Какие продукты образуются в темновой фазе

Существует две стадии процесса фотосинтеза. Они принципиально отличаются по химическим реакциям, происходящим в клетках растения. Первая или световая стадия напрямую связана с наличием световой энергии. 2 или темновая стадия названа так, поскольку процессы, происходящие во время нее, не зависят от наличия света. Химические процессы, которые происходят в темновую фазу фотосинтеза, различны у разных видов растений.
Что такое ферментативная фаза фотосинтеза
Темновая или ферментативная стадия фотосинтеза характеризуется: синтезом глюкозы, фиксацией углекислого газа и протеканием процессов в хлоропластах. Она запускается после расщепления воды под действием энергии света на 1 световой стадии и образования ее конечных продуктов:
- АТФ (аденозинтрифосфат) – источник энергии, необходимой для прохождения множества химических реакций темновой стадии;
- НАДФН (восстановленный никотинамидадениндинуклеотидфосфат) – катализатор, являющийся источником водорода. Водород, который отдает НАДФН, используется в процессе получения органических соединений во время темновой стадии;
- О2 (молекулярный кислород) не принимает участия в процессах второй стадии фотосинтеза, поэтому выделяется в атмосферу.
Далее во время темновой стадии растение поглощает из атмосферы СО2. Из этого соединения и водорода, отдаваемого молекулой НАДФН, синтезируется органическое соединение глюкоза (C6H12O6). Реакции синтеза проходят с поглощением энергии. Энергия для этого процесса выделяется молекулами АТФ, которые превращаются в АДФ (аденозиндифосфат).
Химические процессы, которые происходят в темновой стадии фотосинтеза, можно представить следующим уравнением:
CO2 + НАДФH + Q → С6H12O6 + НАДФ
В темновой стадии фотосинтеза энергия для синтеза высвобождается при распаде АТФ на АДФ и фосфорную кислоту:
АТФ → Q + АДФ + фосфорная кислота
В сложнейших и различных реакциях темновой фазы фотосинтеза участвуют множество разнообразных ферментов.
Темновая фаза фотосинтеза разделяется на несколько этапов в зависимости от пути прохождения, присущих разным видам растений. Результатом темновой фазы фотосинтеза независимо от ее пути прохождения всегда является органическое соединение — глюкоза. Ниже представлена общая схема фотосинтеза: световая и темновая фаза.
Где протекают реакции темновой стадии фотосинтеза
Реакции темновой фазы фотосинтеза происходят, протекают в специальных клеточных структурах растения — в стромах хлоропластов. Хлоропласт – зеленая пластида, содержащая хлорофилл и отвечающая за химические реакции, проходящие во время всех стадий фотосинтеза. Хлоропласт имеет достаточно сложную структуру.
Основными его частями являются:
- Тилакоиды – специальные структуры для преобразования световой энергии в химическую;
- Граны – стопки тилакоидов;
- Строма – плотная жидкость внутри хлоропласта между тилакоидами;
- Мембраны.
Вся 1 световая стадия фотосинтеза проходит в гранах тилакоидов. Внутри них имеется хлорофилл – зеленый пигмент, способный поглощать световую энергию.
2 темновая стадия фотосинтеза проходит в строме хлоропласта. В состав стромы входят необходимые ферменты, которые обеспечивают прохождение химических реакций синтеза углеводов.
Цикл Кальвина
Самым распространенным видом фотосинтеза является С3 фотосинтез, который называется циклом Кальвина. Процессы, проходящие в цикле Кальвина, характерны для большинства видов растений нашей планеты. С3— фотосинтез делится на 3 фазы:
- Карбоксилирование;
- Восстановление;
- Регенерация или превращение углеродных соединений.
В фазе карбоксилирования углекислый газ, поглощаемый растением из воздуха, связывается с ферментом (рибулозобисфосфат), образуя фосфоглицериновую кислоту (3-ФГК). Это 3-углеродное соединение дало название данному виду фотосинтеза – С3.
