Какие продукты образуются при взаимодействии цинка и уксусной кислоты
Обнаружив ошибку на странице, выделите ее и нажмите Ctrl + Enter
Цинк и муравьиная кислота
В прошлом несколько раз приходилось работать с муравьиной кислотой, но ни разу не видел, как она реагирует с цинком. В отличие от слабой уксусной кислоты муравьиная считается “кислотой средней силы”. Если попадание уксусной кислоты на кожу, как правило, не причиняет неудобств, то муравьиная кислота вызывает довольно болезненные ожоги.
Логичным было бы допустить, что муравьиная кислота реагирует с цинком гораздо более бурно, чем уксусная, но я был почти уверен, что и с муравьиной кислотой реакция пойдет вяло – гораздо медленнее, чем с соляной или серной кислотой и практически так же, как и с уксусной.
Налил несколько миллилитров муравьиной кислоты в пробирку, добавил гранулы цинка. Началось слабое выделение водорода: от гранул поднимались крохотные пузырьки. Реакция протекала примерно с той же скоростью, что и в случае с уксусной кислотой.
Добавил к муравьиной кислоте равный объем воды, реакция значительно ускорилась. Но ведь при разбавлении (т.е., уменьшении концентрации реагирующего вещества) скорость реакции должна уменьшаться?
Дело в том, что с цинком реагируют не молекулы муравьиной кислоты, а ионы водорода. Чистая муравьиная кислота диссоциирует слабо. Концентрация ионов водорода в растворе низкая. При разбавлении кислоты водой ее диссоциация растет, в результате концентрация ионов водорода в растворе не уменьшается, а увеличивается. – Несмотря на разбавление кислоты.
Еще раз добавил примерно такой же объем воды, как и в первый раз. После нового разбавления кислоты реакция заметно не ускорилась, но и не замедлилась!
Аналогичный эффект наблюдается и с уксусной кислотой, в частности, он описан в книге
О. Ольгин Опыты без взрывов [ссылка]. “Налейте в пробирку на высоту 1-2 см уксусной кислоты и бросьте в нее несколько кусочков цинка. Цинк надо предварительно очистить, погрузив его секунд на двадцать в раствор соляной кислоты и промыв водой.
Уксусная кислота слабая, и цинк растворяется в ней очень медленно – пузырьки водорода еле выделяются. Как ускорить реакцию? Нагреть раствор. Правильно. А нельзя ли иначе? Поступим так: понемногу станем добавлять в пробирку чистую воду, каждый раз хорошо перемешивая. Внимательно последите за пузырьками. Удивительное дело: кислота уже разбавлена вдвое, втрое, а реакция вместо того чтобы замедляться, идет все быстрее!
Если вы ставите этот опыт на занятиях кружка, то замените цинк маленьким кусочком магниевой стружки и ничем ее не обрабатывайте. С разбавленной уксусной кислотой магний реагирует еще энергичнее, чем цинк.
Такое “исключение” из правила становится понятным, если его хорошо изучить. Наш опыт с уксусной кислотой объясняется следующим образом. Скорость, с которой цинк или магний взаимодействуют с кислотой, зависит от концентрации ионов водорода в растворе. Эти ионы образуются при растворении в воде любой кислоты. Но когда воды мало, слабая уксусная кислота находится в растворе почти исключительно в виде недиссоциированных молекул. По мере разбавления водой все больше молекул уксусной кислоты распадается на ионы, и реакция идет быстрее. Но если добавить слишком много воды, то реакция вновь замедлится, уже по другой причине: из-за сильного разбавления концентрация ионов водорода опять уменьшится. Быстрее всего реагирует с цинком 15%-ная уксусная кислота.”
Подобным образом, кстати, реагирует с цинком и плавиковая кислота, это заметно даже при разбавлении 40%-й кислоты [1]. Безводный же фтористый водород ведет себя довольно пассивно по отношению ко многим металлам и оксидам, если в нем нет примеси воды. К сожалению, работа с плавиковой кислотой гораздо более опасна, чем работа с уксусной и даже муравьиной кислотой.
