t°кип=3827°C

79

Au

196,97

5d10 6s1

2,54

Мягкий блестящий желтый металл

t°пл=1064°C

t°кип=2940°C

80

Hg

200,59

5d10 6s2

2,0

Жидкий серебристо-белый металл

t°пл=-39°C

t°кип=357°C

81

Tl

204,38

6s2 6p1

Серебристый металл

t°пл=304°C

t°кип=1457°C

82

Pb

207,2

6s2 6p2

2,33

Серый металл с синеватым оттенком

t°пл=328°C

t°кип=1740°C

83

Bi

208,98

6s2 6p3

Блестящий серебристый металл

t°пл=271°C

t°кип=1560°C

84

Po

208,98

6s2 6p4

Мягкий серебристо-белый металл

t°пл=254°C

t°кип=962°C

85

At

209,98

6s2 6p5

2,2

Нестабильный элемент, отсутствует в природе

t°пл=302°C

t°кип=337°C

86

Rn

222,02

6s2 6p6

2,2

Радиоактивный газ

t°пл=-71°C

t°кип=-62°C

87

Fr

223,02

7s1

0,7

Нестабильный элемент, отсутствует в природе

t°пл=27°C

t°кип=677°C

88

Ra

226,03

7s2

0,9

Серебристо-белый радиоактивный металл

t°пл=700°C

t°кип=1140°C

89

Ac

227,03

6d1 7s2

1,1

Серебристо-белый радиоактивный металл

t°пл=1047°C

t°кип=3197°C

90

Th

232,04

f-элемент

Серый мягкий металл

91

Pa

231,04

f-элемент

Серебристо-белый радиоактивный металл

92

U

238,03

f-элемент

1,38

Серебристо-белый металл

t°пл=1132°C

t°кип=3818°C

93

Np

237,05

f-элемент

Серебристо-белый радиоактивный металл

94

Pu

244,06

f-элемент

Серебристо-белый радиоактивный металл

95

Am

243,06

f-элемент

Серебристо-белый радиоактивный металл

96

Cm

247,07

f-элемент

Серебристо-белый радиоактивный металл

97

Bk

247,07

f-элемент

Серебристо-белый радиоактивный металл

98

Cf

251,08

f-элемент

Нестабильный элемент, отсутствует в природе

99

Es

252,08

f-элемент

Нестабильный элемент, отсутствует в природе

100

Fm

257,10

f-элемент

Нестабильный элемент, отсутствует в природе

101

Md

258,10

f-элемент

Нестабильный элемент, отсутствует в природе

102

No

259,10

f-элемент

Нестабильный элемент, отсутствует в природе

103

Lr

266

f-элемент

Нестабильный элемент, отсутствует в природе

104

Rf

267

6d2 7s2

Нестабильный элемент, отсутствует в природе

105

Db

268

6d3 7s2

Нестабильный элемент, отсутствует в природе

106

Sg

269

6d4 7s2

Нестабильный элемент, отсутствует в природе

107

Bh

270

6d5 7s2

Нестабильный элемент, отсутствует в природе

108

Hs

277

6d6 7s2

Нестабильный элемент, отсутствует в природе

109

Mt

278

6d7 7s2

Нестабильный элемент, отсутствует в природе

110

Ds

281

6d9 7s1

Нестабильный элемент, отсутствует в природе

Металлы

Неметаллы

Щелочные

Щелоч-зем

Благородные

Галогены

Халькогены

Полуметаллы

s-элементы

p-элементы

d-элементы

f-элементы

Наведите курсор на ячейку элемента, чтобы получить его краткое описание.

Чтобы получить подробное описание элемента, кликните по его названию.

Источник

этан простой углеводород формулы C2H6 с природой бесцветного газа без запаха, который имеет очень ценное и разнообразное применение в синтезе этилена. Кроме того, это один из земных газов, который также был обнаружен на других планетах и ​​звездных телах вокруг Солнечной системы. Он был открыт ученым Майклом Фарадеем в 1834 году.

Среди большого количества органических соединений, образованных атомами углерода и водорода (известных как углеводороды), есть те, которые находятся в газообразном состоянии при температурах и давлениях окружающей среды, которые чрезвычайно используются во многих отраслях промышленности..

Они обычно происходят из газообразной смеси, называемой «природный газ», продукта, представляющего большую ценность для человечества, и составляют метан, этан, пропан и бутан, среди прочих; классифицируется в зависимости от количества атомов углерода в его цепи.

