Какие продукты образуются при горении спиртовки

Какие продукты образуются при горении спиртовки thumbnail

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 30 ноября 2018; проверки требуют 3 правки.

Спиртовка — горелка для жидкого топлива, содержащая резервуар для спирта, снабжённая крышкой, через которую пропущен фитиль, нижний конец которого размещён в резервуаре, а верхний конец вне его.

Применение[править | править код]

Применяются в химических и школьных лабораториях для подогрева и плавления материалов, для нагрева небольших лабораторных сосудов (пробирок, колб для химических работ и пр.) и других подобных термических процессов; в медицинских учреждениях для стерилизации в открытом пламени медицинских инструментов; а также везде, где требуется применение открытого пламени небольшой тепловой мощности.

Конструкция[править | править код]

Туристический набор Trangia, включая посуду и спиртовку слева

Ёмкость для спирта является основной несущей частью лабораторной спиртовки, а важнейшей и главной её частью является фитиль, который переносит жидкое топливо (спирт) из ёмкости на конец фитиля, где это топливо горит и используется для нагревания. Ёмкость для спирта изготовлена в виде резервуара, в который опущен нижний конец фитиля. Резервуар имеет горловину, которая снабжена крышкой. Крышка необходима, чтобы отделить зону горения спирта от внутреннего объёма резервуара, где находится жидкое топливо. Крышка резервуара может быть размещена как внутри горловины, так и вне её, охватывая последнюю с наружной стороны. В отверстии крышки, через которую проходит фитиль, обычно устанавливают направляющую трубку. Фитиль должен размешаться в трубке таким образом, чтобы, с одной стороны, иметь возможность плавно и легко перемещаться в трубке, а с другой стороны, контакт трубки с фитилём должен быть достаточно плотным, чтобы фитиль не выпал из трубки. Крышка спиртовки может иметь устройство для регулировки выступающей длины фитиля, рекомендуемая величина которой составляет не более 15 мм.

Обычно топливо для спиртовки заливается через верхнее отверстие резервуара после снятия крышки. Однако имеются спиртовки, резервуар которых имеет боковую заправочную горловину с притёртой пробкой. Количество заливаемого топлива определяется внутренним объёмом резервуара. Спирт из резервуара поднимается по фитилю за счёт капиллярного давления и испаряется, когда достигнет верхнего конца выступающей части фитиля. Пары спирта поджигаются и спиртовка горит с температурой пламени не выше 900 °C. Большинство спиртовок имеют металлический, либо стеклянный колпачок, который используется как для тушения пламени спиртовки, так и для предотвращения испарения топлива.

По конструктивным элементам лабораторные спиртовки отличаются друг от друга по следующим параметрам:

  • материал резервуара (металл или стекло);
  • форма резервуара (круглая или гранёная);
  • внутренний объём резервуара;
  • материал и толщина фитиля;
  • наличие или отсутствие устройства для регулирования выступающей части фитиля.

Материал резервуара следует выбирать исходя из условий работы спиртовки. Если спиртовка эксплуатируется в условиях, при которых возможно случайное падение спиртовки на каменный или металлический пол, то с точки зрения техники безопасности предпочтительно использовать спиртовку с металлическим резервуаром. Спиртовки со стеклянным корпусом значительно дешевле металлических. Кроме того при работе спиртовки всегда можно наблюдать за уровнем спирта в резервуаре. Однако стекло — хрупкий материал, имеющий малое сопротивление при ударе, и поэтому всегда имеется возможность разрушения резервуара спиртовки при падении на твёрдый пол, что может вызвать разлив горящего спирта. Поэтому в помещениях с повышенными требованиями по пожарной безопасности применение стеклянных спиртовок, особенно изготовленных из тонкого лабораторного стекла, не рекомендуется.

Круглая форма резервуара получила наиболее широкое распространение. Гранёные спиртовки дороже круглых и их следует применять только при выполнении ряда специфических работ, например, связанных с нагревом легкоплавких материалов типа восков, чтобы исключить попадание капель разогретого материала на фитиль спиртовки.

Внутренний объём резервуара спиртовки надо выбирать таким, чтобы при её эксплуатации, как минимум, не требовалось бы вновь заправлять спиртовку в течение одного часа её непрерывной работы.

