Какие элементы содержатся в земной коре

Какие элементы содержатся в земной коре thumbnail

Õèìè÷åñêèé ñîñòàâ çåìíîé êîðû

 ñîñòàâå çåìíîé êîðû — ìíîæåñòâî ýëåìåíòîâ, íî îñíîâíóþ å¸ ÷àñòü ñîñòàâëÿþò
êèñëîðîä è êðåìíèé.

Ñðåäíèå çíà÷åíèÿ õèìè÷åñêèõ ýëåìåíòîâ â çåìíîé êîðå íîñÿò íàçâàíèå êëàðêîâ.
Íàçâàíèå áûëî ââåäåíî ñîâåòñêèì ãåîõèìèêîì À.Å. Ôåðñìàíîì â ÷åñòü àìåðèêàíñêîãî ãåîõèìèêà Ôðàíêà Óèãëñóîðòà
Êëàðêà, êîòîðûé ïðîàíàëèçèðîâàâ ðåçóëüòàòû àíàëèçà òûñÿ÷ îáðàçöîâ ïîðîä
ðàññ÷èòàë ñðåäíèé ñîñòàâ çåìíîé êîðû. Âû÷èñëåííûé Êëàðêîì ñîñòàâ çåìíîé êîðû áûë
áëèçîê ê ãðàíèòó — ðàñïðîñòðàí¸ííîé ìàãìàòè÷åñêîé ãîðíîé ïîðîäå â
êîíòèíåíòàëüíîé çåìíîé êîðå Çåìëè.

Ïîñëå Êëàðêà îïðåäåëåíèåì ñðåäíåãî ñîñòàâà çåìíîé êîðû çàíÿëñÿ íîðâåæñêèé
ãåîõèìèê Âèêòîð Ãîëüäøìèäò. Ãîëüäøìèäò ñäåëàë ïðåäïîëîæåíèå, ÷òî ëåäíèê,
äâèãàÿñü ïî êîíòèíåíòàëüíîé êîðå ñîñêðåáàåò è ñìåøèâàåò âûõîäÿùèå íà ïîâåðõíîñòü
ãîðíûå ïîðîäû. Ïîýòîìó ëåäíèêîâûå îòëîæåíèÿ èëè ìîðåíû îòðàæàþò ñðåäíèé ñîñòàâ
çåìíîé êîðû. Ïðîàíàëèçèðîâàâ ñîñòàâ ëåíòî÷íûõ ãëèí, îòëîæèâøèõñÿ íà äíå
Áàëòèéñêîãî ìîðÿ âî âðåìÿ ïîñëåäíåãî îëåäåíåíèÿ, ó÷¸íûé ïîëó÷èë ñîñòàâ çåìíîé
êîðû, êîòîðûé î÷åíü ïîõîäèë íà ñîñòàâ çåìíîé êîðû âû÷èñëåííûé Êëàðêîì.

 ïîñëåäñòâèè ñîñòàâ çåìíîé êîðû èçó÷àëñÿ ñîâåòñêèìè ãåîõèìèêàìè Àëåêñàíäðîì
Âèíîãðàäîâûì, Àëåêñàíäðîì Ðîíîâûì, Àëåêñååì ßðîøåâñêèì, íåìåöêèì ó÷¸íûì Ã.
Âåäåïîëåì.

Ïîñëå àíàëèçà âñåõ íàó÷íûõ ðàáîò áûëî âûÿñíåíî, ÷òî íàèáîëåå ðàñïðîñòðàíåííûì
ýëåìåíòîì â ñîñòàâå çåìíîé êîðå ÿâëÿåòñÿ êèñëîðîä. Åãî êëàðê — 47%. Ñëåäóþùèé
àîñëå êèñëîðîäà ïî ðàñïðîñòðàíåííîñòè õèìè÷åñêèé ýëåìåíò — êðåìíèé ñ êëàðêîì
29,5%. Îñòàëüíûìè ðàñïðîñòðàíåííûìè ýëåìåíòàìè ÿâëÿþòñÿ: àëþìèíèé (êëàðê 8,05),
æåëåçî (4,65), êàëüöèé (2,96), íàòðèé (2,5), êàëèé (2,5), ìàãíèé (1,87) è òèòàí
(0,45). Â ñîâîêóïíîñòè íà ýòè ýëåìåíòû ñîñòàâëÿþò 99,48% îò âñåãî ñîñòàâà çåìíîé
êîðû; îíè îáðàçóþò ìíîãî÷èñëåííûå õèìè÷åñêèå ñîåäèíåíèÿ. Êëàðêè îñòàëüíûõ 80 ýëåìåíòîâ ñîñòàâëÿþò âñåãî 0,01-0,0001 è ïîýòîìó òàêèå
ýëåìåíòû íàçûâàþòñÿ ðåäêèìè. Åñëè æå ýëåìåíò íå òîëüêî ðåäêèé, íî è îáëàäàåò
ñëàáîé ñïîñîáíîñòüþ ê êîíöåíòðèðîâàíèþ, åãî íàçûâàþò ðåäêèì ðàññåÿííûì.

