Какие пигменты содержатся в клетках водорослей

ОБЩАЯ ХАРАКТЕРИСТИКА ВОДОРОСЛЕЙ

План лекции:

Пигментный состав водорослей

Типы талломов водорослей и их эволюция

Размножение и дифференцировка пола водорослей

Жизненные циклы водорослей и их эволюция

Пигментный состав водорослей

Все пигменты водорослей делятся на 3 группы:

– хлорофиллы

– каротиноиды

– фикобилины (билиопротеины)

Важнейшим пигментом является хлорофилл. Хлорофилл – магниевая соль тетрапирола, магний соединен с 4 пиролами к одному из них присоединяется фитол (С20Н39ОН). Наличие таких сопряженных связей способствует участию хлорофилла в процессе фотосинтеза и поглощать свет различной длины волны. Выделяют 10 структурных форм хлорофилла: хлорофилл a, b, c, d, e, бактериохлорофилл a, b, c, d и протохлорофилл. Хлорофилл a и бактериохлорофилл a преобразуют энергию, все остальные типы хлорофилла участвуют в поглощении и миграции энергии. Хлорофилл поглощает свет в красной области спектра.

Хлорофилл а универсальный пигмент высших растений и водорослей, имеет сине-зеленую окраску. У некоторых водорослей (сине-зеленые) он представляет единственную форму хлорофилла. Поглощает свет в красной области спектра длиной волны 660-664 нм.

Хлорофилл b – дополнительный пигмент высших растений и водорослей, впервые появился у эвгленовых. Поглощает свет длиной волны 645 нм.

Хлорофилл с – дополнительный пигмент бурых и диатомовых водорослей.

Хлрофилл d – дополнительный пигмент красных водорослей. Поглощает свет длиной волны 686 нм.

Каротиноиды – большая группа оранжевых, красных, бурых пигментов, поглощающих коротковолновую часть видимой области спектра (400-550 нм). Каротиноиды представляют собой углеводы соединенные 8 остатками изопрена. По содержанию кислорода каротиноиды делятся на:

– каротины – не содержат кислорода (α-каротин (478 нм), β-каротин (483,5 нм), γ-каротин (485 нм);

– ксантофиллы – содержат кислород в виде гидроксогруппы или эпоксигруппы (лютеин (445 нм), виолаксантин, зеаксантин, неоксантин, фукоксантин).

Имеются закономерности в размещении каротиноидов:

– β-каротин – универсальный каротиноид;

– у водорослей с сочетанием хлорофилла а и с преобладает фукоксантин (бурый ксантофилл);

– у водорослей с сочетание хлорофилла а и b преобладает золотисто-желтый ксантофилл.

Функции каротиноидов:

1. антенная (дополнительные пигменты в процессе поглощения солнечной энергии);

2. защитная (тушители триплетного хлорофилла);

3. фотопротекторная (защита фотосинтетического аппарата от излишка энергии возбуждения при высокой интенсивности света).

Фикобилины – группа пигментов которая имеется не у всех водорослей. По химическому составу они близки к желчным ферментам животным. Фикобилины встречаются в связи с белком. В клетках они содержаться в особых струткрах – фикобилиомах. Фикобилины делятся на 3 группы:

А) фикоэретрин – красный пигмент

Б) фикоцианин – синий пигмент

В) аллофикоцианин – синий пигмент.

Фиколибины поглощают свет желто-зеленой части спектра, далее энергия предается хлорофиллу. Таким образом, присутствие других пигментов увеличивает энергию фотосинтеза.

Разнообразие пигментов имеет большое биологическое значение. Например, красные водоросли живут на большой глубине, куда проникают лучи только синей части спектра, которые они и поглощают. Существует несколько гипотез возникновения многообразия пигментов у водорослей: 1) разнообразие пигментов у водорослей было изначально и в зависимости от пигментного состава водоросли и расселялись; 2) гипотеза Энгельмана – водоросли расселялись и приспосабливались к условиям обитания так и возникло многообразие пигментов (доказательство – переход к фотосинтезу происходит не однократно и независимо от разных эволюционных стволов).

