Какие химические свойства свойственный предельными углеводородами

Какие химические свойства свойственный предельными углеводородами thumbnail

Химические свойства алканов

Алканами (парафинами) называют нециклические углеводороды, в молекулах которых все атомы углерода соединены только одинарными связями. Другими словами в молекулах алканов отсутствуют кратные — двойные или тройные связи. Фактически алканы являются углеводородами, содержащими максимально возможное количество атомов водорода, в связи с чем их называют предельным (насыщенными).

Ввиду насыщенности, алканы не могут вступать в реакции присоединения.

Поскольку атомы углерода и водорода имеют довольно близкие электроотрицательности, это приводит к тому, что связи С-Н в их молекулах крайне малополярны. В связи с этим для алканов более характерны реакции протекающие по механизму радикального замещения, обозначаемого символом SR.

1. Реакции замещения

В реакциях данного типа происходит разрыв связей углерод-водород

RH + XY → RX + HY

или

C-H plus X-Y ravno C-X plus H-Y

Галогенирование

Алканы реагируют с галогенами (хлором и бромом) под действием ультрафиолетового света или при сильном нагревании. При этом образуется смесь галогенпроизводных с различной степенью замещения атомов водорода — моно-, ди- три- и т.д. галогенозамещенных алканов.

На примере метана это выглядит следующим образом:

CH4 plus Cl2 minus HCl ravno CH3Cl plus Cl2 minus HCl

Меняя соотношение галоген/метан в реакционной смеси можно добиться того, что в составе продуктов будет преобладать какое-либо конкретное галогенпроизводное метана.

Механизм реакции

Разберем механизм реакции свободнорадикального замещения на примере взаимодействия метана и хлора. Он состоит из трех стадий:

  1. инициирование (или зарождение цепи) — процесс образования свободных радикалов под действии энергии извне – облучения УФ-светом или нагревания. На этой стадии молекула хлора претерпевает гомолитический разрыв связи Cl-Cl c образованием свободных радикалов:

gomoliticheskij razryv svjazi v molekule hlora

Свободными радикалами, как можно видеть из рисунка выше, называют атомы или группы атомов с одним или несколькими неспаренными электронами (Сl•, •Н, •СН3,•СН2• и т.д.);

2. Развитие цепи

Эта стадия заключается во взаимодействии активных свободных радикалов с неактивными молекулами. При этом образуются новые радикалы. В частности, при действии радикалов хлора на молекулы алкана, образуется алкильный радикал и хлороводород.  В свою очередь, алкильный радикал, сталкиваясь с молекулами хлора, образует хлорпроизводное и новый радикал хлора:

razvitie cepi

3) Обрыв (гибель) цепи:

Происходит в результате рекомбинации двух радикалов друг с другом в неактивные молекулы:

gibel cepi

2. Реакции окисления

В обычных условиях алканы инертны по отношению к таким сильным  окислителям, как концентрированная серная и азотная кислоты,  перманганат и дихромат калия (КMnО4, К2Cr2О7).

Горение в кислороде

А) полное сгорание при избытке кислорода. Приводит к образованию углекислого газа и воды:

CH4 + 2O2 = CO2 + 2H2O

Б) неполное сгорание при недостатке кислорода:

2CH4 + 3O2 = 2CO + 4H2O

CH4 + O2 = C + 2H2O

Каталитическое окисление кислородом

В результате нагревания алканов с кислородом (~200 оС) в присутствии  катализаторов, из них может быть получено большое разнообразие органических продуктов: альдегиды, кетоны, спирты, карбоновые кислоты.

Например, метан, в зависимости природы катализатора, может быть окислен в метиловый спирт, формальдегид или муравьиную кислоту:

poluchenie iz metana kataliticheskim okisleniem metanola

3. Термические превращения алканов

Крекинг

Крекинг (от англ. to crack — рвать)  — это химический процесс протекающий при высокой температуре, в результате которого происходит разрыв углеродного скелета молекул алканов с образованием молекул алкенов и алканов с обладающих меньшими молекулярными массами по сравнению с исходными алканами. Например:

CH3-CH2-CH2-CH2-CH2-CH2-CH3  → CH3-CH2-CH2-CH3 + CH3-CH=CH2

Крекинг бывает термический и каталитический. Для осуществления  каталитического крекинга, благодаря использованию катализаторов, используют заметно меньшие температуры по сравнению с термическим крекингом.

