Какие известные вам материалы обладают необходимыми для нагревательного элемента свойствами

электропечей сопротивления
Нагревательные элементы имеют самую высокую температуру в печи и, как правило, предопределяют работоспособность установки в целом.
К этим материалам предъявляются следующие требования:
1. Достаточная жаростойкость (окалиностойкость).
2. Достаточная жаропрочность – механическая прочность при высоких температурах, необходимая для того, чтобы нагреватели могли поддерживать сами себя.
3. Большое удельное электрическое сопротивление. Чем меньше удельное электрическое сопротивление, тем больше длина нагревателя и меньше его поперечное сечение. Сечение нагревателя должно быть достаточно большим для обеспечения необходимого срока службы. Длинный нагреватель не всегда возможно разместить в печи. Таким образом, желательно, чтобы материалы нагревательных элементов имели высокое значение удельного электрического сопротивления.
4. Малый температурный коэффициент сопротивления. Данное требование должно выполняться для того, чтобы мощность, выделяемая нагревателями в горячем и холодном состояниях, была одинаковой или отличалась незначительно. Если температурный коэффициент сопротивления велик, для включения печи в холодном состоянии приходится использовать трансформаторы, дающие в начальный момент пониженное напряжение.
5. Постоянство электрических свойств. Некоторые материалы, например карборунд, с течением времени стареют, т. е. увеличивают электрическое сопротивление, что усложняет условия их эксплуатации. Требуются трансформаторы с большим количеством ступеней и диапазоном напряжений.
6. Обрабатываемость. Металлические материалы должны обладать пластичностью и свариваемостью, чтобы из них можно было изготовить проволоку, ленту, а из последних – сложные по конфигурации нагревательные элементы. Неметаллические нагреватели прессуются или формуются, с тем чтобы нагреватель представлял собой готовое изделие.
Основными материалами для нагревательных элементов являются сплавы на основе железа, никеля, хрома и алюминия.
Это, в первую очередь, — хромоникелевые, а также железохромоалюминиевые сплавы. Свойства и характеристики этих сплавов представлены в [22].
Двойные сплавы состоят из никеля и хрома (хромоникелевые сплавы), тройные – из никеля, хрома и железа (железохромоникелевые сплавы). Тройные сплавы – дальнейшее развитие хромоникелевых сталей, так как Х23Н18, Х15Н60-Н применяются примерно до 1000°С.
Двойные сплавы – это, например, Х20Н80-Н. Они образуют на поверхности защитную пленку из окиси хрома. Температура плавления этой пленки выше, чем самого сплава; пленка не растрескивается при нагреве и охлаждении. Эти сплавы имеют хорошие механические свойства как при низких, так и при высоких температурах, они крипоустойчивы, пластичны, хорошо обрабатываются, свариваются.
Хромоникелевые сплавы имеют удовлетворительные электротехнические свойства, не стареют, немагнитны. Основной их недостаток — высокая стоимость и дефицитность, в первую очередь никеля. Поэтому были созданы железохромоалюминиевые сплавы, содержащие железо, хром и до 5 % алюминия. Эти сплавы могут быть более жаростойкими, чем хромоникелевые, т. е. могут работать до 1400°С (например, сплав Х23Ю5Т). Однако эти сплавы достаточно хрупки и непрочны, особенно после пребывания при температуре, большей 1000°С. Поэтому после работы нагревателя в печи его нельзя вынуть и отремонтировать. Данные сплавы магнитны, могут ржаветь во влажной атмосфере при нормальной температуре. Они имеют низкое сопротивление ползучести, что должно быть учтено при конструировании из них нагревателей. Недостатком этих сплавов является также их взаимодействие с шамотной футеровкой и окислами железа. В местах соприкосновения этих сплавов с футеровкой при температуре эксплуатации выше 1000°С футеровка должна быть выполнена из высокоглиноземистого кирпича или покрыта’ специальной высокоглиноземистой обмазкой. Во время эксплуатации эти нагреватели существенно удлиняются, что также должно быть учтено при конструировании, т. е. необходимо предусматривать возможность их удлинения.
Представителями этих сплавов являются Х15Ю5 (температура применения – около 800°С); Х23Ю5 (1200°С); Х27Ю5Т (1300°С) и Х23Ю5Т (1400°С).
