Какие основные свойства моделей
Главная Моделирование
»
Файлы
» Методички »
Моделирование
[ Добавить материал ]
Модель (лат. modulus — мера) — это объект-заместитель объекта-оригинала, обеспечивающий изучение некоторых свойств оригинала.
Модель – создаваемый с целью получения и (или) хранения информации специфический объект (в форме мысленного образа, описания знаковыми средствами либо материальной системы), отражающий свойства, характеристики и связи объекта – оригинала произвольной природы, существенные для задачи, решаемой субъектом.
Моделирование – процесс создания и использования модели.
Цели моделирования
- Познание действительности
- Проведение экспериментов
- Проектирование и управление
- Прогнозирование поведения объектов
- Тренировка и обучения специалистов
- Обработка информации
Классификация по форме представления
- Материальные – воспроизводят геометрические и физические свойства оригинала и всегда имеют реальное воплощение (детские игрушки, наглядные учебные пособия, макеты, модели автомобилей и самолетов и прочее).
- a) геометрически подобные масштабные, воспроизводящие пространственно- геометрические характеристики оригинала безотносительно его субстрату (макеты зданий и сооружений, учебные муляжи и др.);
- b) основанные на теории подобия субстратно подобные, воспроизводящие с масштабированием в пространстве и времени свойства и характеристики оригинала той же природы, что и модель, (гидродинамические модели судов, продувочные модели летательных аппаратов);
- c) аналоговые приборные, воспроизводящие исследуемые свойства и характеристики объекта оригинала в моделирующем объекте другой природы на основе некоторой системы прямых аналогий (разновидности электронного аналогового моделирования).
- Информационные – совокупность информации, характеризующая свойства и состояния объекта, процесса, явления, а также их взаимосвязь с внешним миром).
- 2.1. Вербальные – словесное описание на естественном языке).
- 2.2. Знаковые – информационная модель, выраженная специальными знаками (средствами любого формального языка).
- 2.2.1. Математические – математическое описание соотношений между количественными характеристиками объекта моделирования.
- 2.2.2. Графические – карты, чертежи, схемы, графики, диаграммы, графы систем.
- 2.2.3. Табличные – таблицы: объект-свойство, объект-объект, двоичные матрицы и так далее.
- Идеальные – материальная точка, абсолютно твердое тело, математический маятник, идеальный газ, бесконечность, геометрическая точка и прочее…
- 3.1. Неформализованные модели – системы представлений об объекте оригинале, сложившиеся в человеческом мозгу.
- 3.2. Частично формализованные.
- 3.2.1. Вербальные – описание свойств и характеристик оригинала на некотором естественном языке (текстовые материалы проектной документации, словесное описание результатов технического эксперимента).
- 3.2.2. Графические иконические – черты, свойства и характеристики оригинала, реально или хотя бы теоретически доступные непосредственно зрительному восприятию (художественная графика, технологические карты).
- 3.2.3. Графические условные – данные наблюдений и экспериментальных исследований в виде графиков, диаграмм, схем.
- 3.3. Вполне формализованные (математические) модели.
Свойства моделей
- Конечность: модель отображает оригинал лишь в конечном числе его отношений и, кроме того, ресурсы моделирования конечны;
- Упрощенность: модель отображает только существенные стороны объекта;
- Приблизительность: действительность отображается моделью грубо или приблизительно;
- Адекватность: насколько успешно модель описывает моделируемую систему;
- Информативность: модель должна содержать достаточную информацию о системе – в рамках гипотез, принятых при построении модел;
- Потенциальность: предсказуемость модели и её свойств;
- Сложность: удобство её использования;
- Полнота: учтены все необходимые свойства;
- Адаптивность.
Так же необходимо отметить:
- Модель представляет собой «четырехместную конструкцию», компонентами которой являются субъект; задача, решаемая субъектом; объект-оригинал и язык описания или способ воспроизведения модели. Особую роль в структуре обобщенной модели играет решаемая субъектом задача. Вне контекста задачи или класса задач понятие модели не имеет смысла.