__________________________________________________
1 См. статью
Плавиковая кислота ч.4. Плавиковая кислота, цинк и вода [ссылка].
Ускорить реакцию цинка с кислотами-неокислителями можно добавив немного раствора или кристаллов сульфата меди. Ионы меди взаимодействуют с цинком и атомарным водородом, в результате выделяется металлическая медь. Медь образует с цинком гальваническую пару, что ускоряет растворение последнего.
Добавил к муравьиной кислоте сначала раствор сульфата меди, потом – кристаллы сульфата меди. Выделение газа значительно ускорилось, но все равно оно было гораздо медленнее, чем в случае цинка и разбавленной серной кислоты. Медь отлагалась на цинке в виде черного порошка, что выглядело необычно, т.к. в случае серной кислоты медь выделяется в виде коричневой губки – мелкодисперсного порошка меди, но все же не настолько мелкого, чтобы медь выглядела черной (достаточно мелкодисперсные порошки разных металлов черные, более грубодисперсные порошки имеют цвет конкретного металла или сплава – серебристо-белый, красный, желтый и т.д.)
Оставил пробирку с кислотой и цинком на выходные. Через два дня медная губка осталась черной, но приобрела коричневый оттенок. Потом – менее, чем через час она стала коричневой, возможно, это связано с вибрациями (в лаборатории начались столярные работы). Непрореагировавшие остатки цинка и медь образовали на дне в сплошную массу, которую оказалось непросто извлечь из пробирки.
Источник
Карбоновые кислоты – это вещества, в молекулах которых содержится одна или несколько карбоксильных групп СООН.
Общая формула предельных одноосновных карбоновых кислот: СnH2nO2
Строение, изомерия и гомологический ряд карбоновых кислот
Химические свойства карбоновых кислот
Способы получения карбоновых кислот
.
- кислотные свойства, замещение водорода на металл;
- замещение группы ОН
- замещение атома водорода в алкильном радикале
- образование сложных эфиров — этерификация
1. Кислотные свойства
Кислотные свойства карбоновых кислот возникают из-за смещения электронной плотности к карбонильному атому кислорода и вызванной этим дополнительной (по сравнению со спиртами и фенолами) поляризацией связи О–Н.
В водном растворе карбоновые кислоты частично диссоциируют на ионы:
R–COOH ⇆ R-COO– + H+
1.1. Взаимодействие с основаниями
Карбоновые кислоты реагируют с большинством оснований. При взаимодействии карбоновых кислот с основаниями образуются соли карбоновых кислот и вода.
CH3COOH + NaOH = CH3COONa + H2O
Карбоновые кислоты реагируют с щелочами, амфотерными гидроксидами, водным раствором аммиака и нерастворимыми основаниями.
Например, уксусная кислота растворяет осадок гидроксида меди (II)
Видеоопыт взаимодействия уксусной кислоты с гидроксидом натрия можно посмотреть здесь.
Например, уксусная кислота реагирует с водным раствором аммиака с образованием ацетата аммония
CH3COOH + NH3 = CH3COONH4
1.2. Взаимодействие с металлами
Карбоновые кислоты реагируют с активными металлами. При взаимодействии карбоновых кислот с металлами образуются соли карбоновых кислот и водород.
Например, уксусная кислота взаимодействует с кальцием с образованием ацетата кальция и водорода.
Видеоопыт взаимодействия уксусной кислоты с магнием и цинком можно посмотреть здесь.
1.3. Взаимодействие с основными оксидами
Карбоновые кислоты реагируют с основными оксидами с образованием солей карбоновых кислот и воды.
Например, уксусная кислота взаимодействует с оксидом бария с образованием ацетата бария и воды.
Например, уксусная кислота реагирует с оксидом меди (II)
2СН3СООН + CuO = H2О + ( CH3COO)2 Cu
Видеоопыт взаимодействия уксусной кислоты с оксидом меди (II) можно посмотреть здесь.