Дегидрирование

Отщепление водорода происходит в результате разрыва связей С—Н; осуществляется в присутствии катализаторов при повышенных температурах. При дегидрировании метана образуется ацетилен:

2CH4 → C2H2 + 3H2

Нагревание метана до 1200 °С приводит к его разложению на простые вещества:

СН4 →  С + 2Н2

При дегидрировании остальных алканов образуются алкены:

C2H6 → C2H4 + H2

При дегидрировании н-бутана образуются бутен-1 и бутен-2 (последний в виде цис- и транс-изомеров):degidrirovanie butana

Дегидроциклизация

degidrociklizacija geptana

Изомеризация

izomerizacija n-butana v izo-butan na hloride aljuminija pri 100 gradusah

Химические свойства циклоалканов

Химические свойства циклоалканов с числом атомов углерода в циклах больше четырех, в целом практически идентичны свойствам алканов. Для циклопропана и циклобутана, как ни странно,  характерны реакции присоединения. Это обусловлено большим напряжением внутри цикла, которое приводит к тому, что данные циклы стремятся разорваться. Так циклопропан и циклобутан легко присоединяют бром, водород или хлороводород:addition reaction to small cycloalkanes

Химические свойства алкенов

1. Реакции присоединения

Поскольку двойная связь в молекулах алкенов состоит из одной прочной сигма- и одной слабой пи-связи, они являются довольно активными соединениями, которые легко вступаю в реакции присоединения. В такие реакции алкены часто вступают даже в мягких условиях — на холоду, в водных растворах и органических растворителях.

Гидрирование алкенов

Алкены способны присоединять водород в присутствии катализаторов (платина, палладий, никель):

CH3—СН=СН2 + Н2 → CH3—СН2—СН3

Гидрирование алкенов легко протекает даже при обычном давлении и незначительном нагревании. Интересен тот факт, что для дегидрирования алканов до алкенов могут использоваться те же катализаторы, только процесс дегидрирования протекает при более высокой температуре и меньшем давлении.

Галогенирование

Алкены легко вступаю в реакцию присоединения с бромом как в водном растворе, так и с органических растворителях. В результате взаимодействия  изначально желтые растворы брома теряют свою окраску, т.е. обесцвечиваются.

СН2=СН2+ Br2 → CH2Br-CH2Br

Гидрогалогенирование

Как нетрудно заметить, присоединение галогеноводорода к молекуле несимметричного алкена должно, теоретически, приводить к смеси двух изомеров. Например, при присоединении бромоводорода к пропену должны были бы получаться продукты:

propen plus HBr ravno 1-bromproman ili 2-brompropan

Тем не менее в отсутствие специфических условий (например, наличие пероксидов в реакционной смеси) присоединение молекулы галогеноводорода будет происходить строго селективно в соответствии с правилом Марковникова:

Читайте также:  Проявлением какого вида свойств материалов является стойкость к термоударам

Присоединении галогеноводорода к алкену происходит таким образом, что водород присоединяется к атому углерода с большим числом атомов водорода (более гидрированному), а галоген — к атому углерода с меньшим числом атомов водорода (менее гидрированному).

Поэтому:

propen plus HBr ravno 2-brompropan

Гидратация

Данная реакция приводит к образованию спиртов, и также протекает в соответствии с правилом Марковникова:

hydratation of propene

Как легко догадаться, по причине того, что присоединение воды к молекуле алкена происходит согласно правилу Марковникова, образование первичного спирта возможно только в случае гидратации этилена:

CH2=CH2 + H2O → CH3-CH2-OH

Именно по такой реакции проводят основное количество этилового спирта в крупнотоннажной промышленности.