 ãåîõèìèè òàêæå óïîòðåáëÿþò òåðìèí «ìèêðîýëåìåíòû», ïîä êîòîðûì ïîíèìàþò
ýëåìåíòû, êëàðêè êîòîðûõ â äàííîé ñèñòåìå ìåíåå 0,01. À.Å. Ôåðñìàí ïîñòðîèë
ãðàôèê çàâèñèìîñòè àòîìíûõ êëàðêîâ äëÿ ÷¸òíûõ è íå÷¸òíûõ ýëåìåíòîâ ïåðèîäè÷åñêîé
ñèñòåìû. Âûÿâèëîñü, ÷òî ñ óñëîæíåíèåì ñòðîåíèÿ àòîìíîãî ÿäðà êëàðêè óìåíüøàþòñÿ.
Íî ëèíèè, ïîñòðîåííûå Ôåðñìàíîì, îêàçàëèñü íå ìîíîòîííûìè, à ëîìàííûìè. Ôåðñìàí
ïðî÷åðòèë ãèïîòåòè÷åñêóþ ñðåäíþþ ëèíèþ: ýëåìåíòû, ðàñïîëîæåííûå âûøå ýòîé ëèíèè,
îí íàçâàë èçáûòî÷íûìè (Î, Si, Ñà, Fe, Âà, ÐÜ è ò.ä.), íèæå — äåôèöèòíûìè (Ar,
Íå, Ne, Sc, Ñî, Re è ò.ä.).

Îçíàêîìèòüñÿ ñ ðàñïðîñòðàíåíèåì âàæíåéøèõ õèìè÷åñêèõ ýëåìåíòîâ â çåìíîé êîðå
ìîæíî ñ ïîìîùüþ ýòîé òàáëèöû:

Õèì. ýëåìåíòÏîðÿäêîâûé íîìåðÑîäåðæàíèå, â % îò ìàññû âñåé çåìíîé êîðûÌîëÿðíàÿ ìàññàÑîäåðæàíèå, % êîëè÷åñòâî âåùåñòâà
Êèñëîðîä O849,131653,52
Êðåìíèé Si1426,028,116,13
Àëþìèíèé Al137,45274,81
Æåëåçî Fe264,255,81,31
Êàëüöèé Ca203,2540,11,41
Íàòðèé Na112,4231,82
Êàëèé K192,3539,11,05
Ìàãíèé Mg122,3534,31,19
Âîäîðîä H11,00117,43
Òèòàí Ti220,6147,90,222
Óãëåðîä C60,35120,508
Õëîð Cl170,235,50,098
Ôîñôîð Ð150,12531,00,070
Ñåðà S160,132,10,054
Ìàðãàíåö Mn250,154,90,032
Ôòîð F90,0819,00,073
Áàðèé Âà560,05137,30,006
Àçîò N70,0414,00,050
Ïðî÷èå ýëåìåíòû~0,2

Ðàñïðåäåëåíèå õèìè÷åñêèõ ýëåìåíòîâ â çåìíîé êîðå ïîä÷èíÿåòñÿ ñëåäóþùèì
çàêîíîìåðíîñòÿì:

1. Çàêîíó Êëàðêà-Âåðíàäñêîãî, êîòîðûé ãëàñèò, ÷òî âñå õèìè÷åñêèå ýëåìåíòû
åñòü âåçäå (çàêîí î âñåîáùåì ðàññåÿíèè);

2. Ñ óñëîæíåíèåì ñòðîåíèÿ àòîìíîãî ÿäðà õèìè÷åñêèõ ýëåìåíòîâ, åãî
óòÿæåëåíèåì, êëàðêè ýëåìåíòîâ óìåíüøàþòñÿ (Ôåðñìàí);

3.  çåìíîé êîðå ïðåîáëàäàþò ýëåìåíòû ñ ÷¸òíûìè ïîðÿäêîâûìè íîìåðàìè è
àòîìíûìè ìàññàìè.