В последнее время разработаны сплавы типа Х15Н60Ю3 и Х27Н70ЮЗ, т. е. с добавлением 3 % алюминия, что значительно улучшило жаростойкость сплава, а наличие никеля практически исключило имеющиеся у железохромо-алюминиевых сплавов недостатки.
Сплавы Х15Н60ЮЗ, Х27Н60ЮЗ не взаимодействуют с шамотом и окислами железа, достаточно хорошо обрабатываются, механически прочны, нехрупки.
В высокотемпературных печах используются неметаллические нагреватели: карборундовые и из дисилицида молибдена.
Для печей с защитной атмосферой и вакуумных используются угольные и графитовые нагреватели. Нагреватели в этом случае выполняются в виде стержней, труб и пластин.
В высокотемпературных вакуумных печах и печах с защитной атмосферой применяются нагреватели из молибдена и вольфрама. Нагреватели из молибдена в вакууме могут работать до 1700°С, а в защитной атмосфере – до 2200°С. Температура применения в вакууме ниже, что объясняется испарением молибдена. Нагреватели из вольфрама могут работать до 3000°С.
В отдельных случаях применяются нагреватели из ниобия и тантала.
Нагревательные элементы большинства промышленных печей выполняются либо из ленты, либо из проволоки (рис. 3.4 – 3.7). Обычно для изготовления нагревателей промышленных печей применяется проволока диаметром от до мм. Однако для печей с рабочей температурой С и выше следует брать проволоку диаметром менее мм. Соотношения между шагом спирали и ее диаметром и диаметром проволоки выбирают таким образом, чтобы облегчить размещение нагревателей в печи, обеспечить достаточную их жесткость и в то же время не затруднить чересчур теплоотдачу от них к изделиям.
Чем больше диаметр спирали и чем гуще ее шаг, тем легче разместить в печи нагреватели, но с увеличением диаметра уменьшается прочность спирали, увеличивается склонность ее витков лечь друг на друга. С другой стороны, с увеличением густоты намотки увеличивается экранирующее действие обращенной к изделиям части ее витков на остальные и, следовательно, ухудшается использование ее поверхности. Практика установила вполне определенные, рекомендуемые соотношения между диаметром проволоки, шагом и диаметром спирали для проволоки от до мм диаметром. Эти соотношения следующие: и для нихрома и – для менее прочных железохромоалюминиевых сплавов. Здесь – шаг спирали, – диаметр спирали, – диаметр проволоки. |
Рис. 3.4. Эскизы проволочных и ленточных нагревателей с обозначением основных геометрических размеров: а – проволочный зигзагообразный; б – то же ленточный; в – спиральный |
Для более тонких проволок отношение диаметров спирали и проволоки, а также шаг спирали обычно берутся больше. Значительно распространены спиральные нагреватели на керамических трубках. Такие нагреватели с точки зрения излучения и размещения мощности на стенках печи практически почти эквивалентны свободно излучающим спиралям и, наоборот, они существенно эффективнее, чем спирали в пазах и полочках. Конструкция проволочных спиральных нагревателей на керамических трубках является универсальной и с точки зрения применения материалов, и по расположению нагревателей в камере печи. Отношение внутреннего диаметра спирали к наружному диаметру трубки у таких нагревателей может быть принято равным примерно , расстояние между осями трубок диаметра спирали. Обычно для изготовления нагревателей промышленных печей применяется проволока диаметром от до мм. Однако для печей с рабочей температурой С и выше следует брать проволоку диаметром менее мм.
Соотношения между шагом спирали и ее диаметром и диаметром проволоки выбирают таким образом, чтобы облегчить размещение нагревателей в печи, обеспечить достаточную их жесткость и в то же время не затруднить чересчур теплоотдачу от них к изделиям. Чем больше диаметр спирали и чем гуще ее шаг, тем легче разместить в печи нагреватели, но с увеличением диаметра уменьшается прочность спирали, увеличивается склонность ее витков лечь друг на друга. С другой стороны, с увеличением густоты намотки увеличивается экранирующее действие обращенной к изделиям части ее витков на остальные и, следовательно, ухудшается использование ее поверхности.