1.4. Взаимодействие с с солями более слабых и летучих (или нерастворимых) кислот
Карбоновые кислоты реагируют с солями более слабых, нерастворимых и летучих кислот.
Например, уксусная кислота растворяет карбонат кальция
Качественная реакция на карбоновые кислоты: взаимодействие с содой (гидрокарбонатом натрия) или другими гидрокарбонатами. В результате наблюдается выделение углекислого газа
2. Реакции замещения группы ОН
Для карбоновых кислот характерны реакции нуклеофильного замещения группы ОН с образованием функциональных производных карбоновых кислот: сложных эфиров, амидов, ангидридов и галогенангидридов.
2.1. Образование галогенангидридов
Под действием галогенагидридов минеральных кислот-гидроксидов (пента- или трихлорид фосфора) происходит замещение группы ОН на галоген.
Например, уксусная кислота реагирует с пентахлоридом фосфора с образованием хлорангидрида уксусной кислоты
2.2. Взаимодействие с аммиаком
При взаимодействии аммиака с карбоновыми кислотами образуются соли аммония:
При нагревании карбоновые соли аммония разлагаются на амид и воду:
2.3. Этерификация (образование сложных эфиров)
Карбоновые кислоты вступают в реакции с одноатомными и многоатомными спиртами с образованием сложных эфиров.
Например, этанол реагирует с уксусной кислотой с образованием этилацетата (этилового эфира уксусной кислоты):
2.4. Получение ангидридов
С помощью оксида фосфора (V) можно дегидратировать (то есть отщепить воду) карбоновую кислоту – в результате образуется ангидрид карбоновой кислоты.
Например, при дегидратации уксусной кислоты под действием оксида фосфора образуется ангидрид уксусной кислоты
3. Замещение атома водорода при атоме углерода, ближайшем к карбоксильной группе
Карбоксильная группа вызывает дополнительную поляризацию связи С–Н у соседнего с карбоксильной группой атома углерода (α-положение). Поэтому атом водорода в α-положении легче вступает в реакции замещения по углеводородному радикалу.
В присутствии красного фосфора карбоновые кислоты реагируют с галогенами.
Например, уксусная кислота реагирует с бромом в присутствии красного фосфора
4. Свойства муравьиной кислоты
Особенности свойств муравьиной кислоты обусловлены ее строением, она содержит не только карбоксильную, но и альдегидную группу и проявляет все свойства альдегидов.
4.1. Окисление аммиачным раствором оксида серебра (I) и гидроксидом меди (II)
Как и альдегиды, муравьиная кислота окисляется аммиачным раствором оксида серебра. При этом образуется осадок из металлического серебра.
При окислении муравьиной кислоты гидроксидом меди (II) образуется осадок оксида меди (I):
4.2. Окисление хлором, бромом и азотной кислотой
Муравьиная кислота окисляется хлором до углекислого газа.
4.3. Окисление перманганатом калия
Муравьиная кислота окисляется перманганатом калия до углекислого газа:
5HCOOH + 2KMnO4 + 3H2SO4 → 5CO2 + 2MnSO4 + K2SO4 + 8H2O
Видеоопыт взаимодействия муравьиной кислоты с перманганатом калия можно посмотреть здесь.
4.4. Разложение при нагревании
При нагревании под действием серной кислоты муравьиная кислота разлагается с образованием угарного газа:
Видеоопыт разложения муравьиной кислоты можно посмотреть здесь
5. Особенности бензойной кислоты
5.1. Разложение при нагревании
При нагревании бензойная кислота разлагается на бензол и углекислый газ:
4.2. Реакции замещения в бензольном кольце
Карбоксильная группа является электроноакцепторной группой, она уменьшает электронную плотность бензольного кольца и является мета-ориентантом.