индекс

  • 1 Химическая структура 
    • 1.1 Синтез этана
  • 2 свойства
    • 2.1 Растворимость этана
    • 2.2 Кристаллизация этана
    • 2.3 Сжигание этана
    • 2.4 Этан в атмосфере и в небесных телах
  • 3 использования
    • 3.1 Производство этилена
    • 3.2 Обучение основным химическим веществам
    • 3.3 Хладагент
  • 4 Риск этана
  • 5 ссылок

Химическая структура 

Этан является молекулой с формулой С2H6, обычно рассматривается как объединение двух метильных групп (-CH3) с образованием углеводорода простой углерод-углеродной связи. Это также самое простое органическое соединение после метана, представленное следующим образом:

H3С-СН3

Атомы углерода в этой молекуле обладают sp-гибридизацией3, поэтому молекулярные связи имеют свободное вращение.

Также существует внутреннее явление этана, которое основано на одинаковом вращении молекулярной структуры и минимальной энергии, необходимой для вращения связи на 360 градусов, которое ученые назвали «этановым барьером»..

По этой причине этан может встречаться в различных конфигурациях в зависимости от его вращения, даже если существует более стабильная конформация, когда атомы водорода находятся напротив друг друга (как показано на рисунке)..

Синтез этана

Этан может быть легко синтезирован из электролиза Колбе, органической реакции, в которой происходят две стадии: электрохимическое декарбоксилирование (удаление карбоксильной группы и выделение углекислого газа) двух карбоновых кислот и комбинация продуктов промежуточные соединения с образованием ковалентной связи.

Точно так же электролиз уксусной кислоты приводит к образованию этана и углекислого газа, и эта реакция используется для синтеза первого.

Окисление уксусного ангидрида под действием пероксидов, концепция, аналогичная концепции электролиза Колбе, также приводит к образованию этана.

Таким же образом он может быть эффективно отделен от природного газа и метана процессом сжижения с использованием криогенных систем для улавливания этого газа и отделения его от смесей с другими газами..

Читайте также:  Какие лечебные свойства кедрового ореха

Для этой роли предпочтителен процесс турбонаддува: газовая смесь пропускается через турбину, создавая ее расширение, пока ее температура не опустится ниже -100ºC..

Уже на этом этапе компоненты смеси могут быть дифференцированы, так что жидкий этан будет отделен от газообразного метана и других видов, связанных с использованием перегонки.

свойства

Этан встречается в природе как газ без цвета и запаха при стандартных давлениях и температурах (1 атм и 25 ° C). Он имеет температуру кипения -88,5 ºC и температуру плавления -182,8 ºC. Кроме того, он не подвержен воздействию сильных кислот или оснований..

Растворимость в этаноле

Молекулы этана имеют симметричную конфигурацию и имеют слабые силы притяжения, которые удерживают их вместе, называемые силами рассеивания.

Когда пытаются растворить этан в воде, силы притяжения, возникающие между газом и жидкостью, очень слабы, поэтому очень трудно соединить этан с молекулами воды..

По этой причине растворимость этана является значительно низкой, слегка увеличиваясь при повышении давления в системе..

Кристаллизация этана

Этан может затвердеть, что приводит к образованию нестабильных кристаллов этана с кубической кристаллической структурой.

При понижении температуры выше -183,2 ° С эта структура становится моноклинной, что повышает стабильность ее молекулы.

Сжигание этана

Этот углеводород, даже если он широко не используется в качестве топлива, может использоваться в процессах сжигания для производства углекислого газа, воды и тепла, который представлен следующим образом:

2С2H6 + 7O2 → 4CO2 + 6H2O + 3120 кДж

Существует также возможность сжигания этой молекулы без избытка кислорода, который известен как «неполное сгорание» и который приводит к образованию аморфного углерода и оксида углерода в нежелательной реакции, в зависимости от количества применяемого кислорода. :

2С2H6 + 3О2 → 4C + 6H2O + Тепло

2С2H6 + 4О2 → 2C + 2CO + 6H2O + Тепло

2С2H6 + 5О2 → 4CO + 6H2O + Тепло

В этой области сгорание происходит посредством ряда свободнорадикальных реакций, которые пронумерованы сотнями различных реакций. Например, такие соединения, как формальдегид, ацетальдегид, метан, метанол и этанол, могут образовываться в неполных реакциях сгорания..

Это будет зависеть от условий, при которых протекает реакция, и от участия свободнорадикальных реакций. Этилен также может образовываться при высоких температурах (600-900 ºC), что является продуктом, весьма востребованным промышленностью..

Этан в атмосфере и небесных телах

Этан присутствует в атмосфере планеты Земля в следах, и есть подозрение, что человеку удалось удвоить эту концентрацию с тех пор, как он начал заниматься производственной деятельностью.

Ученые считают, что большая часть присутствия этана в атмосфере обусловлена ​​сжиганием ископаемого топлива, хотя глобальные выбросы этана сократились почти вдвое с тех пор, как были усовершенствованы технологии добычи сланцевого газа ( источник природного газа).