Рис. 3.5. Конструкции ленточных нагревателей: а – ленточные зигзагообразные нагреватели на боковой стенке на металлических крючках; б – ленточный зигзагообразный нагреватель в поду; в – то же в своде; г – то же на керамических полочках; д – выемной высокотемпературный рамочный элемент; е – низкотемпературный рамочный элемент; ж – нагреватель «плоская волна» на керамических трубках; з – ленточный зигзагообразный нагреватель на выемных крючках; и – условное обозначение размеров ленточного зигзагообразного нагревателя |
Практика установила вполне определенные, рекомендуемые соотношения между диаметром проволоки, шагом и диаметром спирали для проволоки от до мм диаметром. Эти соотношения следующие: и для нихрома и – для менее прочных железохромоалюминиевых сплавов. Здесь – шаг спирали, – диаметр спирали, – диаметр проволоки.
Для более тонких проволок отношение диаметров спирали и проволоки, а также шаг спирали обычно берутся больше. Значительно распространены спиральные нагреватели на керамических трубках. Такие нагреватели с точки зрения излучения и размещения мощности на стенках печи практически почти эквивалентны свободно излучающим спиралям и, наоборот, они существенно эффективнее, чем спирали в пазах и полочках.
Конструкция проволочных спиральных нагревателей на керамических трубках является универсальной и с точки зрения применения материалов, и по расположению нагревателей в камере печи. Отношение внутреннего диаметра спирали к наружному диаметру трубки у таких нагревателей может быть принято равным примерно , расстояние между осями трубок диаметра спирали.
Ленточные нагреватели выполняются в виде зигзагов различных размеров и крепятся на металлических (из жароупорной стали или нихрома) или керамических крючках. Чем гуще ленточные зигзагообразные нагреватели, тем более длинный нагреватель можно разместить в печи, но тем больше взаимоэкранирование витков, тем хуже используется поверхность ленты. Поэтому установились принятые размеры ленточных зигзагообразных нагревателей, обеспечивающие достаточную их прочность и малое взаимоэкранирование. Наиболее употребительное отношение ширины ленты к ее толщине равно 10.
Для температур на нагревателе до С в промышленных печах применяют ленту размером не менее 1 х 10 мм, при более высоких температурах – не менее 2 х 20 мм.
В ЭПС с номинальной температурой 1350°С применяются карборундовые нагреватели (SiC) (рис. 3.8), а в ЭПС с номинальной температурой 1700°С – нагреватели, изготовленные из дисилицида молибдена (MoSi2) (рис. 3.9) и хромит лантана (рис. 3.10).
Источник
Примерно в 1900 году немецкая фирма WC Heraeus разработала первую коммерческую платиновую печь. В 1902 году компания выпустила на рынок печь с платиновой лентой, которая могла достигать температуры 1500ºC за 5 минут, работать при 1500ºC в течение нескольких часов и могла достигать температуры 1700ºC в течение коротких периодов времени. За последние почти 200 лет, с тех пор как эта печь была впервые разработана, резистивные электрические печи претерпели многочисленные улучшения в области изоляции, управления и применения нагревательных материалов.
Что такое нагревательные элементы?
Нагреватели для промышленного оборудования обычно питаются от источника электричества. Типичные нагревательные элементы изготавливаются из углеродистой стали или нержавеющей стали. Они используются в отопительной воде или аналогичных жидких средах общего назначения и обычно не подвержены коррозии. Другие используемые коррозионно-стойкие материалы представляют собой сплавы, такие как медь или титан. Они наиболее устойчивы к высоким температурам и выдерживают очень агрессивную среду. Недавно для более продвинутого применения были представлены специально изготовленные сплавы, такие как никель-хромовые суперсплавы.
Выбор нагревательных элементов во многом зависит от типа и характера среды, для которой он используется. Помимо среды, тип нагревателя, который будет установлен, также влияет на то, из какого сплава он должен быть изготовлен. Промышленные нагревательные элементы имеют заводскую конфигурацию любой формы и размера. Они могут работать и при довольно высокой температуре, так как некоторое оборудование должно работать с температурами выше 500 С.
