Какие примеси содержаться в стали
Вопросы, рассмотренные в материале:
- Полезные и специальные примеси в стали
- Вредные примеси в стали, которые ухудшают ее свойства
Вредные примеси в стали не только ухудшают ее состав, но и могут привести к последующей деформации изготовленного из нее изделия. Однако нельзя все их рассматривать как нежелательные. Некоторые из них относят к полезным, а от других вообще невозможно избавиться, так как они постоянные. Да и нет необходимости их устранять, поскольку постоянные примеси могут влиять на качественные характеристики стали.
В этой статье мы поговорим о том, какими являются вредные примеси стали и как они влияют на ее состав и характеристики стальных изделий.
Полезные и специальные примеси в стали
В стали встречаются вредные и полезные примеси. Сначала остановимся на полезных, к которым относят марганец и кремний:
- Марганец – это химический элемент, благодаря которому возрастает прокаливаемость стали и снижается влияние серы, оказывающей вредное воздействие на металл.
- Кремний – примесь данного элемента помогает раскислить сталь и, как следствие, повысить ее прочность. Его специально добавляют в металл в ходе его выплавки.
Углеродистая сталь содержит примесь кремния не более 0,35–0,4 % и марганец в количестве 0,5–0,8 %. Переход марганца и кремния в сталь происходит во время раскисления в ходе выплавки. Эти химические элементы соединяются с кислородом закиси железа FеO, а затем, превращаясь в окислы, переходят в шлак, то есть, иначе говоря, раскисляют сталь.
Данный процесс оказывает благоприятное воздействие на свойства стали. За счет дегазации металла кремнием увеличивается ее плотность. Часть химического элемента остается в феррите (твердом растворе) уже после раскисления, что приводит к значительному возрастанию предела текучести. При этом способность к холодной высадке и вытяжке у стали снижается.
По этой причине производители снижают количество кремния в сталях, изготавливаемых для холодной штамповки и высадки. Прочность металла значительно повышается благодаря примеси марганца. Последний сильно уменьшает красноломкость стали, оставляя пластичность практически неизменной. Таким образом, резко падает хрупкость стали при воздействии высокой температуры, которая возникала из-за присутствия серы.
Для получения сталей, имеющих определенные свойства, в металл добавляют специальные примеси. Они носят название легирующих элементов. Стали же именуют легированными.
Остановимся подробно на назначении некоторых элементов:
- Алюминий – его примесь помогает повысить окалино- и жаростойкость стали.
- Медь – увеличивает стойкость стали к коррозии.
- Хром – повышает прочность, твердость сталей, увеличивает стойкость к коррозии, при этом пластичность падает незначительно. Нержавеющей сталь делает большое содержание хрома.
- Никель – повышает пластичность, прочность, делает сталь стойкой к коррозии.
- Вольфрам – при добавлении в сталь создает корбиды (химические соединения повышенной твердости). Они значительно повышают красностойкость и твердость. Под воздействием вольфрама сталь перестает расширяться в процессе нагревания, а хрупкость при отпуске уходит.
- Ванадий – способствует возрастанию плотности, прочности и твердости стали. Он признается прекрасным раскислителем.
- Кобальт – под его воздействием увеличивается жаропрочность, стойкость к ударным нагрузкам, возрастают магнитные свойства.
- Молибден – улучшается сопротивляемость стали к окислению в ходе воздействия на нее высоких температур, возрастает упругость, красностойкость, увеличивается стойкость к коррозии, повышается предел прочности к растяжению.
- Титан – являясь прекрасным раскислителем, он повышает стойкость к коррозии, увеличивает плотность и прочность металла, делает лучше его обрабатываемость.
- Церий – способствует возрастанию пластичности и прочности стали.
- Цирконий (Ц) – воздействует на зернистость стали, давая возможность изготовить металл с установленным размером зерна, делает его мельче.
- Лантан, неодим и цезий – уменьшают пористость стали, сокращают количество серы, делают качество поверхности лучше, а зерно мельче.
Вредные примеси в стали, которые ухудшают ее свойства
Давайте разберемся, какие вредные примеси содержатся в стали. Основными являются фосфор и сера.
- Сера.
Сера (S) содержится в сталях высокого качества в количестве не более 0,02–0,03 %. Для металла общего назначения этот показатель повышается до 0,03–0,04 %. С помощью спецобработки количество серы уменьшается до 0,005 %.