Основные биохимические особенности характерные для разных

отделов водорослей

Отделы водорослей Пигментный состав Главное запасное вещество
хлорофилл каротиноиды фикобилины
а b c d каротин ксантофилл фукоксантин фикоэритрин фикоцианин
Сине-зеленые +       β +   + + валютин
Эвгленовые + +     Β +       парамилон
Зеленые + +     Β +
(лютеин, виолаксантин)
      крахмал
Красные +     + α, γ +
(лютеин)
  + + багрянковый крахмал
Пирофитовые +   +   β + +     крахмал
Золотистые +   +   β + +     хризоламинарин
Желто-зеленые +   +   β + +     масла, валютин
Бурые +   +   β +
(виолаксантин, антероксантин)
+     ламинарин, маннит, жиры
Диатомовые +   +   β + +     масла, валютин
Харовые + +     β +
(как у зеленых)
      крахмал

Дата добавления: 2015-04-20; просмотров: 25 | Нарушение авторских прав

| 2 | 3 | 4 | 5 |
lektsii.net – Лекции.Нет – 2014-2020 год. (0.007 сек.)
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав

Источник

    Биосинтез начинается с фотосинтеза [1]. Вся жизнь на Земле зависит от способности некоторых организмов (зеленых растений, водорослей и фотосинтезирующих бактерий), содержащих характерные фотосинтезирующие пигменты, использовать энергию солнечной радиации для синтеза органических молекул из неорганических веществ — диоксида углерода, азота и серы. Продукты фотосинтеза служат затем не только исходными веществами, но и источником химической энергии для всех последующих биосинтетических реакций. Обычно принято описывать фотосинтез только как процесс образования углеводов в некоторых случаях основными продуктами фотосинтеза, действительно, являются исключительно крахмал, целлюлоза и сахароза, однако в других организмах на синтез углеводов идет, быть может, всего лишь третья часть углерода, связываемого и восстанавливаемого в процессе фотосинтеза. При ближайшем рассмотрении оказывается, что нельзя провести четкую границу между образованием продуктов фотосинтеза и другими биосинтетическими реакциями в клетке, в которых могут участвовать промежуточные вещества фотосинтетического цикла восстановления углерода. [c.396]

Читайте также:  Какие вещества содержатся в коже

    ХИТИН, главный скелетный полисахарид беспозвоночных и компонент клеточной стенки грибов и иек-рых зеленых водорослей в кутикуле членистоногих образует комплексы с белками, пигментами, солями Са. Получ. обработкой [c.656]

    Энергия падающего света поглощается фотосинтезирующими пигментами в органеллах, называемых фоторецепторами (хлоропласты в высших растениях, пластиды в водорослях, хроматофоры в фотосинтезирующих бактериях). Преобладающим пигментом является хлорофилл любой организм, способный осуществлять фотосинтез, содержит по меньшей мере одну разновидность хлоро- [c.396]

    Хроматофоры кроме хлорофилла содержат бурые пигменты, поэтому цвет водорослей желтоватый или.темно-бурый. [c.271]

    К наиболее важным вспомогательным пигментам относятся каротины (рис. 12-14), из которых главным в большинстве зеленых растений является -каротин. Зеленые серные бактерии содержат у-каротин один из концов молекулы этого соединения не подвергается циклизации и напоминает ликопен. Хлоропласты содержат разнообразные оксигенированные каротиноиды (ксантофиллы). Из них в высших растениях и зеленых водорослях преобладают неоксантин, виолаксантин [уравнение (12-30)] и лютеин. Лютеин напоминает зеаксантин, но на одном из концов цепи кольцо нзомеризуется путем перемещения двойной связи в положение, показанное ниже  [c.43]

    На скалах и в других сухих местах (часто с холодным климатом) произрастает свыше 15 000 разновидностей лишайников. Лишайники представляют собой сожительство (симбиоз) гриба с истинной водорослью или с сине-зеленой водорослью, относяш,ейся к прокариотам. Водоросли, по-видимому, не имеют особых выгод от этого симбиоза, но-грибы, проникая внутрь клетки водоросли, получают от нее питательные веш,ества [40]. Каждого из партнеров, составляюш,их лишайник, можно-вырастить по отдельности, однако в комбинации они приобретают новые свойства. Так, лишайники (но не составляющие его организмы) вырабатывают специальные пигменты и фенольные вещества, называемые депсидами. [c.50]