- Каждому материальному объекту, вообще говоря, соответствует бесчисленное множество в равной мере адекватных, но различных по существу моделей, связанных с разными задачами.
- Паре задача-объект тоже соответствует множество моделей, содержащих в принципе одну и ту же информацию, но различающихся формами ее представления или воспроизведения.
- Модель по определению всегда является лишь относительным, приближенным подобием объекта-оригинала и в информационном отношении принципиально беднее последнего. Это ее фундаментальное свойство.
- Произвольная природа объекта-оригинала, фигурирующая в принятом определении, означает, что этот объект может быть материально-вещественным, может носить чисто информационный характер и, наконец, может представлять собой комплекс разнородных материальных и информационных компонентов. Однако независимо от природы объекта, характера решаемой задачи и способа реализации модель представляет собой информационное образование.
- Частным, но весьма важным для развитых в теоретическом отношении научных и технических дисциплин является случай, когда роль объекта-моделирования в исследовательской или прикладной задаче играет не фрагмент реального мира, рассматриваемый непосредственно, а некий идеальный конструкт, т.е. по сути дела другая модель, созданная ранее и практически достоверная. Подобное вторичное, а в общем случае n-кратное моделирование может осуществляться теоретическими методами с последующей проверкой получаемых результатов по экспериментальным данным, что характерно для фундаментальных естественных наук. В менее развитых в теоретическом отношении областях знания (биология, некоторые технические дисциплины) вторичная модель обычно включает в себя эмпирическую информацию, которую не охватывают существующие теории.
Добавил: COBA (12.06.2010) | Категория: Моделирование
Просмотров: 78212 | Загрузок: 0
| Рейтинг: 3.9/17 |
Теги: модели, моделирование, свойства, классификация
Источник
Цели моделирования
Цели моделирования:
– исследование оригинала – изучение сущности объекта или явления,
– научиться управлять оригиналом, оказывая на него воздействия – синтез («как сделать, чтобы …»);
– научиться прогнозировать последствия различных воздействий на оригинал – анализ(«что будет, если …»);
– выбор наилучшего решения в заданных условиях –оптимизация («как сделать лучше»).
Разные науки исследуют объекты и процессы под разными углами зрения и строят различные типы моделей. В физике изучаются процессы взаимодействия и изменения объектов, в химии – их химический состав, в биологии строение и поведение живых организмов и так далее.
Таким образом, можно сказать, что основная цель моделирования – это изучение и исследование объекта или явления, для которого модель построена.
Тип модели определяется целями моделирования!
Один и тот же объект может иметь множество моделей, а разные объекты могут описываться одной моделью.Возьмем в качестве примера человека: в разных науках он исследуется в рамках различных моделей. В рамках механики его можно рассматривать как материальную точку, в химии – как объект, состоящий из различных химических веществ, в биологии – как систему, стремящуюся к самосохранению, и так далее.
Модель | Цель моделирования | |
изучение строения тела | ||
изучение наследственности | ||
примерка одежды | ||
тренировка спасателей | ||
учет граждан страны |
Многие исследователи выделяют следующие свойства моделей: адекватность, сложность, конечность, наглядность, истинность, приближенность.
1. Главное свойство модели – адекватность, то естьсоответствие ее реальному объекту (процессу, системе и т.д.) относительно выбранного множества его характеристик и свойств.
От модели не требуется достоверности – в этом случае получится не модель, а копия. Степень соответствия определяется целями моделирования. Излишнее сходство с оригиналом столь же бесполезно, как и недостаточное.
Адекватность теоретических моделей законам реального мира проверяется с помощью опытов и экспериментов и называется верификацией модели.
2. Простота и сложность. Хотя сложные модели и более точно отражают моделируемые свойства оригинала, но они более громоздки, труднообозримы и неудобны в обращении. Поэтому исследователь стремится к упрощению модели, так как с простыми моделями легче оперировать.
При стремлении к построению простой модели должен соблюдаться основной принцип упрощения модели: упрощать модель можно до тех пор, пока сохраняются основные свойства, характеристики и закономерности, присущие оригиналу.
Этот принцип указывает на предел упрощения. При этом понятие простоты (или сложности) модели является понятием относительным.