6. Особенности щавелевой кислоты
6.1. Разложение при нагревании
При нагревании щавелевая кислота разлагается на угарный газ и углекислый газ:
6.2. Окисление перманганатом калия
Щавелевая кислота окисляется перманганатом калия до углекислого газа:
7. Особенности непредельных кислот (акриловой и олеиновой)
7.1. Реакции присоединения
Присоединение воды и бромоводорода к акриловой кислоте происходит против правила Марковникова, т.к. карбоксильная группа является электроноакцепторной:
К непредельным кислотам можно присоединять галогены и водород. Например, олеиновая кислота присоединяет водород:
6.2. Окисление непредельных карбоновых кислот
Непредельные кислоты обесцвечивают водный раствор перманганатов. При этом окисляется π-связь и у атомов углерода при двойной связи образуются две гидроксогруппы:
Источник
Взаимодействие бромной воды с олеиновой кислотой
Олеиновая кислота относится к непредельным карбоновым кислотам. Непредельность соединений можно обнаружить с помощью качественных реакций с бромной водой или раствором перманганата калия. В данном случае воспользуемся бромной водой. К олеиновой кислоте прибавим бромную воду и энергично перемешаем содержимое пробирки. Происходит обесцвечивание бромной воды. Мы доказали, что олеиновая кислота непредельная карбоновая кислота.
СН3 – (СН2)7 – СН=СН – (СН2)7 – СООН + Вr2 = СН3 – (СН2)7 – СНBr – СНBr – (СН2)7 – СООН
Оборудование: пробирка, штатив для пробирок.
Техника безопасности. Соблюдать правила работы с бромом (бромной водой).
Постановка опыта и текст – к.п.н. Павел Беспалов.
Взаимодействие уксусной кислоты с карбонатом натрия
Уксусная кислота – слабая кислота. Но она способна вытеснять более слабые кислоты из их солей. Убедимся в этом. К раствору карбоната натрия прильем раствор уксусной кислоты. Наблюдается обильное выделение углекислого газа.
Уксусная кислота вытеснила угольную кислоту из раствора ее соли. Угольная кислота – непрочное соединение, она распадается на углекислый газ и воду.
2СН3СООН + Na2CO3 = H2O + CO2 + 2CH3COONa
Оборудование: химические стаканы.
Техника безопасности. Соблюдать правила работы с горючими газами.
Постановка опыта и текст – к.п.н. Павел Беспалов.
Взаимодействие уксусной кислоты с металлами
Уксусной кислоте, как и неорганическим кислотам, присущи общие свойства кислот. Убедимся в том, что эта кислота способна реагировать с металлами. В две пробирки поместим кусочки магния и цинка. Прильем к ним раствор уксусной кислоты. В пробирке с магнием идет энергичная реакция – выделяется водород. В пробирке с цинком, менее активным металлом, выделение водорода едва заметно.
2СН3СООН + Мg = H2 + ( CH3COO)2Mg
2СН3СООН + Zn = H2 + ( CH3COO)2Zn
При взаимодействии металлов с раствором уксусной кислоты образуется водород и соли уксусной кислоты. Соли уксусной кислоты называются ацетатами.
Оборудование: штатив для пробирок, пробирка, горелка, зажим для пробирок.
Техника безопасности. Соблюдать правила работы с кислотами.
Постановка опыта и текст – к.п.н. Павел Беспалов.
Взаимодействие уксусной кислоты с оксидом меди (II)
Как и неорганические кислоты, уксусная кислота реагирует с оксидами металлов. Проведем реакцию между оксидом меди (II) и уксусной кислотой. При обычных условиях реакция идет очень медленно. Нагреем смесь на пламени горелки. Наблюдается растворение оксида меди и появление голубой окраски раствора. В пробирке образовался ацетат меди (II).
2СН3СООН + CuO = H2О + ( CH3COO)2Cu
Оборудование: штатив для пробирок, пробирка, горелка, зажим для пробирок.
Техника безопасности. Соблюдать правила работы с кислотами.
Постановка опыта и текст – к.п.н. Павел Беспалов.