4. Ñðåäè ñîñåäíèõ ýëåìåíòîâ ó ÷åòíûõ âñåãäà êëàðêè âûøå, ÷åì ó íå÷åòíûõ
(óñòàíîâèëè èòàëüÿíñêèé ó÷åíûé Îääî è àìåðèêàíñêèé Ãàðêèñ).

5. Îñîáåííî âåëèêè êëàðêè ýëåìåíòîâ, àòîìíàÿ ìàññà êîòîðûõ äåëèòñÿ íà 4 (O,
Mg, Si, Ñà…), à íà÷èíàÿ ñ Àl, íàèáîëüøèìè êëàðêàìè îáëàäàåò êàæäûé 6-é ýëåìåíò
(O, Si, Ñà, Fe).

Источник

Земна́я кора́ — внешняя твёрдая оболочка (кора) Земли, верхняя часть литосферы[1]. С внешней стороны большая часть коры покрыта гидросферой, а меньшая находится под воздействием атмосферы.

Описание[править | править код]

Земная кора схожа по структуре с корой большинства планет земной группы, за исключением Меркурия. Кроме того, кора схожего типа есть на Луне и многих спутниках планет-гигантов. При этом Земля уникальна тем, что обладает корой двух типов: континентальной и океанической. Для земной коры характерны постоянные движения: горизонтальные и колебательные.

Большей частью кора состоит из базальтов. Масса земной коры оценивается в 2,8⋅1019 тонн (из них 21 % — океаническая кора и 79 % — континентальная). Кора составляет лишь 0,473 % общей массы Земли.

Ниже коры находится мантия, которая отличается составом и физическими свойствами — она более плотная, содержит в основном тугоплавкие элементы. Разделяет кору и мантию граница Мохоровичича, на которой происходит резкое увеличение скоростей сейсмических волн.

Океаническая кора[править | править код]

Океаническая кора состоит главным образом из базальтов. Согласно теории тектоники плит, она непрерывно образуется в срединно-океанических хребтах, расходится от них и поглощается в мантию в зонах субдукции. Поэтому океаническая кора относительно молодая, и самые древние её участки датируются поздней юрой.

Толщина океанической коры практически не меняется со временем, поскольку в основном она определяется количеством расплава, выделившегося из материала мантии в зонах срединно-океанических хребтов. До некоторой степени влияние оказывает толщина осадочного слоя на дне океанов. В разных географических областях толщина океанической коры колеблется в пределах 5—10 километров (9—12 километров вместе с водой)[1].

В рамках стратификации Земли по механическим свойствам, океаническая кора относится к океанической литосфере. Толщина океанической литосферы, в отличие от коры, зависит в основном от её возраста. В зонах срединно-океанических хребтов астеносфера подходит очень близко к поверхности, и литосферный слой практически полностью отсутствует. По мере удаления от зон срединно-океанических хребтов толщина литосферы сначала растёт пропорционально её возрасту, затем скорость роста снижается. В зонах субдукции толщина океанической литосферы достигает наибольших значений, составляя 130—140 километров.

Континентальная кора[править | править код]

Континентальная (материковая) кора имеет трёхслойное строение. Верхний слой представлен прерывистым покровом осадочных пород, который развит широко, но редко имеет большую мощность. Большая часть коры сложена под верхней корой — слоем, состоящим главным образом из гранитов и гнейсов, обладающих низкой плотностью и древней историей. Исследования показывают, что большая часть этих пород образовались очень давно, около 3 миллиардов лет назад. Ниже находится нижняя кора, состоящая из метаморфических пород — гранулитов и им подобных.

Состав континентальной коры[править | править код]

Земную кору составляет сравнительно небольшое число элементов. Около половины массы земной коры приходится на кислород, более 25 % — на кремний. Всего 18 элементов: O, Si, Al, Fe, Ca, Na, K, Mg, H, Ti, C, Cl, P, S, N, Mn, F, Ba — составляют 99,8 % массы земной коры (см. таблицу ниже).