Эта разновидность также произведена естественно воздействием солнечных лучей на атмосферный метан, который рекомбинирует и формирует молекулу этана.

Этан существует в жидком состоянии на поверхности Титана, одной из лун Сатурна. Это происходит в большем количестве в реке Вид Флумина, которая течет более 400 километров к одному из своих морей. Также было обнаружено, что это соединение на кометах и ​​на поверхности Плутона.

приложений

Производство этилена

Использование этана основано главным образом на производстве этилена, наиболее широко используемого органического продукта в мире, посредством процесса, известного как паровой крекинг..

Этот процесс состоит из подачи подачи этана, разбавленного паром, в печь, быстрого нагревания без кислорода.

Реакция происходит при очень высокой температуре (между 850 и 900 ºC), но время пребывания (время, которое этан проводит в печи) должно быть коротким, чтобы реакция была эффективной. При более высоких температурах вырабатывается больше этилена.

Обучение основным химическим веществам

Этан также был изучен в качестве основного компонента в образовании основных химических веществ. Окислительное хлорирование является одним из процессов, предложенных для получения винилхлорида (компонента из ПВХ), заменяя менее дорогие и более сложные.

холодильный

Наконец, этан используется в качестве хладагента в обычных криогенных системах, также показывая способность замораживать небольшие образцы в лаборатории для анализа..

Это очень хороший заменитель воды, который занимает больше времени для охлаждения деликатных образцов, а также может привести к образованию вредных кристаллов льда.

Этан рискует

-Этан обладает способностью воспламеняться, особенно когда он связывается с воздухом. При процентном содержании этана в воздухе от 3,0 до 12,5% может образоваться взрывоопасная смесь.

-Он может ограничивать содержание кислорода в воздухе, в котором он находится, и по этой причине представляет собой фактор риска удушья для людей и животных, которые присутствуют и подвергаются воздействию.

-Этан в замороженной жидкой форме может сильно обжечь кожу, если он вступает в непосредственный контакт с ней, а также действовать как криогенная среда для любого объекта, к которому он прикасается, мгновенно замораживая его.

-Пары жидкого этана тяжелее воздуха и концентрируются на земле, это может представлять опасность воспламенения, которое может вызвать цепную реакцию горения.

-Прием этана может вызвать тошноту, рвоту и внутреннее кровотечение. Вдыхание, помимо удушья, вызывает головные боли, спутанность сознания и перепады настроения. Смерть от остановки сердца возможна при высокой экспозиции.

-Он представляет собой парниковый газ, который вместе с метаном и углекислым газом способствует глобальному потеплению и изменению климата, вызванному загрязнением человека. К счастью, он менее распространен и долговечен, чем метан, и поглощает меньше радиации, чем этот..

Читайте также:  Какие свойства системы называются эмерджентными

ссылки

  1. Britannica, E. (s.f.). Этан. Получено с сайта britannica.com
  2. Нес, Г. В. (с.ф.). Монокристаллические структуры и распределения электронной плотности этана, этилена и ацетилена. Восстановлено с rug.nl
  3. Сайты, Г. (с.ф.). Этан: источники и раковины. Получено с sites.google.com
  4. SoftSchools. (Н.Д.). Этана Формула. Восстановлено от softschools.com
  5. Wikipedia. (Н.Д.). Этан. Получено с en.wikipedia.org

Источник

Посмотрите видеоматериал:

Предельные, углеводороды ряда метана (алканы)

Алканы, или парафины — алифатические
предельные углеводороды, в молекулах которых атомы углерода связаны между собой
простой s-связью.
Оставшиеся валентности углеродного атома, не затраченные на связь с другими
атомами углерода, полностью насыщены водородом. Поэтому предельные углеводороды
содержат в молекуле максимальное число водородных атомов.

Углеводороды ряда алканов имеют общую
формулу CnH2n+2. В таблице представлены некоторые
представители ряда алканов и их некоторые физические свойства.

Формула

Название

Название
радикала

Т
пл. 0С

Т
кип. 0С

CH4

метан

метил

-184

-162

C2H6

этан

этил

-172

-88

C3H8

пропан

пропил

-190

-42

C4H10

бутан

бутил

-135

-0,5

C4H10

изобутан

изобутил

-140

-10

C5H12

пентан

пентил

-132

36

C5H12

изопентан

изопентил

-161

28

C5H12

неопентан

неопентил

-20

10

C6H14

гексан

гексил

-94

69

C7H16

гептан

гептил

-90

98

C10H22

декан

децил

-30

174

C15H32

пентадекан

10

271

C20H42

эйкозан

37

348

Из таблицы видно, что эти углеводороды
отличаются друг от друга количеством групп – СН2-.Такой ряд сходных
по строению, обладающих близкими химическими свойствами и отличающихся друг от
друга числом данных групп называется гомологическим рядом. А вещества,
составляющие его, называются гомологами.