    Сине-зеленые водоросли СуапорНусеае) (ряс. 89) — одно- или многоклеточные организмы, характеризуются особым строением клетки. В ней нет типичного ядра и хроматофоров. Протопласт сине-зеленых водорослей дифференцирован на периферически окрашенный слой (хроматоплазма) и центральную часть (центроплазма). Ассимилирующие пигменты—хлорофилл, фико-цин, фикоэритрин и каротин. В ячеях лежат особые тельца —эндопласты плотной или вязкой консистенции. В плазматических стенках ячей между эндопластами находится хроматиновое вещество , красящееся ядерными красками. [c.271]

    Одноклеточная водоросль может расти в отсутствие фотосинтеза на глюкозе в качестве источника углерода. В этих условиях глюкоза метаболизируется до ацетата, который и используется для биосинтеза клеточных компонентов. Если клетки культивировать в условиях отсутствия фотосинтеза, в качестве единственного источника воды использовать оксид дейте-)ия ( НгО), а в качестве источника углерода — обычную Н]-глюкозу, то распределение Н и в образующихся молекулах каротина и хлорофилла будет строго определенным. Если же культуру перенести в условия, при которых возможен фотосинтез (свет+СОг в качестве источника углерода), то как со временем будет изменяться характер распределения метки в пигментах (Источником воды остается оксид дейтерия.) [c.399]

    Синозелопые водоросли (СуапорЬусеае) отличаются строением клеток и синезеленым цветом их, обусловленным присутствием дополнительных пигментов. В клетке синезеленых водорослей пигменты равномерно распределены во внешнем, так называемом корковом, слое протоплазмы, выполняющем функции хроматофора и протоплазмы одновременно. Центральная часть клетки заполнена центральным телом — гомологом ядра. [c.135]

    Фукоксантин С40Н56О6 представляет собой коричневато-желтый пигмент бурых водорослей. [c.860]

    Еще один класс вспомогательных пигментов, распространенных менее широко, составляют тетрапирролы с открытой цепью [85] из-за структурного родства с пигментами желчи (рис. 14-14) их часто называют растительными желчными пигментами . Фикоцианины придают характерный цвет сине-зеленым водорослям. Они образуют группу конъюгированных белков (билипротеидов), содержащих в качестве связанного с ними пигмента фикоцианобилин (рис. 13-22). Подобным же образом красные фикоэритрины из КЬос1орЬу1а содержат связанный фикс- [c.44]

    Водоросли. Термин водоросли охватывает обширную группу организмов, относящуюся к низшим растениям, содержащим хлорофилл и имеющую примитивное строение тела, не расчлененное на стебель, листья и корень, как у высших растений. Из-за наличия в них хлорофилла, зеленого пигмента, они окрашены в зеленый цвет. Но в некоторых случаях этот цвет искажается от присутствия в клетках добавочных пигментов, таких, например, как фикоциан (синего цвета), фикоэритрии (красного цвета), каротин (оранжевый), ксантофилл (желтый) и др. В зависимости от количества тех или иных пигментов водоросли имеют различные окраски. [c.269]

Читайте также:  Какие витамины содержатся в абрикосовых косточках

    КАРОТИНОИДЫ (лат. arota — морковь) — пигменты различных оттенков от желтого до красного цвета, содержатся в тканях растений, многих грибов, бактерий, водорослей по химическому строению являются непредельными углеводородами терпенового ряда. В организме животных не синтезируются, а поступают вместе с растительной пищей. Известно свыше 70 К-, в молекулах большинства из них содержится 40 атомов углерода. Основными представителями К. являются а-, Р-, Y-каротины ioH e, отличающиеся геометрическим строением молекул. Наиболее распространен Р-каротин, получаемый экстракцией из сушеной моркови, люцерны, гречихи, пальмового масла, а также синтетически. К. являются провитаминами витамина А, их применяют для витаминизации пищи и кормов животных, птиц и в качестве красителя для закрашивания масла, маргарина и др. [c.122]

    Так как биливердин имеет большую, чем билирубин 71-систему сопряжения, он и окрашен глубже — это сине-зеленый пигмент водорослей, где он участвует в процессе фотосинтеза. В организме здорового человека биливердин не содержится, но при некоторых заболеваниях печени и почек он регулярно сопутствует билирубину. Билирубин имеет вдвое меньшую л-сопря-женную систему, в связи с чем имеет желто-оранжевую окраску, соответствующую более коротковолновому электронному переходу. Он образуется в организме человека при расщеплении гема гемоглобина и является пигментом желчи — содержится в желчных камнях. При некоторых заболеваниях количество билирубина возрастает и он, накапливаясь, вызывает пожелтение кожи и белков глаз (желтуха). [c.263]