Материал и толщина фитиля важные элементы для работы спиртовки. Используются фитили из хлопчатобумажной ткани и асбестового шнура. Наибольшее распространение получили фитили из хлопчатобумажной ткани, так как они дают более стабильное и ровное пламя по сравнению с асбестовыми фитилями. Что касается толщины фитилей, то надо исходить из того, что чем толще фитиль, тем больше топлива он подаёт в зону его сгорания. Более толстые фитили дают и более объёмное пламя с большей высотой последнего. В результате тепловая мощность у спиртовок с более толстым фитилём несколько выше, однако при этом выше и расход спирта. Для большинства лабораторных работ, выполняемых при помощи спиртовок, достаточна толщина фитиля не менее 4,8 мм и не более 6,4 мм. Более толстые фитили необходимы для выполнения некоторых профессиональных работ, где требуется высокое и объёмное пламя. Желательно в наборе иметь спиртовки с разной толщиной фитиля и использовать их в зависимости технологических требований, предъявляемых к выполняемой работе.

Устройство для регулировки размеров выступающей части фитиля обеспечивает большое удобство при работе со спиртовками, так как не требуется каждый раз гасить пламя спиртовки, чтобы отрегулировать параметры пламени (высоту и объём) путём изменения размеров выступающей части фитиля. Спиртовки с устройствами регулировки выступающей части фитиля дороже, чем спиртовки без этих устройств. Однако несколько более высокая цена с лихвой покрывается удобствами для профессиональной работы, которые это устройство обеспечивает.

Топливо[править | править код]

Все спиртовки в качестве топлива преимущественно используют этиловый спирт. В продаже имеются три вида этилового спирта: спирт этиловый ректификованный из пищевого сырья, гидролизный спирт технический из древесного сырья и спирт синтетический, полученный химическим способом. Спирт технический и спирт синтетический иногда окрашивают в сине-фиолетовый цвет с добавлением некоторых веществ с резким запахом. Такой спирт называется денатурат. Все эти виды спиртов можно использовать в качестве жидкого топлива для спиртовок.

Другие виды топлива, например изопропиловый или метиловый спирт, для лабораторных спиртовок применять не рекомендуется, так как эти спирты имеют ПДК (предельно допустимая концентрация в воздухе) на два и более порядка ниже, чем у этилового спирта, и поэтому опасны для здоровья.

Техника безопасности[править | править код]

При работе с лабораторными спиртовками правила техники безопасности сводятся к следующему.
Необходимо использовать спиртовку только по назначению, указанному в её техническом паспорте. Запрещается заправлять спиртовку вблизи устройств с открытым пламенем. Не заполнять спиртовку топливом более чем наполовину объёма резервуара. Нельзя перемещать или переносить спиртовку с горящим фитилем. Категорически запрещается зажигать фитиль спиртовки посредством другой спиртовки. Заправлять спиртовку только этиловым спиртом. Гасить пламя спиртовки только посредством колпачка.
Не держать на рабочем столе, где используется спиртовка, легковоспламеняющиеся вещества и материалы, способные воспламеняться от кратковременного воздействия источника зажигания с низкой тепловой энергией (пламя спички, спиртовки). Помещение в котором производится работа со спиртовкой (спиртовками) должно быть оснащено первичными средствами пожаротушения, например, порошковым огнетушителем.

Преимущества[править | править код]

  • Малый вес — не более 220 г.
  • Простота использования — необходимо только добавлять спирт в резервуар спиртовки, а далее спирт самостоятельно подаётся в область горения.
  • Надёжность — все элементы конструкции практически безотказны в работе.
  • Бесшумность работы.
  • Отсутствие резких запахов — запах этилового спирта перед тем, как он поджигается, ничтожен по сравнению с запахом газообразного топлива в аналогичных случаях.
  • Не требуется техническое обслуживание — нет необходимости в проведении регламентных, а также и ремонтных работ по регулировке и очистке элементов конструкции.
  • Безопасность в работе — этиловый спирт в малых количествах не взрывоопасен, а разлитый горящий спирт легко можно потушить, применяя стандартные средства пожаротушения (порошковые огнетушители).
  • Простота хранения топлива — допускается хранение этилового спирта в обычной пластиковой бутыли или пластиковой канистре.
  • Невысокая цена — стоимость спиртовок значительно ниже лабораторных газовых горелок или других видов горелок, применяющих жидкое топливо (керосин, бензин).
  • Экологически чистое топливо — не загрязняет окружающую среду (безопасно при попадании в воду и почву и не образует токсичных веществ при сгорании).