Полимеризация

Специфическим случаем реакции присоединения можно реакцию полимеризации, которая в отличие от галогенирования, гидрогалогенирования и гадратации, протекает про свободно-радикальному механизму:

polimerizacija jetilena

Реакции окисления

Как и все остальные углеводороды, алкены легко сгорают в кислороде с образованием углекислого газа и воды. Уравнение горения алкенов в избытке кислорода имеет вид:

CnH2n + (3/2)nO2 → nCO2 + nH2O

В отличие от алканов алкены легко окисляются. При действии на алкены водного раствора KMnO4 обесцвечивание, что является качественной реакцией на двойные и тройные CC связи в молекулах органических веществ.

Окисление алкенов перманганатом калия в нейтральном или слабощелочном растворе приводит к образованию диолов (двухатомных спиртов):

3C2H4 + 2KMnO4 + 4H2O → 3CH2OH–CH2OH + 2MnO2 + 2KOH (охлаждение)

В кислой среде происходит полное разрыв двойной связи с превращение атомов углерода образовывавших двойная связь в карбоксильные группы:

5CH3CH=CHCH2CH3 + 8KMnO4 + 12H2SO4 → 5CH3COOH + 5C2H5COOH + 8MnSO4 + 4K2SO4 + 12H2O (нагревание)

В случае, если двойная С=С связь находится в конце молекулы алкена, то в качестве продукта окисления крайнего углеродного атома при двойной связи образуется углекислый газ. Связано это с тем, что промежуточный продукт окисления – муравьиная кислота легко сама окисляется в избытке окислителя:

CH3CH=CH2 + 2KMnO4 + 3H2SO4 → CH3COOH + CO2 + 2MnSO4 + K2SO4 + 4H2O (нагревание)

При окислении алкенов, в которых атом C при двойной связи содержит два углеводородных заместителя, образуется кетон. Например, при окислении 2-метилбутена-2 образуется ацетон и уксусная кислота.

Окисление алкенов, при котором происходит разрыв углеродного скелета по двойной связи используется для установления их структуры.

Химические свойства алкадиенов

Реакции присоединения

Например, присоединение галогенов:

bromirovanie butadiena

Бромная вода обесцвечивается.

В обычных условиях присоединение атомов галогена происходит по концам молекулы  бутадиена-1,3, при этом π-связи разрываются, к крайним атомам углерода присоединяются атомы брома, а свободные валентности образуют новую π-связь. Таким образом, как бы происходит «перемещение» двойной связи. При избытке брома может быть присоединена еще одна его молекула по месту образовавшейся двойной связи.

Реакции полимеризации

polimerizacija butadiena

Химические свойства алкинов

Алкины являются ненасыщенными (непредельными) углеводородами в связи с чем способны вступать в реакции присоединения. Среди реакци присоединения для алкинов наиболее распространено электрофильное присоединение.

Галогенирование

Поскольку тройная связь молекул алкинов состоит из одной более прочной сигма-связи и двух менее прочных пи-связей они способны присоединять как одну, так и две молекулы галогена. Присоединение одной молекулой алкина двух молекул галогена протекает  по электрофильному механизму последовательно в две стадии:

dve stadii bromirovanija acetilena

Гидрогалогенирование

Присоединение молекул галогеноводорода, также протекает по электрофильному механизму и в две стадии. В обоих стадиях присоединение идет в соответствии с правилом Марковникова:

dve stadii vzaimodejstvija propina s bromovodorodom 2

prichiny prisoedinenija bromovodoroda po pravilu Markova v obeih stadijah 2

Гидратация

Присоединение воды к алкинами происходит в присутсвии солей рути в кислой среде и называется реакцией Кучерова.