Распространённость элементов[2][3]

ЭлементПорядковый номерСодержание, % массыМолярная массаСодержание, % кол-во в-ва
Кислород849,131653,52
Кремний1426,028,116,13
Алюминий137,45274,81
Железо264,255,81,31
Кальций203,2540,11,41
Натрий112,4231,82
Калий192,3539,11,05
Магний122,3534,31,19
Водород11,00117,43
Титан220,6147,90,222
Углерод60,35120,508
Хлор170,235,50,098
Фосфор150,12531,00,070
Сера160,132,10,054
Марганец250,154,90,032
Фтор90,0819,00,073
Барий560,05137,30,006
Азот70,0414,00,050
Остальные~0,2 —

Определение состава верхней континентальной коры стало одной из первых задач, которую взялась решать молодая наука геохимия. Собственно из попыток решения этой задачи и появилась геохимия. Эта задача весьма сложна, поскольку земная кора состоит из множества пород разнообразного состава. Даже в пределах одного геологического тела состав пород может сильно варьировать. В разных районах могут быть распространены совершенно разные типы пород. В свете всего этого и возникла задача определения общего, среднего состава той части земной коры, что выходит на поверхность на континентах. С другой стороны, сразу же возник вопрос о содержательности этого термина.

Первая оценка состава верхней земной коры была сделана Франком Кларком. Кларк был сотрудником геологической службы США и занимался химическим анализом горных пород. После многих лет аналитических работ, он обобщил результаты анализов и рассчитал средний состав пород. Он предположил, что многие тысячи образцов, по сути, случайно отобранных, отражают средний состав земной коры (см. Кларки элементов). Эта работа Кларка вызвала фурор в научном сообществе. Она подверглась жёсткой критике, так как многие исследователи сравнивали такой способ с получением «средней температуры по больнице, включая морг». Другие исследователи считали, что этот метод подходит для такого разнородного объекта, каким является земная кора. Полученный Кларком состав земной коры был близок к граниту.

Следующую попытку определить средний состав земной коры предпринял Виктор Гольдшмидт. Он сделал предположение, что ледник, двигающийся по континентальной коре, соскребает все выходящие на поверхность породы, смешивает их. В результате породы, отлагающиеся в результате ледниковой эрозии, отражают состав средней континентальной коры. Гольдшмидт проанализировал состав ленточных глин, отлагавшихся в Балтийском море во время последнего оледенения. Их состав оказался удивительно близок к среднему составу, полученному Кларком. Совпадение оценок, полученных столь разными методами, стало сильным подтверждением геохимических методов.

Впоследствии определением состава континентальной коры занимались многие исследователи. Широкое научное признание получили оценки Виноградова, Ведеполя, Ронова и Ярошевского.

Некоторые новые попытки определения состава континентальной коры строятся на разделении её на части, сформированные в различных геодинамических обстановках.

Граница между верхней и нижней корой[править | править код]

Для изучения строения земной коры применяются косвенные геохимические и геофизические методы, но непосредственные данные можно получить в результате глубинного бурения. При проведении научного глубинного бурения часто ставится вопрос о природе границы между верхней (гранитной) и нижней (базальтовой) континентальной корой. Для изучения этого вопроса в СССР была пробурена Саатлинская скважина. В районе бурения наблюдалась гравитационная аномалия, которую связывали с выступом фундамента. Но бурение показало, что под скважиной находится интрузивный массив. При бурении Кольской сверхглубокой скважины граница Конрада также не была достигнута.
В 2005 году в печати обсуждалась возможность проникновения к границе Мохоровичича и в верхнюю мантию с помощью самопогружающихся вольфрамовых капсул, обогреваемых теплом распадающихся радионуклидов[4].

Примечания[править | править код]

  1. 1 2 Земная кора / Люстих Е. Н. // Большая советская энциклопедия : [в 30 т.] / гл. ред. А. М. Прохоров. — 3-е изд. — М. : Советская энциклопедия, 1969—1978.
  2. ↑ Химия цемента и вяжущих веществ: Учеб. пособие / Н. А. Андреева; СПбГСУ. — СПб., 2011. — 67 с.
  3. ↑ Определитель минералов / Т. Б. Здорик; — М., 1978. — 325 с.
  4. ↑ M.I. Ozhovan, F.G.F. Gibb, P.P. Poluektov, E.P. Emets. Probing of the interior layers of the Earth with self-sinking capsules. Atomic Energy, 99, No. 2, 556—562. doi:10.1007/s10512-005-0246-y

Ссылки[править | править код]

  • Содержание химических элементов в земной коре

Источник

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 23 октября 2018; проверки требует 1 правка.