Более простые (грубые) модели используются при решении задачи синтеза, а более сложные точные модели – при решении задачи анализа.
3.Конечность моделей – заключается, во-первых, в том, что они отображают оригинал в конечном числе отношений, т.е. с конечным числом связей с другими объектами, с конечной структурой и конечным количеством свойств на данном уровне изучения, исследования, описания, располагаемых ресурсов. Во-вторых, в том, что ресурсы (информационные, финансовые, энергетические, временные, технические и т.д.) моделирования и наши знания как интеллектуальные ресурсы конечны, а потому объективно ограничивают возможности моделирования и сам процесс познания мира через модели на данном этапе развития человечества.
4.Приближенность моделей. Конечность и простота (упрощенность) модели характеризуют качественное различие (на структурном уровне) между оригиналом и моделью. Приближенность модели будет характеризовать количественную сторону этого различия. Приближенность модели к оригиналу неизбежна, существует объективно, так как модель как другой объект отражает лишь отдельные свойства оригинала. Поэтому степень приближенности (близости, точности) модели к оригиналу определяется постановкой задачи, целью моделирования.
5.Истинность моделей. В каждой модели есть доля истины, т.е. любая модель в чем-то правильно отражает оригинал. Степень истинности модели выявляется только при практическом сравнении её с оригиналом, ибо только практика является критерием истинности.
Источник
Тип
модели
зависит от информационной сущности
моделируемой системы, от связей и
отношений ее подсистем и элементов, а
не от ее физической природы.
Например,
математические описания (модели)
динамики эпидемии инфекционной болезни,
радиоактивного распада, усвоения второго
иностранного языка, выпуска изделий
производственного предприятия и т.д.
могут считаться одинаковыми с точки
зрения их описания, хотя сами процессы
различны.
Границы
между моделями различного вида весьма
условны. Можно говорить о различных
режимах использования моделей
– имитационном, стохастическом и т.д.
Как
правило модель
включает в себя: объект О,
субъект (не обязательный) А,
задачу Z,
ресурсы B,
среду моделирования
С.
Модель
можно представить формально в виде: М
= < O, Z, A, B, C >.
Основные
свойства
любой модели:
целенаправленность
– модель
всегда отображает некоторую систему,
т.е. имеет цель;конечность
– модель
отображает оригинал лишь в конечном
числе его отношений и, кроме того,
ресурсы моделирования
конечны;упрощенность
– модель
отображает только существенные стороны
объекта и, кроме того, должна быть проста
для исследования или воспроизведения;приблизительность
– действительность отображается моделью
грубо или приблизительно;адекватность
– модель
должна успешно описывать моделируемую
систему;наглядность,
обозримость основных ее свойств и
отношений;доступность
и технологичность для исследования
или воспроизведения;информативность
– модель
должна содержать достаточную информацию
о системе (в рамках гипотез, принятых
при построении модели)
и должна давать возможность получить
новую информацию;сохранение
информации, содержавшейся в оригинале
(с точностью рассматриваемых при
построении модели
гипотез);полнота
– в модели
должны быть учтены все основные связи
и отношения, необходимые для обеспечения
цели моделирования;устойчивость
– модель
должна описывать и обеспечивать
устойчивое поведение системы, если
даже она вначале является неустойчивой;целостность
– модель
реализует некоторую систему, т.е. целое;замкнутость
– модель
учитывает и отображает замкнутую
систему необходимых основных гипотез,
связей и отношений;адаптивность
– модель
может быть приспособлена к различным
входным параметрам, воздействиям
окружения;управляемость
– модель
должна иметь хотя бы один параметр,
изменениями которого можно имитировать
поведение моделируемой системы в
различных условиях;возможность
развития моделей
(предыдущего уровня).