В следующей фазе восстановления 3-ФГК восстанавливается до 3-фосфоглицеринового альдегида (3-ФГА). Этот процесс происходит с участием НАДФН и АТФ. В фазе регенерации часть молекул 3-ФГА покидают цикл.
Из них во время темновой стадии фотосинтеза образуется вещество — глюкоза. Остальные молекулы данного вещества регенерируют в рибулозобисфосфат, способный связывать углекислый газ. Цикл Кальвина повторяется. Для синтеза одной молекулы глюкозы цикл должен пройти 6 раз.
Темновая стадия фотосинтеза не обязательно должна проходить в темное время суток. Она проходит непрерывно в течение суток, когда есть в наличии конечные продукты световой фазы.
Растения, использующие С3— фотосинтез должны непрерывно получать углекислый газ из окружающей атмосферы. При его дефиците или отсутствии темновая фаза фотосинтеза не может проходить у них эффективно.
Они должны постоянно держать устьица на своих листьях открытыми, чтобы поглощать СО2. В случае же его дефицита такие растения переходят в режим дыхания и выделяют углекислый газ, необходимый им в дальнейших фазах фотосинтеза.
Через открытые устьица не только выделяется кислород и поглощается углекислота.
Также через эти отверстия испаряется много влаги. Поэтому растения с С3-фотосинтезом не могут существовать в жарких и засушливых регионах. Там живут растения, которые используют другие виды фотосинтеза.
Цикл Хэтча-Слэка
Существует множество видов растений, фотосинтез которых проходит по пути С4. Он отличается от С3-фотосинтеза тем, что поступивший СО2 при участии ферментов образует не 3-углеродное, а 4-углеродное соединение.
Путь фотосинтеза С4 называется циклом Хэтча-Слэка в честь его первооткрывателей. Цикл Хэтча-Слэка проходит в 3 этапа:
- Акцептация;
- Декарбоксилирование;
- Цикл Кальвина.
Сюда входит цикл С3 фотосинтеза, но имеются и еще 2 дополнительных этапа, во время которых происходит захват углекислого газа и его накопление в тканях растения.
В процессе акцептации углекислый газ, поступивший в клетки растения из окружающей среды, соединяется не с рибулозобисфосфатом, как в цикле Кальвина, а с 3-углеродным соединением — фосфоенолпировиноградной кислотой.
В результате этой реакции получается 4-углеродное соединение – щавелевоуксусная кислота. Затем в зависимости от вида растения это вещество превращается в другие 4-углеродные соединения: яблочную и яспарагиновую кислоты.
Эти вещества поступают в специальные обкладочные клетки, где и происходит 2 этап цикла.
На этапе декарбоксилирования из полученных 4-углеродных соединений получается свободный углекислый газ. Он не выделяется в атмосферу, а сразу поступает в цикл Кальвина. Оставшиеся 3-углеродные молекулы вновь могут использоваться для захвата СО2 в начале цикла Хэтча-Слэка.
Рассмотренный вариант фотосинтеза намного прогрессивнее, чем С3-фотосинтез. Здесь растение может накапливать углекислый газ в составе 4-углеродных кислот, чтобы потом использовать его по необходимости. Это обеспечивает непрерывный и эффективный цикл синтеза глюкозы, не зависящий от присутствия углекислоты в атмосфере.
Растения с С4-фотосинтезом захватывают углекислый газ при его избытке, а затем не страдают при его дефиците.
У таких видов растений очень редко происходит процесс дыхания. Фотосинтез С4 обнаружен у более 900 видов растений. Среди них есть немало сельскохозяйственных культур, в том числе просо, сорго, кукуруза и сахарный тростник. Все эти виды приспособлены к жизни в засушливых районах с повышенной температурой воздуха.