Кла́рковое число́ (или кларки элементов, ещё чаще говорят просто кларк элемента) — числа, выражающие среднее содержание химических элементов в земной коре, гидросфере, Земле, космических телах, геохимических или космохимических системах и др., по отношению к общей массе этой системы.

Виды кларков[править | править код]

Различают весовые (измеряются в %, г/т, г/кг или г/г) и атомные (в % от числа атомов) кларки. Обобщение данных по химическому составу различных горных пород, слагающих земную кору, с учётом их распространения до глубин 16 км впервые было сделано американским учёным Ф. У. Кларком (1889). Полученные им числа процентного содержания химических элементов в составе земной коры, впоследствии несколько уточнённые А. Е. Ферсманом, по предложению последнего были названы числами Кларка или кларками[1].

Средние содержания элементов в земной коре, в современном понимании её как верхнего слоя планеты выше границы Мохоровичича, вычислены А. П. Виноградовым (1962)[2], американским учёным С. Р. Тейлором (1964)[3], немецким — К. Г. Ведеполем[4] (1967)[1]. Преобладают элементы малых порядковых номеров: 15 наиболее распространённых элементов, кларки которых выше 100 г/т, обладают порядковыми номерами до 26 (Fe). Элементы с чётными порядковыми номерами слагают 87 % массы земной коры, а с нечётными — только 13 %[1]; это является следствием большей энергии связи и, следовательно, большей устойчивости и большего выхода при нуклеосинтезе для ядер с чётным числом нуклонов.

Средний химический состав Земли в целом рассчитывался на основании данных о содержании элементов в метеоритах (см. Геохимия). Так как кларки элементов служат эталоном сравнения пониженных или повышенных концентраций химических элементов в месторождениях полезных ископаемых, горных породах или целых регионах, знание их важно при поисках и промышленной оценке месторождений полезных ископаемых; они позволяют также судить о нарушении обычных отношений между сходными элементами (хлор — бром, ниобий — тантал) и тем самым указывают на различные физико-химические факторы, нарушившие эти равновесные отношения[1].

В процессах миграции элементов кларки элементов являются количественным показателем их концентрации[1].

Кларки элементов в земной коре согласно разным авторам[править | править код]

Все значения ниже приведены в мг/кг (эквивалентно г/т, млн−1, ppm)