Растворения серы в железе не происходит, а образуется FeS (сульфид железа). Он входит в эвтектику, образующуюся при температуре +988 °С.
При высоком содержании серы сталь становится красноломкой. Это происходит из-за появления на границах зерен сульфидных эвтектик, имеющих низкую способность к плавке. Красноломкость появляется при температуре красного каления стали – +800 °С.
Плохое влияние сера оказывает на свариваемость, пластичность, ударную вязкость, а также поверхность металла. Это особенно заметно, если марганец и углерод содержатся лишь в небольших количествах.
Склонность к сегрегации на границах зерен у серы значительна. По этой причине в ходе нагрева пластичность стали падает. Если металл предназначен для дальнейшей обработки автоматическим механическим способом, то в состав обязательно добавляют серу в количестве от 0,08 % до 0,33 %, так как она способствует возрастанию у подшипниковых сталей усталостной прочности.
Марганец же снижает вредное воздействие серы на сталь. При жидком состоянии сплава он вступает в реакцию с образованием сульфида марганца, температура плавления которого составляет +1620 °С. Она значительно превышает температуру горячей обработки металла (от +800 °С до +1200 °С). При таком нагреве сульфиды марганца достаточно пластичны и просто деформируются.
- Фосфор.
Сегрегация фосфора (Р) в значительно меньшей, чем серы и углерода, степени происходит в ходе затвердевания сталей. Идет его растворение в феррите, из-за чего прочность металла увеличивается. Чем больший процент фосфора содержит сталь, тем выше ее хладноломкость и ниже ударная вязкость, пластичность.
Высокая температура среды позволяет достичь растворимости фосфора в пределах 1,2 %. Чем ниже становится температура, тем меньше растворимость фосфора. Она постепенно опускается до 0,02–0,03 %. Именно такое содержание данного химического элемента наблюдается в сталях. Это может говорить о том, что он, как правило, полностью растворяется в альфа-железе.
Отпускная хрупкость хромистых, хромоникелевых и хромомарганцевых, марганцевых и магниево-кремниевых легированных сталей во многом зависит от сегрегации фосфора по границам зерен. Элемент способствует замедлению распада мартенсита и повышает упрочняемость.
С целью улучшения механической (автоматической) обработки в низколегированные стали добавляют большое содержание фосфора.
При наличии углерода в количестве 0,1 % в конструкционной низколегированной стали фосфор должен увеличивать антикоррозийные свойства, а также прочность металла.
Наличие фосфора в хромоникелевых аустеничных сталях приводит к увеличению предела текучести. При попадании аустеничной нержавеющей стали в среду сильного окислителя присутствие в ее составе фосфора вызывает коррозию на границах зерен. Такое поведение предопределено сегрегацией фосфора на этих границах.
- Углерод.
Вредные примеси в стали – это не только сера и фосфор, но и углерод.
Медленно остывая, сталь приобретает структуру, состоящую их двух фаз – цементита и феррита. Цементит связан в стали с углеродом. Его содержание прямо пропорционально количеству последнего. При этом цементит имеет твердость, значительно превышающую жесткость феррита. Цементит, вернее, входящие в его состав частицы (хрупкие, твердые), увеличивают сопротивляемость деформации, повышая противодействие движению дислокации. Помимо того, снижается вязкость и пластичность металла.
Как следствие, при возрастании процента углерода происходит увеличение твердости стали, пределов ее текучести и прочности, снижение относительных сужения и удлинения, а также ударной вязкости. То есть чем больше углерода, тем легче сталь переходит в хладноломкое состояние. Если содержание углерода в стали колеблется в диапазоне 1,0–1,1 %, то растет твердость металла в отожженном состоянии. При этом предел прочности снижается.
Такое явление, как снижение прочности, наблюдается по причине выделения аустенита вторичного цементита на границах бывшего зерна. Этот цементит делает сплошную сетку в сталях с вышеуказанным составом. В ходе растяжения сетка напрягается и цемент, хрупкий по своей природе, начинает разрушаться. Все это является причиной распада и последующего уменьшения предела прочности. Увеличивая количество углерода, можно добиться уменьшения плотности стали, увеличения электросопротивляемости, коэрцитивной силы, снижения остаточной индукции, теплопроводности и магнитной проницаемости.