    Красные водоросли и сине-зеленые водоросли (или бактерии) отличаются от всех других фотосинтезирующих организмов тем, что в качестве вспомогательных светоулавливающих пигментов они используют фикобилипротеины (гл. 5), которые локализованы в специфических структурах, называемых фико-,билисомами. Последние представляют собой макромолекулярные [c.354]

    Из высших растений, водорослей и фотосинтезирующих бактерий вьщелено и структурно охарактеризовано св. 50 разл. X. Осн. пигменты высших растений и зеленых водорослей – X. а ч Ь. Основа этих X.- ди-гидропорфириновый (хлориновый) цикл, содержащий в качестве эфирных фупп (У) остаток спирта фи-тола (СНз)2СН(СН2)зСН(СНз)(СН2)зСН(СНз)(СН2)зС(СНз) = = СНСНзОН. [c.291]

    Водоросли представляют собой весьма разнообразную группу хлорофиллсодержащих эукариот, представленных как одноклеточными, так и колониальными формами. Колониальные водоросли обычно имеют вид длинных нитей, прямых или разветвленных иногда они образуют пластинки, напоминающие листья. Клеточная дифференциация, однако, практически отсутствует. Золотисто-бурые, бурые и красные водоросл помимо хлорофилла содержат ряд специфических пигментов. [c.47]

    Рассматривая любую пробу водорослей из пруда или аквариума под микроскопом, всегда можно обнаружить крошечные диатомеи, медленно, как лодочки, скользящие в воде. Диатомовые водоросли, относящиеся к группе СЬгу8орЬу1а, широко известны из-за наличия у них наружной раковины из двуокиси кремния. Эти кремниевые скелеты, ажурные, нередко поразительно красивые (рис. 1-9), отличаются чрезвычайной прочностью они образуют обширные древние отложения диатомовой земли . Передвигаются диатомеи очень медленно, причем самым необычным способом — посредством перетекания протоплазмы по желобку на поверхности клетки. Диатомовые водоросли составляют существенную часть морского планктона. По оценкам, три четверти органических веществ в мире продуцируется диатомовыми водорослями и панцирными жгутиковыми. Подобно бурым водорослям, хризофиты содержат пигмент фукоксантин. [c.49]

    Есть еще две группы водорослей — бурые (Phaeophyta) и красные (Rhodophyta). К первым относятся гигантская бурая водоросль, из которой получают полисахарид альгин. Вторые представлены растениями с многочисленными тонкими веточками, содержащими красный пигмент фикоэритрин. Полисахариды—агар и каррагенин, — часто добавляемые в шоколадные напитки и другие пищевые продукты, вырабатывают именно из красных водорослей. [c.49]

    В ходе различных реакций каротины могут подвергаться гидрокси-лированию и другим модификациям. Структура одного из образующихся при этом ксантофиллов — зеаксантина — приведена на рис. 12-14. Читатель найдет там же структуру бурого пигмента диатомовых водорослей — фукоксантина. Обратите внимание, что один конец молекулы фукоксантина содержит эпоксид, образовавшийся под действием кислорода другой конец несет редко встречающуюся в природе структуру — аллен. (При этом в количественном отношении фукоксантин является, вероятно, самым распространенным каротиноидом [88].) Ниже мы приводим структуру алленсодержащего конца молекулы фукоксантина (в перевернутом виде по сравнению с изображением на рис. 12-14). Обратите внимание, что на рис. 12-14 стереохимия алленовой группировки изображена не совсем правильно, а именно присоединенная к ней [c.574]

Читайте также:  Какие витамины содержатся в индейке

    Спектроскопически можно различить несколько типов фико-эритринов и фикоцианинов. Типичные спектры поглощения пигментов, выделенных из одной водоросли, показаны на рис. 5.14. Хотя все фикоэритрины, выделенные из водорослей, обладают [c.189]