В результате гидратации присоединения воды к ацетилену ообразуется ацетальдегид (укусный альдегид):

6C53D6 5

Для гомологов ацетилена присоединение воды приводит к образованию кетонов:

5B7666 1

prisoedinenie vody k acetilenu i propinu cherez promezhutochnoe obrazovanie enolov

Гидрирование алкинов

Алкины реагируют с водородом в две ступени. В качестве катализаторов используют такие металлы как платина, палладий, никель:

Тримеризация алкинов

При пропускании ацетилена над активированным углем при высокой температуре из него образуется смесь различных продуктов, основным из которых является бензол – продукт тримеризации ацетилена:

trimerizacija acetilena

Димеризация алкинов

Также ацетилен вступать в реакцию димеризации. Процесс протекает в присутствии солей меди как катализаторов:

1C6CBE 4

Окисление алкинов

Алкины сгорают в кислороде:

СnH2n-2 + (3n-1)/2 O2 → nCO2 + (n-1)H2O

Взаимодействие алкинов с основаниями

Алкины с тройной C≡C на конце молекулы, в отличие от остальных алкинов, способны вступать в реакции, в которых атом водорода при тройной связи замещается металл. Например, ацетилен реагирует с амидом натрия в жидком аммиаке:

HC≡CH + 2NaNH2 → NaC≡CNa + 2NH3,

а также с аммиачным раствором оксида серебра, образуя нерастворимые солеподобные вещества называемые ацетиленидами:

propin i butin-2 pljus ammiachnyj rastvor oksida serebra

Благодаря такой реакции можно распознать алкины с концевой тройной связью, а также выделить такой алкин из смеси с другими алкинами.

Следует отметить, что все ацетилениды серебра и меди являются взрывоопасными веществами.

Ацетилениды способны реагировать с галогенпроизводными, что используется  при синтезе более сложных органических соединений с тройной связью:

СН3-C≡CН + NaNН2 → СН3-C≡CNa + NН3

СН3-C≡CNa + CH3Br → СН3-C≡C-СН3 + NaBr

Химические свойства ароматических углеводородов

Ароматический характер связи влияет на химические свойства бензолов и других ароматических углеводородов.

Единая 6пи–электронная система намного более устойчива, чем обычные пи-связи. Поэтому для ароматических углеводородов более характерны реакции замещения, а не присоединения. В реакции замещения арены вступают по электрофильному механизму.

Реакции замещения

Галогенирование

bromirovanie benzola

Нитрование

Лучше всего реакция нитрования протекает под  действием не чистой азотной кислоты, а ее смеси с концентрированной серной кислотой, так называемой нитрующей смеси:

nitrovanie benzola

Алкилирование

Реакция при которой один из атомов водорода при ароматическом ядре замещается на углеводородный радикал:

Читайте также:  С каким свойством пространства связан закон сохранения импульса

11E9DF benzol plus ch3cl s alcl3 ravno metilbenzol 2

Также вместо галогенпроизводных алканов можно использовать алкены. В качестве катализаторов можно использовать галогениды алюминия, трехвалентного железа или неорганические кислоты.<

Реакции присоединения

Гидрирование

gidrirovanie benzola do ciklogeksana

Присоединение хлора

Протекает по радикальному механизму при интенсивном облучении ультрафиолетовым светом:

prisoedinenie hlora k benzolu

Подобным образом реакция может протекать только с хлором.

Реакции окисления

Горение

2С6Н6 + 15О2 = 12СО2 + 6Н2О+Q

Неполное окисление

Бензольное кольцо устойчиво к действию таких окислителей как KMnO4 и K2Cr2O7. Реакция не идет.

Деление заместителей в бензольном кольце на два типа:

orientirujushhee dejstvie zamestitelej pervogo i vtorogo roda 2

Рассмотрим химические свойства гомологов бензола на примере толуола.

Химические свойства толуола

Галогенирование

Молекулу толуола можно рассматривать, как состоящую из фрагментов молекул бензола и метана. Поэтому логично предположить, что химические свойства толуола должны в какой-то мере сочетать химические свойства этих двух веществ, взятых по отдельности. В частyости, именно это и наблюдается при его галогенировании. Мы уже знаем, что бензол вступает в реакцию замещения с хлором по электрофильному механизму, и для осуществления данной реакции необходимо использовать катализаторы (галогениды алюминия или трехвалентного железа). В то же время метан так же способен реагировать с хлором, но уже по свободно-радикальному механизму, для чего требуется облучение исходной реакционной смеси УФ-светом. Толуол, в зависимости от того, в каких условиях подвергается хлорированию, способен дать либо продукты замещения атомов водорода в бензольном кольце – для это нужно использовать те же условия что и при хлорировании бензола, либо продукты замещения атомов водорода в метильном радикале, если на него, как и на метан действовать хлором при облучении ультрафиолетом:

hlorirovanie tolula hv

hlorirovanie tolula v prisutstvii katalizatora

Как можно заметить хлорирование толуола в присутствии хлорида алюминия привело к двум разным продуктам – орто- и пара-хлортолуолу. Это обусловлено тем, что метильный радикал является заместителем I рода.