- Азот.
Рассматривая вопрос о том, какие вредные примеси присутствуют в стали, нельзя забывать о влиянии азота (N). Под его воздействием в металле образуются нитриды, представляющие собой неметаллические хрупкие инородные тела, которые делают свойства стали значительно хуже.
Однако вредные примеси в стали являются в какой-то мере полезными, а иногда и неустранимыми. К положительным сторонам примеси азота стоит отнести его способность увеличить аустеничную область диаграммы состояния металла. Он делает аустеничную структуру стабильнее. Кроме того, он способен заменить собой никель (но только частично) в рассматриваемых сталях.
Для увеличения прочности низколегированной стали прибегают к добавлению титана, ванадия и ниобия (нитридообразующих элементов). В процессе горячей обработки и последующего охлаждения, взаимодействуя, они создают небольшие карбонитриды и нитриды, придающие стали прочность.
- Олово.
Даже небольшое количество олова (Sn) вредно для стали. В легированных сталях этот элемент способен вызвать отпускную хрупкость. Кроме того, олово сегрегируется на границах зерен стали, уменьшает ее горячую пластичность в аустенитно-ферритной области диаграммы состояния. Непрерывнолитые слитки под воздействием олова имеют низкое качество поверхности.
- Водород.
Обсуждая вредные примеси в стали и их влияние на материал, нельзя забывать, пожалуй, о самом опасном из них – водороде. В процессе сварки этот химический элемент во всех случаях является вредной примесью. Причина заключается в излишнем охрупчивании стали. При проведении сварочных работ водород может попасть в расплав из:
- атмосферы дугового разряда;
- может уже содержаться в металле.
Поглощенный из атмосферы водород, пребывающий в ионизированном и атомарном виде, в ходе кристаллизации значительно уменьшает собственную растворимость. В результате его последующего выделения из материала в нем образуются трещины и поры.
Водород, уже находящийся в металле, может быть в виде гидрида (связанном) или в диффузно-подвижном состоянии (в виде твердого раствора). Молекулярный водород содержится в микронесплошностях материала.
Снизить количество водорода в сварочной зоне можно следующими способами:
- используют окислители атмосферы (применяют специальные руднокислые электроды или работают под защитой CO2);
- покрытия электродов и флюсы дополняют хлоридами и фторидами (ими могут быть соли и плавиковый шпат);
- проводят просушку материалов, предназначенных для сварки (флюса, электродов, газов, проволоки и пр.).
- Кислород.
Вредные примеси в стали включают в себя и кислород, который понижает пластичность металла. Для защиты материала при сварке используют процесс раскисления шва до определенной нормы. В ходе сварки титана, алюминия и прочих высокоактивных металлов мастера делают атмосферу внутри рабочей зоны без кислорода. Используя для этого гелий, аргон, галидные флюсы, они создают вакуум, поскольку для этих металлов достаточно сложно найти раскислители.
- Сурьма.
Сурьма (Sb) оказывает вредное влияние на поверхность стали (непрерывнолитых слитков). Причина заключается в ее сегрегации в процессе затвердевания металла. Когда сталь переходит в твердое состояние, сурьма сегрегирует на границах зерен, что приводит у легированных сталей к отпускной хрупкости.
Почему следует обращаться именно к нам
Мы с уважением относимся ко всем клиентам и одинаково скрупулезно выполняем задания любого объема.
Наши производственные мощности позволяют обрабатывать различные материалы:
- цветные металлы;
- чугун;
- нержавеющую сталь.
При выполнении заказа наши специалисты применяют все известные способы механической обработки металла. Современное оборудование последнего поколения дает возможность добиваться максимального соответствия изначальным чертежам.
Для того чтобы приблизить заготовку к предъявленному заказчиком эскизу, наши специалисты используют универсальное оборудование, предназначенное для ювелирной заточки инструмента для особо сложных операций. В наших производственных цехах металл становится пластичным материалом, из которого можно выполнить любую заготовку.
Преимуществом обращения к нашим специалистам является соблюдение ими ГОСТа и всех технологических нормативов. На каждом этапе работы ведется жесткий контроль качества, поэтому мы гарантируем клиентам добросовестно выполненный продукт.