    Тетрапиррольные пигменты, представляющие собой группу соединений со столь жизненно важными биологическими функциями, изучались чрезвычайно интенсивно. Поэтому о механизмах их образования и функционирования известно больше, чем в случае какой-либо другой группы пигментов. Установление трехмерных структур миоглобина и гемоглобина и механизма, с помощью которого гемоглобин функционирует в транспорте кислорода, представляет собой один из классических образцов научного исследования. Во многом ясным стал также путь, по которому хлорофиллл используется как главный светособирающий пигмент в фотосинтезе (гл. 10). Основные аспекты биосинтеза порфиринов (и коррина), в том числе его детали и стереохимия, изучены в очень элегантных опытах с помощью классических радиоизотопных методов и усовершенствованных методов введения и анализа -метки. Желающий изучать биосинтез порфиринов не смог бы сделать ничего лучшего, чем прежде всего внимательно прочитать эти работы. Тем не менее даже при таком положении вещей ход некоторых биосинтетических превращений до сих пор полностью не установлен. Для изучения образования бактериохлорофиллов, необычных хлорофиллов с и d яз водорослей, модифицирован- [c.219]

    В фотосинтезирующих клетках активные пигменты расположены внутри ламеллярных мембран в виде функционально-организованных единиц. У фотосинтезирующих эукариот (высших растений и большинства водорослей) несущие пигмент мембраны заключены в специфических органеллах — хлоропластах. У высших растений морфологические различия между хлоропластами невелики, в то время как у водорослей форма и размеры хлоропластов значительно варьируют. hlorella, например, имеет единственный чашевидный хлоропласт, тогда как хлоропласты некоторых видов Spirogyra представляют собой длинные, спирально закрученные образования, лежащие вдоль всей клетки. [c.329]

    Сине-зеленые водоросли ( yanophyta или yanoba teria) представляют собой единственную большую группу прокариот, которые способны к фотосинтезу с выделением кислорода, сходному с фотосинтезом у высших растений. Однако тилакоидные мембраны у них находятся не в хлоропластах, а распределены по всей цитоплазме клетки, преимущественно на ее периферии. Фотосинтетические пигменты сине-зеленых водо- [c.353]

    Было получено несколько мутантных штаммов водорослей, у которых при выращивании в темноте состав пигментов значительно отличается от состава у дикого штамма у них может полностью отсутствовать хлорофилл, а биосинтез каротиноидов может быть блокирован на одной из ранних стадий, например на стадии -каротина (10.21). При освещении клеток некоторых из этих штаммов происходит нормальное образование хлоропластов, причем данный процесс в некоторых отношениях сходен с позеленением этиопластов. Это делает такие штаммы очень удобным объектом для изучения структурных изменений и превращений пигментов. [c.362]

    Красные (Rhodophy eae) и сине-зеленые водоросли используют в качестве вспомогательных пигментов фикобилины. К сожалению, синтез этих соединений, так же как и образование [c.362]

    Фитохромные системы обнаруживаются во всем растительном царстве у высших растений, мхов, папоротников и водорослей, правда, более-менее подробно они изучены только у высших растений. У многих высших растений фитохром сосредоточен в некоторых специфических тканях. Например, в этиолированных проростках овса высокие концентрации фитохрома обнаружены в паренхиме и в эпидермальных клетках, расположенных несколько ниже (на 0,1 —1,5 мм) верхушки колеоптиля, в то время как в самом ее кончике пигмент отсутствует. Внутри клетки фитохром (в Ргг-форме) связан с ядерной оболочкой, а также содержится в таких органеллах, как митохондрии, амилопласты, этиопласты и хлоропласты. По-видимому, Ргг-форма более прочно, чем Рг-форма, ассоциирована с мембранными структурами, в которых, как предполагают, находятся дискретные рецепторные участки. Не исключено также наличие внутри клетки различных фондов фитохрома. Протекание фотореакции обусловлено, возможно, лишь небольшим количеством прочно связанной Ргг-формы фитохрома, в то время как большая часть фитохрома в Ргг-форме остается в свободном виде (не связанной с рецепторными участками) и в инициировании фотореакции непосредственно не участвует. [c.370]

    Многочисленные примеры фототаксиса были обнаружены у водорослей, динофлагеллят, грибов и бактерий описано также зависимое от света движение хлоропластов в клетках водорослей. Предполагают, что у разных организмов в фотореакциях принимают участие сразу несколько пигментов или групп пигментов, действие которых обусловлено их спектрами действия. В число таких пигментов входят хлорофилл, бактериохлорофилл, каротиноиды, билипротеины, фитохром и рибофлавин. К сожалению, более подробная их идентификация пока не проводилась. [c.374]

Источник