Материал для нагревательных элементов варьируется в зависимости от области применения. Для погружных нагревателей часто требуется материал, обладающий высокой устойчивостью к разрушению при экстремальных температурах и позволяющий оставаться в погруженном состоянии без воздействия фактора эрозии. Учитывая эти условия, нержавеющая сталь является идеальным выбором для нагрева воды и различных химикатов. Нержавеющая сталь изготовлена из легированной стали с содержанием не менее 10,5%,FeCrAl сплава. Самым большим преимуществом нержавеющей стали по сравнению с обычной углеродистой сталью, очевидно, является стойкость к окислению. Однако нержавеющая сталь никоим образом не является полностью устойчивой к коррозии. Существуют определенные внешние среды, такие как низкий уровень кислорода, высокая соленость или плохая циркуляция, при которых нержавеющая сталь становится уязвимой для пассивной пленки оксидов хрома.
Использование экзотических сплавов для нагревательных элементов дополнительно увеличивает способность нагревателей противостоять присущей им коррозионной природе. Медь, например, не реагирует с водой, чтобы избежать нормального окисления. Однако он в конечном итоге реагирует на кислород воздуха при длительном использовании и образует слой оксида меди, а не оксида железа. Использование титана снижает опасность коррозии, так как одним из его свойств является высокая коррозионная стойкость. Дополнительным преимуществом титана является его легкий вес по сравнению с другими металлами.
Обзор материалов для нагревательного элемента
На мировом рынке комплектующих для нагревателей предлагается широкий спектр различных материалов, которые могут использоваться для изготовления нагревательных элементов для промоборудования. Эти расходные комплектующие включают изоляторы из керамических материалов на основе металлов, металлические сплавы и углеродные или графитовые материалы для греющих спиралей. В этой статье основное внимание уделяется традиционным металлическим сплавам для нагревательной спирали, такие как железо-хром-алюминий и никель-хром. Эти сплавы можно разделить на два класса: один пригоден для обработки в присутствии кислорода, а другой должен быть обеспечен адекватной защитой от кислорода. Класс сплавов, которые необходимо защищать от кислорода, включает тантал, вольфрам и молибден.
Когда температура повышается, атмосфера играет важную роль, поскольку материалы по-разному реагируют на различные соединения. Вполне возможно, что система, которая идеально работает при определенной температуре воздуха, может быстро выйти из строя, если используется при такой же температуре, но в другой атмосфере. Срок службы нагревательного элемента также является важным параметром эксплуатации. Важно выяснить, нужно ли вам, чтобы элемент проработал несколько недель, нескольких месяцев или лет. Для любого конкретного элемента, чем выше рабочая температура, тем короче срок его службы.
Типы материалов, используемых в качестве нагревательных элементов
К различным материалам, обсуждаемым ниже, относятся следующие:
Железо-хром-алюминиевые сплавы
Никель-хромовые сплавы
Никель-хромовые сплавы
Никель-хромовые сплавы, или нихром, вероятно, являются старейшими электронагревательными материалами и широко используются даже сейчас. Они проявляют свойства пластичности, прочности в горячем состоянии и стабильности формы. Три наиболее часто используемых состава, используемых при нагревании, включают следующее:
NiCr 80:20 (80% никеля, 20% хрома)
NiCr 60:15 (60% никеля, 26% хрома, остаточное железо)
NiCr 30:20 (35% никеля, 20% хрома, остаточное железо)
Недавно был представлен еще один сплав, который содержит 70% никеля и 30% хрома, который называется сплав NiCr 70:30 . Среди этих сплавов NiCr 70:30 материал 70/30 имеет самую высокую максимальную температуру элемента 1250 ° C на воздухе и максимальную температуру камеры 1150 ° C. Основной причиной его внедрения было противостояние «Зеленой гнили». Зеленая гниль может быть определена как межкристаллитное окисление хрома, которое происходит в других сортах нихрома при использовании в эндотермической или экзотермической атмосфере в диапазоне температур от 800 до 900 ° С.
Железо-хром-алюминиевые сплавы
Сплавы железо-хром-алюминий, или фехраль, стандартно состоят из 72,5% железа, 22% хрома и 5,5% алюминия. Более высокие сорта, полученные с помощью традиционных технологий плавления, имеют ограничения по температуре до 1300 ° C. Также предлагается несколько других марок, в которых количество алюминия уменьшено, а остальное составляет железо. Рабочая температура и сопротивление высокие, а плотность низкая по сравнению с никель-хромовыми сплавами. Это обеспечивает рентабельный и долговечный нагревательный элемент. Некоторые недостатки включают низкую термостойкость, низкую пластичность и охрупчивание при использовании.