Тренажёр
№1 – Гомологи и изомеры

Тренажёр
№2. – Гомологический ряд предельных углеводородов

Физические
свойства

Первые четыре
члена гомологического ряда метана — газообразные вещества, начиная с пентана —
жидкости, а углеводороды с числом углеродных атомов 16 и выше — твердые
вещества (при обычной температуре). Алканы — неполярные соединения и трудно
поляризуемые. Они легче воды и в ней практически не растворяются. Не
растворяются также в других растворителях с высокой полярностью. Жидкие алканы
— хорошие растворители для многих органических веществ. Метан и этан, а также
высшие алканы не имеют запаха. Алканы — горючие вещества. Метан горит
бесцветным пламенем.

Получение
алканов

Для получения
алканов используют в основном природные источники.

Газообразные
алканы получают из природного и попутных нефтяных газов, а твердые алканы — из
нефти. Природной смесью твердых высокомолекулярных алканов является горный
воск —природный битум.

1. Из
простых веществ: 

nC + 2nН2500 °С, кат →  СnН2n+ 2

2. Действие
металлического натрия на галогенопроизводные алканов— реакция А.Вюрца:

2CH3-Cl + 2Na → CH3-CH3
+ 2NaCl

Химические свойства алканов

1. Реакции замещения –  Галогенирование (стадийно)

CH4 + Cl2 hν → CH3Cl(хлорметан) + HCl (1 стадия)
;                       

метан                                                                                                                

CH3Cl + Cl2 hν   CH2Cl2 (дихлорметан)+ HCl (2 стадия);

СH2Cl2 + Cl2 hν →  CHCl3 (трихлорметан)+ HCl (3 стадия);

CHCl3 + Cl2 hν →  CCl4 (хлорметан)+ HCl (4 стадия).

2. Реакции горения (горят светлым не коптящим пламенем)

CnH2n+2 + O2t→ nCO2 +
(n+1)H2O

Горение метана

Горение пропан-бутановой смеси

3. Реакции разложения

а) Крекинг при температуре 700-1000°С разрываются (-С-С-)
связи:

C10H22 → C5H12
+ C5H10

б) Пиролиз при температуре 1000°С разрываются все связи,
продукты – С (сажа) и Н2:

  СH4    1000°С→
C + 2H2

Применение

·        
Предельные
углеводороды находят широкое применение в самых разнообразных сферах жизни и
деятельности человека.

·        
Использование
в качестве топлива – в котельных установках, бензин, дизельное топливо,
авиационное топливо, баллоны с пропан-бутановой смесью для бытовых плит

·        
Вазелин
используется в медицине, парфюмерии, косметике, высшие алканы входят в состав
смазочных масел, соединения алканов применяются в качестве хладагентов в
домашних холодильниках

·        
Смесь
изомерных пентанов и гексанов называется петролейным эфиром и применяется в
качестве растворителя. Циклогексан также широко применяется в качестве
растворителя и для синтеза полимеров.

·        
Метан
используется для производства шин и краски

·        
Значение
алканов в современном мире огромно. В нефтехимической промышленности предельные
улеводороды являются базой для получения разнообразных органических соединений,
важным сырьем в процессах получения полупродуктов для производства пластмасс,
каучуков, синтетических волокон, моющих средств и многих других веществ. Велико
значение  в медицине, парфюмерии и косметике.

Самостоятельная работа:

№1.
Составьте уравнения реакций горения этана и бутана.

№2.
Составьте
уравнения реакций получения бутана из следующих галогеналканов:

CH3 – Cl (хлорметан) и C2H5 – I (йодэтан).

№3. Осуществите
превращения по схеме, назовите продукты:

C→ CH4 → CH3Cl → C2H6
→ CO2

№4. Реши кроссворд

По горизонтали:

1.
Алкан, имеющий молекулярную формулу С3Н8.
2. Простейший представитель предельных углеводородов.
3. Французский химик, имя которого носит реакция получения углеводородов с
более длинной углеродной цепью взаимодействием галогенопроизводных предельных
углеводородов с металлическим натрием.
4. Геометрическая фигура, которую напоминает пространственное строение молекулы
метана.
5. Трихлорметан.
6. Название радикала С2Н5–.
7. Наиболее характерный вид реакций для алканов.
8. Агрегатное состояние первых четырех представителей алканов при нормальных
условиях.

Если
вы правильно ответили на вопросы, то в выделенном столбце по вертикали получите
одно из названий предельных углеводородов.  

Сфотографируйте и вышлите работу прикрепив файл ГОРИЗОНТАЛЬНО в теме письма указав ФИО и ТЕМУ АЛКАНЫ!

Источник