Если хлорирование толуола в присутсвии AlCl3 проводить в избытке хлора, возможно образование трихлорзамещенного толуола:

hlorirovanie tolula do 2,4,6-trihlortoluola

Аналогично при хлорировании толуола на свету при большем соотношении хлор/толуол можно получить дихлорметилбензол или трихлорметилбензол:

dihlormetiltoluol i trihlormetiltoluol

Нитрование

Замещение атомов водорода на нитрогрппу, при нитровании толуола смесью концентрированных азотной и серной кислот, приводит к продуктам замещения в ароматическом ядре, а не метильном радикале:

nitrovanie toluola do trotila

Алкилирование

Как уже было сказано метильный радикал, является ориентантом I рода, поэтому его алкилирование по Фриделю-Крафтсу приводит продуктам замещения в орто- и пара-положения:

alkilirovanie toluola trihlormetanom

alkilirovanie toluola jetilenom 2

Реакции присоединения

Толуол можно прогидрировать до метилциклогексана при использовании металлических катализаторов (Pt, Pd, Ni):

hydrirovanie toluola do metilciklogeksana

С6Н5СН3 + 9O2 → 7СO2 + 4Н2O

Неполное окисление

При действии такого окислителя, как водный раствор перманганата калия окислению подвергается боковая цепь. Ароматическое ядро в таких условиях окислиться не может. При этом в зависимости от pH раствора будет образовываться либо карбоновая кислота, либо ее соль:

okislenie toluola permanganatom v kisloj srede 3

okislenie toluola permanganatom v nejtral'noj srede

okislenie toluola permanganatom v shhelochnoj srede

Источник

ХИМИЧЕСКИЕ СВОЙСТВА АЛКАНОВ

Для определения химических свойств и химической активности алканов рассмотрим виды связей, образующих молекулы. С-С-связи в молекулах алканов  –  ковалентные неполярные, связи С-Н – ковалентные малополярные (разница в электроотрицательности составляет 0,4). Такие связи достаточно прочные, поэтому при комнатной температуре ни кислоты, ни щелочи, ни окислители на алканы не действуют.

Для алканов, как насыщенных УВ, не характерны реакции присоединения, но характерны реакции замещения, разложения (разрыва С-С связей),   элиминирования (отщепления), изомеризации (в том числе циклизации) и окисления в жестких условиях.

1. Реакции радикального замещения $S_R$

В реакциях замещения алканов легче всего идет замещение при третичном атоме углерода, затем при вторичном, труднее всего – при первичном.

а) галогенирование. 

Условием протекания реакции является УФ-освещение и нагревание. Скорость реакции зависит от активности галогена. Так, фтор не только замещает атомы водорода, но и разрушает углерод-углеродные связи, а иодирование протекает настолько медленно, что обычно не используется на практике. Чаще всего проводится хлорирование или бромирование алканов, которое протекает по гомолитическому (радикальному) механизму (см. тему”Типы и механизмы реакций в органической химии”). Галогенирование протекает в несколько стадий, в результате чего можно заместить все атомы водорода на атомы хлора. Для примера рассмотрим стадии хлорирования этана:

Какие химические свойства свойственный предельными углеводородами

Стадия 1 называется стадией инициирования, стадии 2а и 2b – роста цепи. На стадиях 3a, 3b и 3с происходит обрыв цепи.

б) нитрование по Коновалову. 

Условием протекания реакции является использование 13-15% азотной кислоты $HNO_3$ при температуре $130-140^0C$. Реакция протекает по свободно-радикальному механизму.