Мы в компании Хитл обычно при производстве нагревательных элементов используем нихромовую проволоку и ленту, но для некоторых типов нагревателей или для снижения стоимости нагревательных элементов по запросу заказчика иногда могут использоваться сплавы фехраль.
Источник
Цель урока: ознакомление учащихся с использованием теплового действия тока на практике.
Демонстрации:
- Устройство лампы накаливания.
- Нагревание проводников из разных веществ электрическим током.
- Устройство и принцип действия электронагревательных приборов (утюга, электрического чайника и др.).
- Видеофильм «Электрическая лампа накаливания».
- Мультимедийная презентация.
Ход урока
1. Организационный момент:
- приветствие учащихся,
- предварительная организация класса (проверка отсутствующих, проверка готовности учащихся к началу работы),
- мобилизующее начало урока: «Самые справедливые судьи, к проверке домашнего задания готовы? Самые смелые и совсем не смелые ответчики, к проверке домашнего задания готовы?»
2. Проверка домашнего задания.
Класс делится на три группы (по рядам).
1-й ряд работает по карточкам в парах (взаимоконтроль).
По мере изучения темы «Электрические явления» учащиеся изготавливают небольшие карточки с обозначениями изученных физических величин (I, U, R…), которые используются при самоподготовке дома и при проверке домашнего задания в классе. Работая в парах, учащиеся по очереди тянут карточки, называют формулу и дают определение соответствующей величины. Работа в парах длится, как правило, 3-5 минут. Учитель в момент работы пар может присоединиться и слушать ответы учащихся и даже оставляет за собой право одного вопроса любому ученику. Обычно в этом нет никакой необходимости, потому что учащиеся очень дорожат доверием учителя и спрашивают друг друга очень строго. На следующем уроке это задание выполняет другая группа. (Варианты карточек и примерные ответы учащихся приведены в таблице 1.)
Таблица 1
2-й ряд выполняет задание «Восстанови формулы». Оно может выполняться как на доске, так и индивидуально по карточкам. Цепочка первого уровня сложности содержит преимущественно основные формулы, во втором уровне сложности – производные. Банк подобных цепочек с большим желанием пополняют сами учащиеся. Последними, как правило, располагаются формулы, являющиеся связующим звеном между материалом прошлого урока и новым материалом данного урока. За каждый вид деятельности учащиеся получают баллы, которые по окончании урока превращаются в оценку. (Примеры заданий «Восстанови формулы» приведены на рисунке 1).
Рисунок 1
3-й ряд решает разноуровневые задачи по карточкам. У каждого ученика своя карточка, которая содержит две задачи. Работа в паре проходит следующим образом. Один из учеников объясняет решение первой задачи своему партнёру. Второй слушает, осмысливает, задаёт вопросы. Затем они меняются ролями. Учащимся, нуждающимся в помощи, помощь оказывают либо преподаватель, либо ученики, решившие свою задачу. После усвоения первой задачи «проблемный» ученик решает вторую задачу самостоятельно. После этого ученики обмениваются тетрадями и проверяют их. После проверки ученики пишут в тетрадях друг друга «проверил» и ставят свою подпись. (Примеры задач к данному уроку приведены в таблице 2).
Таблица 2
Уровень 1
|
Уровень 2
|
Уровень 3
|
Уровень 4
|
3. Изучение нового материала (актуализация знаний.)