Жизненный
цикл моделируемой системы:
сбор
информации об объекте, выдвижение
гипотез, предварительный модельный
анализ;проектирование
структуры и состава моделей
(подмоделей);построение
спецификаций модели,
разработка и отладка отдельных
подмоделей, сборка модели
в целом, идентификация (если это нужно)
параметров моделей;исследование
модели
– выбор метода исследования и разработка
алгоритма (программы) моделирования;исследование
адекватности, устойчивости, чувствительности
модели;оценка
средств моделирования
(затраченных ресурсов);интерпретация,
анализ результатов моделирования
и установление некоторых причинно-следственных
связей в исследуемой системе;генерация
отчетов и проектных (народно-хозяйственных)
решений;уточнение,
модификация модели,
если это необходимо, и возврат к
исследуемой системе с новыми знаниями,
полученными с помощью модели
и моделирования.
Источник
Термин модель неоднозначен и охватывает чрезвычайно широкий круг материальных и идеальных объектов. Признаком, объединяющим такие, казалось бы, несопоставимые объекты как система дифференциальных уравнений математической физики и пара дамских туфель, выставленных на витрине, является их информационная сущность. Любая модель – идеальная или материальная, используемая в научных целях, на производстве или в быту – несет информацию о свойствах и характеристиках исходного объекта (объекта – оригинала), существенных для решаемой субъектом задачи. Модели – отражение знаний об окружающем мире.
Пусть имеется некоторая конкретная система. Лишь в единичных случаях мы имеем возможность провести с самой этой системой все интересующие нас исследования. С ростом сложности системы возможности натурного эксперимента резко падают. Он становится дорогим, трудоемким, длительным по времени, в слабой степени вариативным. Тогда предпочтительнее работа с моделью. В ряде же случаев мы вообще не имеем возможности наблюдать систему в интересующем нас состоянии. Например, разбор аварии на техническом объекте приходится вести по ее протокольному описанию. Специалист по электронной технике будет изучать большинство типов ЭВМ по литературе, и только часть из них опробует на практике. В этих примерах доступна лишь модель, но это не мешает нам эффективно познавать систему.
Рассмотрение вместо самой системы (явления, процесса, объекта) ее модели практически всегда несет идею упрощения. Мы огрубляем представления о реальном мире, так как оперировать категорией модели экономичнее, чем действительностью. Но вопрос выделения и формальной фиксации тех особенностей, которые существенны для целей рассмотрения, весьма непрост. Известно большое количество удачных моделей, составляющих предмет гордости человеческой мысли, — от конечноэлементной модели в прикладных задачах математической физики до модели генетического кода. Однако велико количество процессов и явлений, для которых на настоящий момент нет удовлетворительного описания. Правда, в области техники положение с моделированием можно считать удовлетворительным, но и здесь имеются «узкие» места, связанные с плохо определяемыми параметрами, коэффициентами, а также слишком грубые описания.
Определение. Модель в общем смысле есть создаваемый с целью получения и (или) хранения информации специфический объект (в форме мысленного образа, описания знаковыми средствами либо материальной системы), отражающий свойства, характеристики и связи объекта – оригинала произвольной природы, существенные для задачи, решаемой субъектом.
Непосредственно из структуры принятого определения вытекают ряд общих свойств моделей, которые обычно принимаются во внимание в практике моделирования.
1. Модель представляет собой «четырехместную конструкцию», компонентами которой являются субъект; задача, решаемая субъектом; объект-оригинал и язык описания или способ воспроизведения модели. Особую роль в структуре обобщенной модели играет решаемая субъектом задача. Вне контекста задачи или класса задач понятие модели не имеет смысла.
2. Каждому материальному объекту, вообще говоря, соответствует бесчисленное множество в равной мере адекватных, но различных по существу моделей, связанных с разными задачами.
3. Паре задача-объект тоже соответствует множество моделей, содержащих в принципе одну и ту же информацию, но различающихся формами ее представления или воспроизведения.
4. Модель по определению всегда является лишь относительным, приближенным подобием объекта-оригинала и в информационном отношении принципиально беднее последнего. Это ее фундаментальное свойство.
5. Произвольная природа объекта-оригинала, фигурирующая в принятом определении, означает, что этот объект может быть материально-вещественным, может носить чисто информационный характер и, наконец, может представлять собой комплекс разнородных материальных и информационных компонентов. Однако независимо от природы объекта, характера решаемой задачи и способа реализации модель представляет собой информационное образование.