Недостатки[править | править код]

  • Низкая тепловая мощность — теплота сгорания этилового спирта ниже, чем у других видов как жидкого топлива (керосин, бензин), так и газообразного топлива (метан, пропан).
  • Ненадежная работа при низких температурах — плохое испарение спирта с выступающей верхней части фитиля при минусовых температурах.
  • Малая механическая прочность — детали спиртовок имеют невысокую прочность и могут деформироваться или разрушаться даже при небольших механических воздействиях.

См. также[править | править код]

  • Горелка
  • Горелка Бунзена
  • Примус

Источник

Гидроксисоединения – это органические вещества, молекулы которых содержат, помимо углеводородной цепи, одну или несколько гидроксильных групп ОН.

Гидроксисоединения делят на спирты и фенолы.

Строение, изомерия и гомологический ряд спиртов

Химические свойства спиртов

Способы получения спиртов

Какие продукты образуются при горении спиртовки

Спиртыэто гидроксисоединения, в которых группа ОН соединена с алифатическим углеводородным радикалом R-OH.

Если гидроксогруппа ОН соединена с бензольным кольцом, то вещество относится к фенолам.

Общая формула предельных нециклических спиртов: CnH2n+2Om, где mn.

Спирты – органические вещества, молекулы которых содержат, помимо углеводородной цепи, одну или несколько гидроксильных групп ОН.

Химические реакции гидроксисоединений идут с разрывом одной из связей: либо С–ОН с отщеплением группы ОН, либо связи О–Н с отщеплением водорода. Это реакции замещения, либо реакции отщепления (элиминирования).

Свойства спиртов определяются строением связей С–О–Н. Связи С–О и О–Н — ковалентные полярные. При этом на атоме водорода образуется частичный положительный заряд δ+, на атоме углерода также частичный положительный заряд δ+, а на атоме кислорода — частичный отрицательный заряд δ–.

Такие связи разрываются по ионному механизму. Разрыв связи О–Н с отрывом иона Н+ соответствует кислотным свойствам гидроксисоединения. Разрыв связи С–О соответствует основным свойствам и реакциям нуклеофильного замещения.

С разрывом связи О–Н идут реакции окисления, а с разрывом связи С–О — реакции восстановления.

Таким образом, для спиртов характерны следующие свойства:

  • слабые кислотные свойства, замещение водорода на металл;
  • замещение группы ОН
  • отрыв воды (элиминирование) – дегидратация
  • окисление
  • образование сложных эфиров — этерификация


1. Кислотные свойства

Спирты – неэлектролиты, в водном растворе не диссоциируют на ионы; кислотные свойства у них выражены слабее, чем у воды.

1.1. Взаимодействие с раствором щелочей

При взаимодействии спиртов с  растворами щелочей реакция практически не идет, т. к. образующиеся алкоголяты почти полностью гидролизуются водой.

Какие продукты образуются при горении спиртовки

Равновесие в этой реакции так сильно сдвинуто влево, что прямая реакция не идет. Поэтому спирты не взаимодействуют с растворами щелочей.

Многоатомные спирты также не реагируют с растворами щелочей.

1.2. Взаимодействие с металлами (щелочными и щелочноземельными)

Спирты взаимодействуют с активными металлами (щелочными и щелочноземельными). При этом образуются алкоголяты. При взаимодействии с металлами спирты ведут себя, как кислоты.

Какие продукты образуются при горении спиртовки

Например, этанол взаимодействует с калием с образованием этилата калия и водорода.

Какие продукты образуются при горении спиртовки

Видеоопыт взаимодействия спиртов (метанола, этанола и бутанола) с натрием можно посмотреть здесь.

Алкоголяты под действием воды полностью гидролизуются с выделением спирта и гидроксида металла.

Например, этилат калия разлагается водой:

Какие продукты образуются при горении спиртовки

Кислотные свойства одноатомных спиртов уменьшаются в ряду:

CH3OH > первичные спирты > вторичные спирты > третичные спирты

Многоатомные спирты также реагируют с активными металлами:

Какие продукты образуются при горении спиртовки

Видеоопыт взаимодействия глицерина с натрием можно посмотреть здесь.