Учитель. Любой проводник, по которому идёт электрический ток, нагревается. К этому выводу впервые пришли независимо друг от друга Джеймс Джоуль и Эмилий Христианович Ленц. Этот опытный факт нашёл своё отражение в законе Джоуля-Ленца, который мы изучали на прошлом уроке (формула 1). Сегодня нам предстоит ознакомиться с использованием теплового действия тока на практике. Мы с вами должны выявить общую закономерность всех нагревательных приборов и изучить устройство лампы накаливания. Но для начала нам нужно опытным путём выяснить, какой из проводников, имеющихся у вас на столах, при прохождении по нему тока нагревается сильней? Что для этого нужно сделать? Выслушав предложения, учитель подводит учащихся к демонстрации опыта, показывающего тепловое действие тока в цепи, состоящей из трёх последовательно соединённых проводников, обладающих разным удельным сопротивлением: медного, стального и никелинового. Ток во всех последовательно соединённых проводниках одинаков (можно убедиться с помощью амперметра). Количество же выделяющейся теплоты в проводниках разное. С помощью вольтметра учащиеся измеряют напряжение на концах каждого проводника и, используя закон Ома для участка цепи, рассчитывают сопротивление проводников. Из опыта делается вывод: нагревание проводников зависит от их сопротивления. Чем больше сопротивление проводника, тем больше он нагревается. (Подтверждается формулой (1).)
Учитель обращает внимание учащихся на тот факт, что длины и площади поперечного сечения проводников одинаковые. Значит, единственное отличие этих проводников – разные удельные сопротивления. (Что подтверждается формулой (2)). Учащиеся делают вывод: чтобы проводник нагрелся сильней, он должен обладать большим удельным сопротивлением. (Демонстрация слайда 1 (см. приложение).)
Используя данные таблицы 8 учебника, учащиеся предлагают вещество, наиболее подходящее для изготовления нагревательного элемента.
Постановка проблемного вопроса.
Удельное сопротивление вольфрама в два раза меньше, чем железа. Почему же именно вольфрам используется в качестве нити накала в электрических лампочках? (Демонстрируется слайд 2, из которого видно, что вольфрам – очень тугоплавкий металл, именно поэтому предпочтение отдают именно ему.) Внимание учащихся заостряется на практическом применении материалов, обладающих большим удельным сопротивлением.
Проблемный вопрос.
Почему нагревательные элементы не изготавливают из фарфора, у которого удельное сопротивление в миллиарды раз больше всех веществ, приведённых в таблице?
Учащиеся обобщают полученную информацию и отвечают на вопрос: «Какими свойствами должно обладать вещество, используемое для изготовления нагревательных элементов?»
Вывод записывают в тетрадь: нагревательный элемент представляет собой проводник, обладающий большим удельным сопротивлением и высокой температурой плавления.
Учащимся предлагается на некоторое время стать изобретателями и предложить свой способ изготовления небольшого нагревательного элемента (миниатюрного кипятильника). После нескольких предложений учащихся демонстрируется слайд 3, который содержит несколько советов по изготовлению нагревательного элемента, среди которых наиболее ценным является последний.
Внимание!
Не торопитесь собирать кипятильник самостоятельно раньше следующего урока физики, на котором речь пойдёт о коротком замыкании!!!
Задания группам.
1. Рассмотрите электрическую лампу накаливания (рисунок 2).
(Учащимся выдаётся оригинал.)
Рисунок 2
Прочитав текст карточки для первой группы и, пользуясь материалом §54 и рисунком 83 учебника, выделите основные элементы лампы накаливания.
Ответы учащихся могут быть такими:
а) Основными элементами электрической лампочки являются: стеклянная колба, нить накала (спираль), два проводка, цоколь с винтовой нарезкой.
б)
- Стеклянная колба.
- Спираль из вольфрама.
- Молибденовые держатели.
- Стеклянный или металлический штенгель.
- Вводы.
- Стеклянная лопатка.
- Цоколь.
- Носик.
(Предложенный ответ, в случае необходимости, корректируется учителем и записывается в тетрадь всеми учащимися.)
Учитель в стихотворной форме предлагает ещё один из вариантов устройства лампочки:
Чтобы лампочку создать,
Нужно колбочку вам взять,
Выкачать оттуда воздух,
Поместить туда спираль.
Пусть спираль подержат ту
Проводочков пара.
Помни, что важнее всех –
Это нить накала!
(Демонстрация слайда №5 и видеофильма «Электрическая лампа накаливания»).