Благодаря опыту наших мастеров на выходе получается образцовое изделие, отвечающее самым взыскательным требованиям. При этом мы отталкиваемся от мощной материальной базы и ориентируемся на инновационные технологические наработки.
Мы работаем с заказчиками со всех регионов России. Если вы хотите сделать заказ на металлообработку, наши менеджеры готовы выслушать все условия. В случае необходимости клиенту предоставляется бесплатная профильная консультация.
Источник
Примеси в стали. Купить оптом
Сталь и ее примеси
Все добавки или примеси, которые содержатся в стали, можно условно разделить на три вида:
- Скрытые;
- Постоянные;
- Случайные.
К скрытым добавкам можно отнести азот. Это вещество попадает в структуру стали из воздуха. Постоянными можно назвать, кремний, марганец, фосфор или серу. В раскисленной стали, в небольших количествах находиться алюминий в паре с кремнием и марганцем. Если примесь находится в таком виде, она выступает в качестве раскислителя. Сталь также может содержать флюсы, топливо, и руды железа, обогащены фосфором и серой.
Все вышеперечисленные вещества можно назвать примесями лишь в том случае, если их содержание в стали не превышает следующий процент:
- Элементы кремния – 0,02%;
- Элементы фосфора – 0,03%;
- Элементы марганца – 0,65%;
- Элементы алюминия – 0,02%;
- Элементы меди – 0,2%;
- Элементы серы – 0,2%.
Если процент содержания данных веществ в различных сталях превышает вышеперечисленные показатели, то их уже можно назвать не примесями, а легирующими элементами.
Фосфор и его воздействие на структуру стали
Благодаря присутствию фосфора, значительно повышается прочность стали. Чем больше фосфора находиться в стали, тем более прочным становиться металл, а его вязкость и пластичность, соответственно, снижается. При затвердевании стали, вещество способно сегрегировать. При высокой температуре фосфор хорошо растворяется в металле.
Для того чтобы повысить возможности механической обработки стали, количество фосфора увеличивают. Присутствие фосфора в конструкционной низколегированной стали способствует улучшенному сопротивлению металлу к коррозии. Добавления фосфора в аустенистые стали из хрома и никеля, повышают предел текучести.
Влияние серы
Высококачественные стали не должны содержать более чем 0,04% серы. Серная примесь, которая находиться в железе, создает сульфид железа, поскольку данная примесь не растворяется в металле. Если процент содержания серы в сталях слишком высок, это приводит к красноломкости, снижению ударной вязкости и пластичности металла.
Сера является склонной к сегрегации по зерновым границам. Такие ее свойства способствуют понижения показателя пластичности горячих сталей. Добавляя в сталь до 0,3 % серы, можно облегчить механическую обработку данных металлов.
Если в составе стали находится марганец, он немного нейтрализует негативное влияние серы на свойства металла. Сульфид марганца зачастую может образоваться в жидких сталях. Эта примесь очень пластична, особенно при высоких температурах обработки стали.
Алюминий в сталях
Компонент алюминий незаменим при раскислении стали, которая находиться в жидком состоянии. С его помощью также можно измельчить зерно в слитках стали. Алюминий – это вещество, которое может быть примесью, и одновременно, выполнять легирующую функцию в сталях.
Благодаря наличию алюминиевых примесей, сталь становиться более стойкой к образованию окалин. В качестве легирующего элемента, алюминий часто выступает в составе дисперсионно-упрочняемой стали, которая также является нержавеющей. В данном случае элемент способствует ускорению реакции выделения дисперсий. Низкоуглеродистая сталь, содержащая алюминий, является более устойчивой к коррозии и другим разрушающим воздействиям.
Азот, медь и олово в составе сталей
Влияние азота на сталь в некотором роде негативное. Он образует нитриды (неметаллические вещества), которые понижают свойства сталей. Но, достоинством азота является то, что находясь в составе сталей, он расширяет аустенитность металла. Элементы, которые образуют нитрид, такие как титан или ванадий, часто добавляют в стали с низкой легированностью.
Медь, которая находится в сталях, уменьшает их хладноломкость. Если количество медных веществ в стали превышает допустимую норму, то это ухудшает качество поверхности металла на стадии его горячей обработки. Присутствие меди в небольших количествах, способствует повышению антикоррозийных свойств сталей, а также делает их более прочными.