ЭлементСимволClarke & Washington 1924[5]Ферсман (1933—1939)[6]Goldschmidt (1937)[7]Виноградов (1949)[8]Виноградов (1962)[2]Taylor (1964)[3]
АктинийAcx·10−10 
СереброAg0,0x0,10,020,10,070,07
АлюминийAl751007450081300880008050082300
АргонAr4
МышьякAsx5551,71,8
ЗолотоAu0,00x0,0050,0010,0050,00430,004
БорB10501031210
БарийBa470500430500650425
БериллийBe104663,82,8
ВисмутBi0,0x0,10,20,20,0090,17
БромBrx102,51,62,12,5
УглеродC87035003201000230200
КальцийCa339003250036300360002960041500
КадмийCd0,x50,1850,130,2
ЦерийCe2941,6457060
ХлорCl19002000480450170130
КобальтCo1002040301825
ХромCr33030020020083100
ЦезийCs0,00x103,273,73
МедьCu100100701004755
ДиспрозийDy7,54,474,553
ЭрбийEr6,52,4743,32,8
ЕвропийEu0,21,061,21,31,2
ФторF270800800270660625
ЖелезоFe470004200050000510004650056300
ГаллийGax·10−5 115151915
ГадолинийGd7,56,361085,4
ГерманийGex·10−5 4771,41,5
ВодородH8800100001500
ГелийHe0,01
ГафнийHf3044,53,213
РтутьHg0,x0,050,50,070,0830,08
ГольмийHo11,151,31,71,2
ИодI0,x100,30,50,40,5
ИндийInx·10−5 0,10,10,10,250,1
ИридийIrx·10−4 0,010,0010,001
КалийK240002350025900260002500020900
КриптонKr2·10−4 
ЛантанLa6,518,3182930
ЛитийLi405065653220
ЛютецийLu1,70,7510,80,5
МагнийMg194002350020900210001870023300
МарганецMn800100010009001000950
МолибденMox102,331,11,5
АзотN3004001001920
НатрийNa264002400028300264002500023600
НиобийNb0,3220102020
НеодимNd1723,9253728
НеонNe0,005
НикельNi180200100805875
КислородO495200491300466000470000470000464000
ОсмийOsx·10−4 0,050,05
ФосфорP1200120012008009301050
ПротактинийPa7·10−7 10−6 
СвинецPb201616161612,5
ПалладийPdx·10−5 0,050,010,010,013
ПолонийPo0,052·10−10 
ПразеодимPr4,55,53798,2
ПлатинаPt0,00x0,20,0050,005
РадийRax·10−6 2·10−6 10−6 
РубидийRbx8028030015090
РенийRe0,0010,0010,0017·10−4 
РодийRhx·10−5 0,010,0010,001
РадонRn?7·10−12 
РутенийRux·10−5 0,050,005
СераS4801000520500470260
СурьмаSb0,x0,5(1)0,40,50,2
СкандийSc0,x6561022
СеленSe0,0x0,80,090,60,050,05
КремнийSi257500260000277200276000295000281500
СамарийSm76,47786
ОловоSnx8040402,52
СтронцийSr170350150400340375
ТанталTa0,242,122,52
ТербийTb10,911,54,30,9
ТехнецийTc0,001
ТеллурTe0,00x0,01(0,0018?)0,010,001
ТорийTh201011,58139,6
ТитанTi580061004400600045005700
ТаллийTlx·10−4 0,10,3310,45
ТулийTm10,20,80,270,48
УранU804432,52,7
ВанадийV16020015015090135
ВольфрамW5070111,31,5
КсенонXe3·10−5 
ИттрийY5028,1282933
ИттербийYb82,6630,333
ЦинкZn4020080508370
ЦирконийZr230250220200170165

Кларки элементов в гидросфере[править | править код]

(По А. П. Виноградову (1967), с дополнениями по В. Н. Иваненко, В. В. Гордееву и А. П. Лисицину (1979) и В. В. Гордееву (1983)[9]
Все значения ниже приведены в мг/кг (эквивалентно г/т, млн−1, ppm). Кларки главных элементов морской воды рассчитаны для средней солёности 34,887 промилле.

ЭлементАтомный номерКларки морской водыКларки речной воды (растворённая форма)
Водород1108000111900
Гелий25·10−6 
Литий30,182,5·10−3 
Бериллий45·10−6 
Бор54,40,02
Углерод (неорг.)6287,9
Азот70,5
Кислород8859000888000
Фтор91,30,1
Неон1010−4 
Натрий11106705
Магний1212802,9
Алюминий1310−3 0,16
Кремний142,16
Фосфор150,060,04
Сера168983,8
Хлор17191905,5
Аргон180,1
Калий193962
Кальций2040812
Скандий218·10−7 4·10−6 
Титан2210−3 3·10−3 
Ванадий232·10−3 10−3 
Хром242,5·10−4 10−3 
Марганец2510−4 0,01
Железо265·10−3 0,04
Кобальт273·10−5 3·10−4 
Никель285·10−4 2,5·10−3 
Медь292,5·10−4 7·10−3 
Цинк3010−3 0,02
Галлий312·10−5 10−4 
Германий325·10−5 7·10−5 
Мышьяк332·10−3 2·10−3 
Селен3410−4 2·10−4 
Бром35670,02
Криптон3610−4 
Рубидий370,122·10−3 
Стронций387,90,05
Иттрий391,3·10−5 7·10−4 
Цирконий402,6·10−5 2,6·10−3 
Ниобий415·10−6 10−6 
Молибден420,0110−3 
Технеций43
Рутений4410−7 
Родий45
Палладий46
Серебро4710−4 2·10−4 
Кадмий487·10−5 2·10−4 
Индий4910−6 
Олово5010−5 4·10−5 
Сурьма513·10−6 10−3 
Теллур52
Иод530,052·10−3 
Ксенон5410−4 
Цезий553·10−4 3·10−5 
Барий560,0180,03
Лантан573·10−6 5·10−5 
Церий581,2·10−6 8·10−5 
Празеодим596,4·10−7 7·10−6 
Неодим602,5·10−6 4·10−5 
Прометий61
Самарий624,5·10−7 8·10−6 
Европий631,2·10−7 10−6 
Гадолиний647·10−7 8·10−6 
Тербий651,4·10−7 10−6 
Диспрозий668,2·10−7 5·10−6 
Гольмий672,2·10−7 10−6 
Эрбий687,4·10−7 4·10−6 
Тулий691,5·10−7 10−6 
Иттербий708,2·10−7 4·10−6 
Лютеций711,5·10−7 10−6 
Гафний72
Тантал73
Вольфрам7410−4 3·10−5 
Рений7510−5 
Осмий7610−6 
Иридий77
Платина78
Золото794·10−6 2·10−6 
Ртуть803·10−5 7·10−5 
Таллий8110−5 10−3 
Свинец823·10−5 10−3 
Висмут833·10−5 
Полоний84
Астат85
Радон866·10−16 
Франций87
Радий8810−10 
Актиний8910−16 
Торий9010−7 10−4 
Протактиний9110−10 
Уран923·10−3 5·10−4 