Какие химические свойства свойственный предельными углеводородами

Также, как и при галогенировании алканов, образуется смесь продуктов с преимущественным образованием продуктов нитрования третичного атома углерода:

Какие химические свойства свойственный предельными углеводородами

В более жестких условиях нитрование газообразных алканов может осуществляться оксидами азота или парами азотной кислоты при температуре $420^0-480^0C$ (нитрование по Гессу), при этом происходит разрыв С-С связей и образуется смесь нитроалканов:

В случае нитрования метана образуется нитрометан. Нитрование парафинов в газовой фазе теперь осуществляется в промышленном масштабе.

в) сульфирование

Сульфирование алканов проводится в жестких условиях и протекает с образование сульфокислот. Серная кислота при обыкновенной температуре не действует на парафины; при высокой температуре действует как окислитель. Парафиновые углеводороды с числом углеродных атомов более шести при нагревании до температуры кипения  сульфируются олеумом (15%  $SO_3$).  При слабом нагревании дымящая серная кислота также может действовать на парафиновые углеводороды, особенно на углеводороды изостроения, образуя сульфокислоту и воду:

$C_6H_14 + H_2SO_4 +SO_3 longrightarrow C_6H_{13}-SO_3H + H_2O$

Прямое сульфинирование алканов протекает с трудом и сопровождается, как правило, окислением. Подобные реакции редко используют  в лабораторном синтезе, но находят  практическое применение для сульфинирования полимеров, например – полиэтилена, с целью их модификации. Значительно легче сульфируются углеводороды при совместном действии $SO_3$ и $O_2$ (сульфо-окисление), а также $SO_2$ и $Cl_2$ (сульфохлорирование). Обе реакции имеют радикальный характер и инициируются пероксидами, УФ или гамма – облучением:

Читайте также:  Какие свойства у геев

2. Реакции окисления

Реакции окисления алканов включают два вида – полное окисление (сгорание) и неполное окисление в присутствии катализаторов или неорганических окислителей.

а) горение (полное окисление) (см. подробно тему “ОВР в органической химии”)

$2C_2H_6 +7O_2 longrightarrow 4CO_2 + 6H_2O +Q$

При недостатке кислорода образуется угарный газ или углерод:

$2C_2H_6 + 5O_2 longrightarrow 4CO + 6H_2O +Q$

$2C_2H_6 + 3O_2 longrightarrow 4C + 6H_2O +Q$

б) Неполное окисление

Способность низших парафинов к окислению зависит от длины цепи: с удлинением цепи температура окисления понижается. Окисление может протекать как с разрывом, так и без разрыва С-С связей. Условиями протекания реакции неполного каталитического окисления является температурный режим, повышенное давление и наличие катализатора. Чаще всего в качестве катализатора окисления алканов используют хлорид олова, соли кобальта. Продуктами, в зависимости от условий, могут быть спирты, альдегиды, кетоны или карбоновые кислоты 

Какие химические свойства свойственный предельными углеводородами

Окисление алканов также проводится  в присутствии солей переходных металлов (Mn, Cr и др.), но протекает в жестких условиях с образованием преимущественно вторичных продуктов окисления – карбоновых кислот: 

$2C_4H_{10} +5O_2 longrightarrow 4CH_3COOH +2 H_2O$

Подробно см. тему “ОВР в органической химии”

Запомнить! В обычных условиях алканы перманганатом калия не окисляются (не обесцвечивают раствор $KMnO_4$).

3. Термическая обработка

Термическая обработка алканов имеет промышленное значение, так как включает такие важные технологические процессы, как крекинг и пиролиз (подробно см. тему “Переработка нефти”). В результате каталитического крекинга получают ценные органические вещества: этилен, бутадиен, ароматические УВ, кокс. Кроме того, в результате изомеризации над окисью алюминия $Al_2O_3$ образуются изомерные алканы, которые повышают октановое число бензинов.

4. Реакции отщепления (элиминирования)

а) внутримолекулярное дегидрирование

Определение

Внутримолекулярное дегидрирование предельных УВ – это процесс отщепления молекул водорода у соседних атомов в углеводородной цепи, приводящий к образованию кратных связей или замыканию цикла (начиная с $С_5$).