Взаимодействие уксусной кислоты с раствором щелочи
Реакция нейтрализации характерна для всех кислот. Нальем в бюретку раствор уксусной кислоты. В колбу для титрования – раствор гидроксида натрия. Прибавим к щелочи немного фенолфталеина. Раствор окрашивается в малиновый цвет. Прибавляем из бюретки раствор кислоты к раствору щелочи. Происходит нейтрализация щелочи. Когда вся щелочь переходит в соль – малиновая окраска исчезает. В растворе образовалась соль – ацетат натрия.
СН3СООН + NaOH = CH3COONa + H2O
Оборудование: штатив, бюретка, стакан химический, коническая колба.
Техника безопасности. Соблюдать правила работы с растворами кислот и щелочей.
Постановка опыта и текст – к.п.н. Павел Беспалов.
Возгонка бензойной кислоты
Бензойная кислота – ароматическая карбоновая кислота. Ее особенность – способность к возгонке. Возгонка — переход из твердого состояния в пароообразное, минуя жидкое. В стакан с бензойной кислотой положим еловую ветку и закроем колбой. В колбе – холодная вода. Колба будет служить и крышкой, и холодильником. Бензойная кислота при легком нагреве переходит из твердого состояния – в парообразное. Соприкасаясь с холодным дном колбы, пары бензойной кислоты охлаждаются – и конденсируются в виде кристалликов бензойной кислоты.
Оборудование: химический стакан, штатив, огнезащитная прокладка, колба круглодонная, горелка.
Техника безопасности. Соблюдать правила работы с нагревательными приборами. Бензойная кислота вызывает раздражение дыхательных путей. После проведения опыта дать прибору остыть и лишь после этого его можно разбирать.
Постановка опыта и текст – к.п.н. Павел Беспалов.
Гидролиз ацетата натрия
Уксусная кислота – слабый электролит. Ацетат натрия – соль образованная сильным основанием и слабой кислотой. При растворении этой соли в воде создается щелочная среда. Особенностью кристаллогидрата ацетата натрия является то, что он при нагревании легко плавится и ацетат натрия растворяется в своей кристаллизационной воде. Смешает ацетат натрия с сухим индикатором фенолфталеином. Полученную смесь нагреем. Появляется малиновая окраска. Соль частично расплавилась, в расплаве появились гидроксид- ионы.
CH3COONa + HOН = СН3СООН + NaОН
CH3COO— + HOН = СН3СООН + ОН—
При охлаждении соль кристаллизуется, равновесие смещается в сторону образования ацетата натрия, гидроксид-илны исчезают, и окраска пропадает. Опыт доказывает, что уксусная кислота является слабой кислотой.
Оборудование: штатив для пробирок, пробирки, горелка, зажим для пробирок.
Техника безопасности. Соблюдать правила работы с нагревательными приборами.
Постановка опыта и текст – к.п.н. Павел Беспалов.
Горение уксусной кислоты на воздухе
Безводная уксусная кислота – огнеопасное вещество, ее пары легко загораются. Убедимся в этом. Нагреем уксусную кислоту до кипения. При поднесении горящей лучины пары кислоты загораются. При горении уксусной кислоты образуются углекислый газ и вода.
СН3СООН + 2О2 = 2H2О + 2СО2
Склянки с уксусной кислотой хранят в металлических контейнерах.
Оборудование: штатив для пробирок, пробирка, горелка, лучина.
Техника безопасности. Соблюдать правила работы с кислотами.
Постановка опыта и текст – к.п.н. Павел Беспалов.
Замораживание уксусной кислоты
Безводная уксусная кислота при ее охлаждении примерно до 15 0С переходит в кристаллическое состояние. В этом состоянии она очень похожа по внешнему виду на лед. Поэтому безводную уксусную кислоту называют ледяной. Приготовим охлаждающую смесь из воды и льда. Опустим в нее пробирку с уксусной кислотой. Через некоторое время уксусная кислота кристаллизуется.
Оборудование: химический стакан, пробирка, термометр, штатив.
Техника безопасности. Соблюдать правила работы с кислотами.