Кларки элементов в городских почвах[править | править код]

Ниже приведены кларки химических элементов, установленные в почвах селитебных (городских) ландшафтов для конца XX – начала XXI вв. Все содержания даны в мг/кг (эквивалентно г/т, млн−1, ppm). Распространенность и распределение химических элементов изучены В.А. Алексеенко и А.В. Алексеенко при содействии академика Н.П. Лаверова в почвах более чем 300 населенных пунктов. Работы проводились в течение 15 лет и позволили обобщить как данные собственных опробований почв, так и значительное число опубликованных исследований, посвященных загрязнению городских почв во многих странах. Подробная информация о методике расчета кларков городских почв и использованных данных приведена в статьях[10][11][12] и двух монографиях[13][14].

Городские почвы формируются под постоянным и интенсивным воздействием антропогенной деятельности. Можно считать, что эти почвы испытали наибольшее техногенное давление по сравнению с другими геохимическими системами биосферы и Земли в целом. Установление кларков городских почв обусловлено необходимостью применять некие «отправные точки» отсчета содержаний, своеобразные «реперы» для последующих выводов о загрязнении почв населенных пунктов. Использование различных вариантов предельно допустимых концентраций элементов достаточно сложно, так как они (ПДК, ОДК и т.п.) устанавливаются довольно произвольно и весьма различны в разных странах. Довольно часто для этих целей в геохимических исследованиях окружающей среды используются кларковые содержания. Установленные кларки почв населенных пунктов являются их геохимической (эколого-геохимической) характеристикой, отражающей совместное воздействие техногенных и природных процессов, происходящих в определенном временном срезе. С развитием науки и техники значения приводимых кларков могут постепенно изменяться. Скорость таких изменений пока невозможно предсказать, но впервые приводимые значения кларков могут быть использованы как стандарты содержаний элементов в городских почвах начала XXI в.

ЭлементСимволАтомный номерКларк городских почв[13]
СереброAg470,37
АлюминийAl1338200
МышьякAs3315,9
БорB545
БарийBa56853,12
БериллийBe43,3
ВисмутBi831,12
УглеродC645100
КальцийCa2053800
КадмийCd480,9
ХлорCl17285
КобальтCo2714,1
ХромCr2480
ЦезийCs555,0
МедьCu2939
ЖелезоFe2622300
ГаллийGa3116,2
ГерманийGe321,8
ВодородH115000
РтутьHg800,88
КалийK1913400
ЛантанLa5734
ЛитийLi349,5
МагнийMg127900
МарганецMn25729
МолибденMo422,4
АзотN710000
НатрийNa115800
НиобийNb4115,7
НикельNi2833
КислородO8490000
ФосфорP151200
СвинецPb8254,5
РубидийRb3758
СераS161200
СурьмаSb511,0
СкандийSc219,4
КремнийSi14289000
ОловоSn506,8
СтронцийSr38458
ТанталTa731,5
ТитанTi224758
ТаллийTl811,1
ВанадийV23104,9
ВольфрамW742,9
ИттрийY3923,4
ИттербийYb702,4
ЦинкZn30158
ЦирконийZr40255,6