Карточка для первой группы учащихся: | |
Все многочисленные разновидности ламп накаливания состоят из однотипных частей, различающихся размерами и формой. Устройство типичной лампы накаливания таково: внутри колбы (1) на стеклянном или металлическом штенгеле (4) с помощью держателей (3) из молибденовой проволоки закреплено тело накала (2) (спираль из вольфрама). Концы спирали прикреплены к концам вводов (5); средняя часть вводов с целью создания плотного вакуумного соединения со стеклянной лопаткой (6) выполняется из платинита или молибдена. В процессе вакуумной обработки колба лампы накаливания наполняется инертным газом, после чего штенгель заваривается с образованием носика (8). Для защиты носика, а также для крепления в патроне лампа накаливания снабжается цоколем (9), прикрепляемым к колбе цоколёвочной мастикой (7). |
2. Рассмотрите нагревательный элемент электрического чайника (рисунок 3). (Учащимся выдаётся оригинал).
Рисунок 3
Какие особенности нагревательного элемента вас заинтересовали? Пользуясь материалом §54 и рисунками 84 и 85 учебника, ответьте на вопросы:
- Каково на ваш взгляд назначение каждой составляющей нагревательного элемента, обозначенной цифрами 1 – 3 на карточке для вашей группы?
- Какова роль элемента, обозначенного цифрой 4?
- Почему нагревательный элемент имеет такое сложное строение?
(Прямого ответа на этот вопрос в учебнике нет. Рассматривается случай, когда проводник в виде проволоки или ленты наматывается на пластинку из жароустойчивого материала (слюды, керамики). Учащимся предлагается более «усовершенствованный» нагревательный элемент, который большинство учащихся никогда не видели «изнутри» (рисунок 4)).
Рисунок 4
Предположительный ответ учащихся:
Нагревательный элемент электрического чайника состоит из трёх частей: внутреннего проводника 1, играющего роль нагревателя, слоя изолятора 2 и внешнего металлического корпуса 3. Цифрой 4 обозначен проводник для подвода электроэнергии.
Демонстрация слайда 4 и комментарий учителя:
Любой электронагреватель состоит из пары проводников с низким сопротивлением (для подвода энергии), соединенных проводником с высоким сопротивлением (собственно нагревателем), а в остальных местах разделенных изолятором. (Учащиеся записывают в тетрадь, схему зарисовывают.) При этом вся конструкция (по крайней мере в зоне нагрева) должна выдерживать рабочую температуру нагревателя. Такое сложное строение нагревательного элемента объясняется соблюдением безопасности использования электрических нагревательных приборов. Совсем недавно использовались электрические плитки с открытой спиралью. В случае выгибания спирали могло произойти соприкосновение спирали, например, с кастрюлей. В результате чего под напряжение мог попасть человек, дотронувшийся до такой кастрюли.
«Фото из прошлого»
Учащимся предлагается рассмотреть рисунок 5 и ответить на вопрос девушек 9-го класса: почему утюг «чернеет» всегда в одном и том же месте?
Рисунок 5
Учащиеся могут предположить, что утюг «чернеет» в местах, где нагревательный элемент расположен наиболее близко.
Им предлагается обнаружить этот нагревательный элемент. Оказывается, в большинстве случаев это сделать не так-то просто. Убрав верхнюю часть утюга, учащиеся приходят к выводу, что он почти пустой. А нагревательный элемент скрыт в нижней части утюга (подошве) и имеет такую же особенность, как и нагревательный элемент электрического чайника – состоит из трёх слоёв (рисунок 6).
Рисунок 6
4. Закрепление и обобщение изученного материала.
(Учитель предлагает учащимся самостоятельно сформулировать основные выводы урока (совпадают с записями в тетрадях).) Учитель отмечает тот факт, что наука постоянно развивается, появляются новые материалы с совершенно уникальными, как нам кажется сегодня, свойствами. (Демонстрация слайда 6.)
5. Контроль знаний (проверка усвоенного на уроке).
- Приведите примеры использования теплового действия тока на практике.
- Что представляет собой нагревательный элемент электронагревательного прибора?
- Какими свойствами должен обладать металл, из которого изготовляют спирали и ленты нагревательного элемента?
- Какие известные вам материалы обладают необходимыми для нагревательного элемента свойствами?
- Расскажите, как устроена современная лампа накаливания.
- Зачем баллоны современных ламп накаливания наполняют инертным газом?
6. Запись домашнего задания.
§54, задание 8 (1или 2) по желанию.
7. Подведение итогов урока
Источник