Постановка опыта и текст – к.п.н. Павел Беспалов.
Карбоновые кислоты – слабые электролиты
Слабые электролиты — это вещества, которые частично распадаются на ионы при растворении в воде. Обнаружить ионы в растворе можно с помощью прибора для изучения электропроводности. Если вещество или его раствор распадается на ионы, то лампочка прибора загорается. Проверим электропроводность уксусной кислоты. Опускаем электроды в концентрированную уксусную кислоту. Лампочка не загорается.
Разбавим уксусную кислоту водой и вновь проверим электропроводность. Лампочка не горит. Прибавим к раствору уксусной кислоты большой объем воды. Лампочка загорается. Мы убедились в том, что уксусная кислота — слабый электролит.
СН3СООН <=> СН3СОО— + Н+
Уксусная кислота в значительной степени распадается на ионы лишь при большом разбавлении водой.
Оборудование: стакан химический, пипетка, набор для опытов с электрическим током.
Техника безопасности. Соблюдать правила работы с кислотами и правила работы с электроприборами.
Постановка опыта и текст – к.п.н. Павел Беспалов.
Образование нерастворимых кальциевых солей жирных кислот
Кальциевые соли жирных кислот нерастворимы в воде. Это можно наблюдать в следующем опыте. К раствору мыла прильем немного раствора хлорида кальция. Выпадает обильный осадок нерастворимого стеарата кальция.
2С17Н35СООNa + СаСI2 =(C17 H35COO)2Ca + 2NaCI
Такой процесс происходит при мытье в жесткой воде. Поэтому мыло в жесткой воде плохо мылится.
Оборудование: штатив для пробирок, пробирки.
Техника безопасности. Опыт безопасен.
Постановка опыта и текст – к.п.н. Павел Беспалов.
Окисление муравьиной кислоты раствором перманганата калия
Муравьиная кислота отличается по строению от всех остальных карбоновых кислот. Поэтому она совмещает свойства и кислоты и альдегида. Альдегиды, как известно, легко окисляются. Прильем к раствору муравьиной кислоты раствор перманганата калия. Нагреем смесь. Происходит обесцвечивание раствора. Муравьиная кислота окислилась до углекислого газа и воды.
НСООН + [О]= H2О + CO2
Оборудование: штатив для пробирок, пробирки, горелка, зажим для пробирок.
Техника безопасности. Соблюдать правила работы с кислотами и нагревательными приборами.
Постановка опыта и текст – к.п.н. Павел Беспалов.
Разложение муравьиной кислоты
Под действием водоотнимающих средств муравьиная кислота разлагается с выделением монооксида углерода. В быту он носит название угарный газ. В качестве водоотнимающего средства используем серную кислоту. В пробирку с муравьиной кислотой прибавим концентрированную серную кислоту. Сразу же начинается бурная реакция. Подожжем выделяющийся угарный газ. Он горит голубым пламенем.
НСООН = H2О + CO
Эту реакцию используют в лаборатории для получения угарного газа.
Оборудование: пробирка, зажим для пробирок, газоотводная трубка.
Техника безопасности. Соблюдать правила работы с кислотами. Опыт проводить под тягой.
Постановка опыта и текст – к.п.н. Павел Беспалов.
Растворимость в воде различных карбоновых кислот
Уксусная и масляная кислота при нормальной температуре – жидкости, стеариновая кислота — твердое вещество. Посмотрим, как эти карбоновые кислоты растворяются в воде. В три пробирки с водой добавим разные карбоновые кислоты. Уксусная и масляная кислоты хорошо растворяются в воде, а стеариновая кислота в воде не растворяется. Фиолетовый раствор лакмуса изменяет цвет лишь в растворах уксусной и масляной кислот. В пробирке со стеариновой кислотой лакмус остается фиолетовым.
Оборудование: пробирки, штатив для пробирок.
Техника безопасности. Соблюдать правила безопасности при работе с кислотами.
Постановка опыта и текст – к.п.н. Павел Беспалов.
Источник