Олово оказывает негативное влияние на сталь, даже если оно его процентное соотношение небольшое. Олово склонно к сегрегации границ зерен, а также в легированных сталях может вызвать хрупкость. Присутствие олова в стальных слитках снижает горячую пластичность стали, а также снижает качество их поверхности таких слитков.
Источник
В сталях всегда присутствуют постоянные, вредные и случайные примеси, так как сталь является многокомпонентным сплавом.
Сера, фосфор и все газы являются вредными примесями, и усилия металлургов всегда направлены на максимальное снижение этих элементов в стали.
Сера. Содержание серы в сталях промышленных марок составляет обычно 0,015…0,050 %. Сера дает с железом соединение FеS, которое образует с железом легкоплавкую эвтектику, (температура плавления 988 °С), обычно располагающуюся вокруг зерен, закристаллизовавшихся ранее этой эвтектики. При горячей механической обработке (ковка, прокатка) эвтектика плавится, что вызывает потерю связи между зернами стали: слиток или поковка разваливается на части. Это явление называется красноломкостью.
Сера снижает механические свойства, особенно ударную вязкость и пластичность (δ и ψ), а также предел выносливости. Она ухудшает свариваемость и коррозионную стойкость.
Фосфор.Содержание фосфора в стали 0,025…0,040 %. Весьма значительно снижает вязкость железа и стали. Особенно заметно проявляется это вредное влияние фосфора при повышенном содержании углерода в стали и при низких температурах. Явление повышенной хрупкости стали при низких температурах называется хладноломкостью. Повышение содержания фосфора на каждую 0,01 % повышает порог хладноломкости на 20…25 °С.
Для некоторых сталей возможно увеличение содержания серы и фосфора для улучшения обрабатываемости резанием. Это было при создании автоматных сталей, из которых на высокопроизводительных станках-автоматах изготовляется крепежный материал (гайки, болты) неответственного назначения, имеющий очень широкое применение в машиностроении. Короткая, хрупкая стружка и чистая поверхность резьбы являются главными положительными качествами автоматных сталей. Так как серы в этих сталях содержится до 0,15…0,20 %, а фосфора до 0,14 %, то такие стали можно отнести к разряду специальных.
Существенным является то, что сера и фосфор при кристаллизации стального слитка сильно ликвируют, в результате чего создаются участки с резко повышенной концентрацией этих вредных элементов по сравнению со средним их содержанием в стали.
Газы (азот, кислород, водород) попадают в сталь при выплавке.
Кислород,соединяясь со многими элементами, присутствующими в стали, образует неметаллические включения, так называемые оксиды (SiO2, А12О3 и др.). Неметаллические включения (окислы, нитриды), являясь концентраторами напряжений, могут значительно понизить предел выносливости и вязкость. Поэтому необходимо снижать содержание кислорода в стали путем хорошего раскисления и разливки в вакууме, тщательно контролировать структуру стали, идущей на изготовление ответственных изделий.
Очень вредным является растворенный в стали водород, который значительно охрупчивает сталь. Он приводит к образованию в катаных заготовках и поковках флокенов – тонких трещин овальной или округлой формы, имеющих в изломе вид пятен – хлопьев серебристого цвета.
Постоянные примеси
Марганец и кремний вводятся в процессе выплавки стали для раскисления, они являются технологическими примесями.
Содержание марганца не превышает 0,8 %. Марганец,имеющийся в стали, интенсивнее, чем железо, соединяется с серой, образуя весьма тугоплавкое соединение MnS(температура плавления 1620 °С), располагающееся обычно в виде мелких глобулярных включений внутри зерен стали. Следовательно, включенияMnS оказывают менее вредное влияние на сталь, чем включения FeS.
Содержание кремния не превышает 0,4 %. Кремний является раскислителем стали, освобождающим ее от излишков кислорода. Кремний растворяется в феррите и повышает прочность стали, особенно повышается предел текучести s0,2. Но наблюдается некоторое снижение пластичности, что снижает способность стали к вытяжке.
Наличие марганца и кремния свыше указанных пределов переводит такие стали в разряд специальных, «легированных».
Случайные примеси – практически любые элементы, случайно попавшие в сталь, например Cr, Ni, Cu, Mo, Al, Ti и др., в количествах, ограниченных для примесей.
Источник