6. Частным, но весьма важным для развитых в теоретическом отношении научных и технических дисциплин является случай, когда роль объекта-моделирования в исследовательской или прикладной задаче играет не фрагмент реального мира, рассматриваемый непосредственно, а некий идеальный конструкт, т.е. по сути дела другая модель, созданная ранее и практически достоверная. Подобное вторичное, а в общем случае n-кратное моделирование может осуществляться теоретическими методами с последующей проверкой получаемых результатов по экспериментальным данным, что характерно для фундаментальных естественных наук. В менее развитых в теоретическом отношении областях знания (биология, некоторые технические дисциплины) вторичная модель обычно включает в себя эмпирическую информацию, которую не охватывают существующие теории.
Свойства любой модели таковы:
· конечность: модель отображает оригинал лишь в конечном числе его отношений и, кроме того, ресурсы моделирования конечны;
· упрощенность: модель отображает только существенные стороны объекта;
· приблизительность: действительность отображается моделью грубо или приблизительно;
· адекватность: модель успешно описывает моделируемую систему;
· информативность: модель должна содержать достаточную информацию о системе – в рамках гипотез, принятых при построении модели.
1.2. Классификация моделей
Каждая модель характеризуется тремя признаками:
q принадлежностью к определённому классу задач (по классам задач)
q указанием класса объектов моделирования (по классам объектов)
q способом реализации (по форме представления и обработки информации).
Рассмотрим более подробно последний вид классификации. По этому признаку модели делятся на материальные и идеальные.
Материальные модели:
a) геометрически подобные масштабные, воспроизводящие пространственно- геометрические характеристики оригинала безотносительно его субстрату (макеты зданий и сооружений, учебные муляжи и др.);
b) основанные на теории подобия субстратно подобные, воспроизводящие с масштабированием в пространстве и времени свойства и характеристики оригинала той же природы, что и модель, (гидродинамические модели судов, продувочные модели летательных аппаратов);
c) аналоговые приборные, воспроизводящие исследуемые свойства и характеристики объекта оригинала в моделирующем объекте другой природы на основе некоторой системы прямых аналогий (разновидности электронного аналогового моделирования).
Рассмотрим более подробно два последних пункта. Для парохода правильный выбор обводов, подбор гребного винта и согласование с характеристиками винта и корпуса мощности и скорости вращения вала – проблема №1. По существу речь идет о необходимости оптимизировать взаимодействие системы корпус – винт – двигатель с обтекающей судно жидкой средой по критерию максимального КПД. Решение проблемы опытным путем невозможно по очевидным экономическим соображениям, не поддается она и теоретическому решению. Выход был найден на пути синтеза теории масштабного гидродинамического моделирования, т.е. экспериментальное исследование малых геометрически подобных моделей проектируемых судов в специальных бассейнах на основе теории подобия. Теория обеспечивала возможность достоверного переноса данных, полученных на модели, на «натуру», на свойства и характеристики реального, но еще не существующего судна. И сегодня методы масштабного физического моделирования сохраняют свое значение.
Аналоговое моделирование основано на том, что свойства и характеристики некоторого объекта воспроизводятся с помощью модели иной, чем у оригинала физической природы. Целый ряд явлений и процессов существенно различной природы описывается аналогичными по структуре математическими выражениями. Описываемые аналогичными математическими структурами разнородные объекты можно рассматривать как пару моделей, которые с точностью до свойств, учитываемых в математическом описании, взаимно отображают друг друга, причем коэффициенты, связывающие соответственные (сходственные) параметры, являются в этом случае размерными величинами.
1. | ¶ Т | = α × | ¶2 T | ||
¶ t | ¶ х2 | ||||
2. | ¶ С | = D × | ¶2 T | ||
¶ t | ¶ х2 | ||||
3. | ¶ u | = | 1 | × | ¶2 T |
¶ t | RC | ¶ х2 |
1- уравнение теплопроводности (закон Фурье), 2- уравнение диффузии (закон Фика), 3-уравнение электропроводности (закон Ома).
Источник