1.3. Взаимодействие с гидроксидом меди (II)

Многоатомные спирты взаимодействуют с раствором гидроксида меди (II) в присутствии щелочи, образуя комплексные соли (качественная реакция на многоатомные спирты).

Например, при взаимодействии этиленгликоля со свежеосажденным гидроксидом меди (II) образуется  ярко-синий раствор гликолята меди:

Какие продукты образуются при горении спиртовки

Видеоопыт взаимодействия этиленгликоля с гидроксидом меди (II) можно посмотреть здесь.

2. Реакции замещения группы ОН

2.1. Взаимодействие с галогеноводородами

При взаимодействии спиртов с галогеноводородами группа ОН замещается на галоген и образуется галогеналкан.

Например, этанол реагирует с бромоводородом.

Какие продукты образуются при горении спиртовки

Видеоопыт взаимодействия этилового спирта с бромоводородом можно посмотреть здесь.

Реакционная способность одноатомных спиртов в реакциях с галогеноводородами уменьшается в ряду:

третичные > вторичные > первичные > CH3OH.

Многоатомные спирты также, как и одноатомные спирты, реагируют с галогеноводородами.

Например, этиленгликоль реагирует с бромоводородом:

Какие продукты образуются при горении спиртовки

2.2. Взаимодействие с аммиаком

Гидроксогруппу спиртов можно заместить на аминогруппу при нагревании спирта с аммиаком на катализаторе.

Например, при взаимодействии этанола с аммиаком образуется этиламин.

Какие продукты образуются при горении спиртовки

2.3. Этерификация (образование сложных эфиров)

Одноатомные и многоатомные спирты вступают в реакции с карбоновыми кислотами, образуя сложные эфиры.

Какие продукты образуются при горении спиртовки

Например, этанол реагирует с уксусной кислотой с образованием этилацетата (этилового эфира уксусной кислоты):

Какие продукты образуются при горении спиртовки

Многоатомные спирты вступают в реакции этерификации с органическими и неорганическими кислотами.

Например, этиленгликоль реагирует с уксусной кислотой с образованием ацетата этиленгликоля:

Какие продукты образуются при горении спиртовки

2.4. Взаимодействие с кислотами-гидроксидами

Спирты взаимодействуют и с неорганическими кислотами, например, азотной или серной.

Например, при взаимодействии этанола с азотной кислотой образуется сложный эфир этилнитрат:

Какие продукты образуются при горении спиртовки

Например, глицерин под действием азотной кислоты образует тринитрат глицерина (тринитроглицерин):

Какие продукты образуются при горении спиртовки

3. Реакции замещения группы ОН

В присутствии концентрированной серной кислоты от спиртов отщепляется вода. Процесс дегидратации протекает по двум возможным направлениям: внутримолекулярная дегидратация и межмолекулярная дегидратация.

3.1. Внутримолекулярная дегидратация

При высокой температуре (больше 140оС) происходит внутримолекулярная дегидратация и образуется соответствующий алкен.

Например, из этанола под действием концентрированной серной кислоты при температуре выше 140 градусов образуется этилен:

Какие продукты образуются при горении спиртовки

В качестве катализатора этой реакции также используют оксид алюминия.

Отщепление воды от несимметричных спиртов проходит в соответствии с правилом Зайцева: водород отщепляется от менее гидрогенизированного атома углерода.

Например, в присутствии концентрированной серной кислоты при нагревании выше 140оС из бутанола-2 в основном образуется бутен-2:

Какие продукты образуются при горении спиртовки

3.2. Межмолекулярная дегидратация

При низкой температуре (меньше 140оС) происходит межмолекулярная дегидратация по механизму нуклеофильного замещения: ОН-группа в одной молекуле спирта замещается на группу OR другой молекулы. Продуктом реакции является простой эфир.

Например, при дегидратации этанола при температуре до 140оС образуется диэтиловый эфир:

Какие продукты образуются при горении спиртовки

4. Окисление спиртов

Реакции окисления в органической химии сопровождаются увеличением числа атомов кислорода (или числа связей с атомами кислорода) в молекуле и/или уменьшением числа атомов водорода (или числа связей с атомами водорода).

В зависимости от интенсивности и условий окисление можно условно разделить на каталитическое, мягкое и жесткое.