Примечания[править | править код]

  1. 1 2 3 4 5 Кларки / Щербина В. В. // Кварнер — Конгур. — М. : Советская энциклопедия, 1973. — С. 265—266. — (Большая советская энциклопедия : [в 30 т.] / гл. ред. А. М. Прохоров ; 1969—1978, т. 12).
  2. 1 2 Виноградов А. П. Средние содержания химических элементов в главных типах изверженных горных пород земной коры (рус.) // Геохимия. — 1962. — Вып. 7. — С. 555—571.
  3. 1 2 Taylor S. R. Abundance of chemical elements in the continental crust: a new table (англ.) // Geochimica et Cosmochimica Acta. — 1964. — August (vol. 28, no. 8). — P. 1273—1285. — doi:10.1016/0016-7037(64)90129-2. — Bibcode: 1964GeCoA..28.1273T.
  4. Wedepohl K. H. Geochemie (нем.). — Berlin: Verlag Walter de Gruyter, 1967. — 220 S. — (Sammlung Göschen, Bd 1224-1224a/1224b).
  5. Clarke F. W., Washington H. S. The Composition of the Earth’s Crust // U.S. Dep. Interior, Geol. Surv.. — 1924. — Т. 770. — С. 518.
  6. Ферсман А. Е. Геохимия. — Природа и техника. ОНТИ, 1933, 1934, 1937 и 1939. — Т. I—IV.
  7. Goldschmidt V. M. Geochemische Verteilungsgesetze der Elemente, IX. Die Mengenverhältnisse der Elemente und Atomarten (нем.) // Skrifter utgitt av det Norske Videnskapsakademi i Oslo, I, Matematisk-naturvidenskapelig Klasse. — 1937. — Bd. C1, H. 4.
  8. Виноградов А. П. Закономерности распределения химических элементов в земной коре (рус.) // Геохимия. — 1956. — Вып. 1. — С. 6—52.
  9. ↑ Соловов А. П., Архипов А. Я., Бугров В. А. и др.: «Справочник по геохимическим поискам полезных ископаемых». М.: Недра, 1990, с.9-10
  10. Vladimir Alekseenko, Alexey Alekseenko. The abundances of chemical elements in urban soils // Journal of Geochemical Exploration. — 2014. — № 147 (B). — С. 245–249.
  11. Алексеенко В.А., Лаверов Н.П., Алексеенко А.В. Кларки химических элементов почв селитебных ландшафтов. Методика проведения исследований // Проблемы биогеохимии и геохимической экологии. — 2012. — № 3. — С. 120–125. — ISSN 1991-8801.
  12. Алексеенко В.А., Лаверов Н.П., Алексеенко А.В. К вопросу о содержании химических элементов в почвах селитебных ландшафтов // Школа экологической геологии и рационального природопользования. — СПб., 2011. — С. 39-45.
  13. 1 2 Алексеенко В.А., Алексеенко А.В. Химические элементы в геохимических системах. Кларки почв селитебных ландшафтов. — Ростов н/Д: Изд-во ЮФУ, 2013. — 388 с. — 5000 экз. — ISBN 978-5-9275-1095-5.
  14. Алексеенко В.А., Алексеенко А.В. Химические элементы в городских почвах. — М.: Логос, 2014. — 312 с. — 1000 экз. — ISBN 978-5-98704-670-8.

Литература[править | править код]

  • Алексеенко В. А., Алексеенко А. В. Химические элементы в геохимических системах. Кларки почв селитебных ландшафтов. — Ростов на Дону: Изд-во ЮФУ, 2013. — 388 с.
  • Кухаренко А. А., Ильинский Г. А., Иванова Т. Н. и др. Кларки Хибинского массива // Записки Всесоюзного минералогического общества. 1968. Ч. 97. № 2. С. 133—149.
  • Taylor S. R. Abundance of chemical elements in the continental crust: a new table (англ.) // Geochimica et Cosmochimica Acta. — 1964. — August (vol. 28, no. 8). — P. 1273—1285. — doi:10.1016/0016-7037(64)90129-2. — Bibcode: 1964GeCoA..28.1273T.

Ссылки[править | править код]

    Источник