В зависимости от условий, дегидрирование алканов может приводит к образованию одной или нескольких двойных связей:

Какие химические свойства свойственный предельными углеводородами

Процессы циклизации гексана с последующим отщеплением трех молекул водорода лежат в основе получения бензола. Аналогично получаются и его производные:

Какие химические свойства свойственный предельными углеводородами

Какие химические свойства свойственный предельными углеводородами

б) межмолекулярное дегидрирование

Определение

Межмолекулярное дегидрирование – отщепления атомов водорода от двух молекул, приводящее к  образованию непредельных УВ с более длинной цепью

В промышленности находит широкое практическое применение пиролиз метана, лежащий в основе получения ацетилена, протекающий по механизму межмолекулярного дегидрирования:

Дегидрирование проводится при повышенных температурах в присутствии  катализаторов 

Запомнить!

Ni, $Al_2O_3, Cr_2O_3, ZnO$ – катализаторы   дегидрирования с образованием ациклических УВ.

Pt – катализатор процессов циклизации и ароматизации 

Химические свойства циклоалканов

Циклоалканы имеют в своей структуре только одинарные связи, поэтому по своим свойствам сходны с алканами: малоактивны, горючи, атомы водорода в них могут замещаться галогенами. Химические свойства циклоалканов и их химическая устойчивость определяются  размерами цикла, Поэтому циклоалканы с циклами, образованными пятью (циклопентан и его производные) и более атомами углерода,  по химическим свойствам напоминают алканы, то есть являются насыщенными. Это значит, что для них будут также характерны реакции замещения, элиминирования, расщепления С-С связей. Наиболее устойчивыми являются шестичленные циклы (циклогексан и его производные), в которых отсутствуют угловое и другие виды напряжения

Малые циклы – трех- (циклопропан) и четырехчленный (циклобутан), являясь насыщенными, тем не менее, резко отличаются от предельных углеводородов. Напряженность таких циклов обусловлена малыми величинами валентных углов ($60^0$ и $90^0$ соответственно, по сравнению с углом $109^0$, характерным для предельных углеводородов ($sp^3$-гибридизация).

Атомы заместителей в циклоалканах с малыми циклами могут находится в цис- или транс-положениях относительно плоскости цикла, поэтому для таких циклоалканов, также как и для соединений с кратной связью, характерна геометрическая изомерия:

Какие химические свойства свойственный предельными углеводородами

Как уже было сказано, по химическим свойствам малые и обычные циклы существенно различаются между собой. Циклопропан и циклобутан склонны к реакциям присоединения, протекающим с разрывом цикла, проявляя тем самым характер ненасыщенных соединений. то есть сходны в этом отношении с алкенами. Циклопентан и циклогексан по своему химическому поведению близки к алканам, поэтому вступают в реакции замещения.  

Рассмотрим отдельно химические свойства для циклоалканов с малыми и с большими циклами.

Химические свойства циклоалканов с малыми циклами (С3-С4)

1. Реакции присоединения (гидрирование, галогенирование, гидрогалогенирование).

Реакции гидрирования протекают достаточно легко и сопровождаются разрывом цикла:

Также, достаточно легко циклопропан и циклобутан присоединяют галогены и галогеноводороды:

Химические свойства циклоалканов с большими циклами (С5-С6)

1. Наиболее важное промышленное значение имеет реакция дегидрирования циклогексана, лежащая в основе процесса ароматизации при каталитическом крекинге (платформинге) нефти.

Какие химические свойства свойственный предельными углеводородами

2. Галогенирование – (хлорирование, бромирование) протекают по радикальному механизму замещения атомов водорода:

Какие химические свойства свойственный предельными углеводородами

3. Реакции окисления: циклы, как малые, так и большие, разрывается и концевые атомы углерода окисляются до карбоксильной группы -COOH:    

$C_5H_{10} + [O] rightarrow HOOC-(CH_2)_3-COOH$

 4. Горение: все как обычно — все органические веществ сгорают с образованием $CO_2$ и $H_2O$. В общем виде можно записать:

$С_nH_{2n} + 3n/2 O_2 = nCO_2 + nH_2O$

Источник