При окислении первичных спиртов они последовательно превращаются сначала в альдегиды, а потом в карбоновые кислоты. Глубина окисления зависит от окислителя.

Первичный спирт → альдегид → карбоновая кислота

Метанол окисляется сначала в формальдегид, затем в углекислый газ:

Метанол → формальдегид → углекислый газ

Вторичные спирты окисляются в кетоны: вторичные спирты → кетоны

Типичные окислители — оксид меди (II), перманганат калия KMnO4, K2Cr2O7, кислород в присутствии катализатора.

Легкость окисления спиртов уменьшается в ряду:

метанол < первичные спирты < вторичные спирты < третичные спирты

Продукты окисления многоатомных спиртов зависят от их строения. При окислении оксидом меди многоатомные спирты образуют карбонильные соединения.

4.1. Окисление оксидом меди (II)

Cпирты можно окислить оксидом меди (II) при нагревании. При этом медь восстанавливается до простого вещества. Первичные спирты окисляются до альдегидов, вторичные до кетонов, а метанол окисляется до метаналя.

Например, этанол окисляется оксидом меди до уксусного альдегида

Какие продукты образуются при горении спиртовки

Видеоопыт окисления этанола оксидом меди (II) можно посмотреть здесь.

Например, пропанол-2 окисляется оксидом меди (II) при нагревании до ацетона

Какие продукты образуются при горении спиртовки

Третичные спирты окисляются только в жестких условиях.

4.2. Окисление кислородом в присутствии катализатора

Cпирты можно окислить кислородом в присутствии катализатора (медь, оксид хрома (III) и др.). Первичные спирты окисляются до альдегидов, вторичные до кетонов, а метанол окисляется до метаналя.

Например, при окислении пропанола-1 образуется пропаналь

Какие продукты образуются при горении спиртовки

Видеоопыт каталитического окисления этанола кислородом можно посмотреть здесь.

Например, пропанол-2 окисляется кислородом при нагревании в присутствии меди до ацетона

Третичные спирты окисляются только в жестких условиях.

4.3. Жесткое окисление

При жестком окислении под действием перманганатов или соединений хрома (VI) первичные спирты окисляются до карбоновых кислот, вторичные спирты окисляются до кетонов, метанол окисляется до углекислого газа.

При нагревании первичного спирта с перманганатом или дихроматом калия в кислой среде может образоваться также альдегид, если его сразу удаляют из реакционной смеси.

Третичные спирты окисляются только в жестких условиях (в кислой среде при высокой температуре) под действием сильных окислителей: перманганатов или дихроматов. При этом происходит разрыв углеродной цепи и могут образоваться углекислый газ, карбоновая кислота или кетон, в зависимости от строения спирта.

Спирт/ ОкислительKMnO4, кислая средаKMnO4, H2O, t
Метанол СН3-ОНCO2K2CO3
Первичный спирт  R-СН2-ОНR-COOH/ R-CHOR-COOK/ R-CHO
Вторичный спирт  R1-СНОН-R2R1-СО-R2R1-СО-R2

Например, при взаимодействии метанола с перманганатом калия в серной кислоте образуется углекислый газ

Какие продукты образуются при горении спиртовки

Например, при взаимодействии этанола с перманганатом калия в серной кислоте образуется уксусная кислота

Какие продукты образуются при горении спиртовки

Например, при взаимодействии изопропанола с перманганатом калия в серной кислоте образуется ацетон

Какие продукты образуются при горении спиртовки

4.4. Горение спиртов

Образуются углекислый газ и вода и выделяется большое количество теплоты.

CnH2n+1ОН + (3n+1)/2O2 → nCO2 + (n+1)H2O + Q

Например, уравнение сгорания метанола:

2CH3OH + 3O2 = 2CO2 + 4H2O

5. Дегидрирование спиртов 

При нагревании спиртов в присутствии медного катализатора протекает реакция дегидрирования. При дегидрировании метанола и первичных спиртов образуются альдегиды, при дегидрировании вторичных спиртов образуются кетоны. 

Например, при дегидрировании этанола образуется этаналь

Какие продукты образуются при горении спиртовки

Например, при дегидрировании этиленгликоля образуется диальдегид (глиоксаль)

Какие продукты образуются при горении спиртовки

Источник