Исследования показали, что при повышении температуры эффективность фотосинтеза у них значительно повышается. В то же время они не испытывают дефицита влаги. Среди комнатных растений также немало видов, использующих С4-фотосинтез.
Такими свойствами обладают все бромелиевые. Не следует располагать их рядом с С3-растениями. Пока последние будут медленно усваивать углекислый газ, С4-виды быстро поглотят всю углекислоту из воздуха, создавая для обычных разновидностей неблагоприятные условия.
Этапы САМ-фотосинтеза
Существует модификация пути С4, которая называется САМ (Crassulacean Аcid Metabolism). Этот путь фотосинтеза типичен для всех суккулентов, которые приспособлены выживать в жарком климате с дефицитом воды.
Днем в жару эти растения закрывают устьица, находящиеся на листьях, чтобы не испарять воду. Поэтому в дневное время они не могут получить углекислый газ из окружающего воздуха.
Этапы САМ-фотосинтеза ничем не отличаются от С4 пути, но его этапы разделены во времени. Углекислый газ поступает в клетки растения только ночью, когда устьица на листьях открыты. Таким образом, в ночное время возможно прохождение этапов: акцептации и декарбоксилирования.
Завершающий этап (цикл Кальвина) у суккулентов может проходить днем, так как для него уже не требуется получение углекислого газа.
Значение темновой стадии фотосинтеза для растений
Темновая стадия фотосинтеза позволяет растению завершить синтез органического вещества из неорганических. Этот процесс имеет в их жизни решающее значение. Глюкоза, синтезируемая растениями, принимает участие во многих биологических процессах, проходящих в растительных клетках. Вот основные из них:
- Синтез белков, жиров и более сложных углеводов для постройки организма и обеспечения его жизнедеятельности;
- Дыхание, при котором глюкоза расщепляется на углекислый газ и воду с выделением энергии;
- Накопление питательных веществ в тканях растения для увеличения его жизнеспособности.
Белки жиры и сложные углеводы входят в состав клеток растения. Их необходимо синтезировать, чтобы растение могло расти и развиваться. Глюкоза является одним из важнейших материалов, используемых для такого синтеза.
Дыхание – процесс, который проходит по нескольким причинам. Это реакция окисления глюкозы с поглощением кислорода. При этом выделяется большое количество энергии, которая необходима для прохождения реакций синтеза в тканях растения.
Также растение вынуждено дышать, если вокруг него недостаточно углекислого газа, необходимого для фотосинтеза. Тогда часть конечного продукта темновой фазы фотосинтеза, которым является синтезированная глюкоза, расщепляется с выделением СО2. При накоплении питательных веществ глюкоза переходит в более стойкое вещество – крахмал, который и накапливается в органах растения.
Крахмал может использоваться по необходимости, расщепляясь сначала до глюкозы, а затем в конечные продукты окисления – воду и СО2. Запасы позволяют растению расходовать их в наступивших неблагоприятных условиях, сохраняя жизнеспособность.
Источник
Что такое фотосинтез
Фотосинтез — процесс, при котором в клетках, содержащих хлорофилл, под действием энергии света образуются органические вещества из неорганических. При фотосинтезе растение поглощает углекислый газ и воду, синтезирует органические вещества и выделяет кислород, как побочный продукт фотосинтеза.
Процессы фотосинтеза идут в тканях, содержащих хлоропласты, — преимущественно, в листе, на который приходится большая часть процессов фотосинтеза. Такая ткань называется хлоренхима, или мезофилл.
Строение хлоропластов
Чтобы понять, что происходит в растении при фотосинтезе, изучим подробнее хлоропласты. Хлоропласты — это особые пластиды растительных клеток, в которых происходит фотосинтез. Основные элементы структурной организации хлоропластов высших растений представлены на рис.1.
Рис.1. Строение хлоропласта высших растений.
Хлоропласт — это двумембранный органоид. Внешняя мембрана проницаема для большинства органических и неорганических соединений. Она содержит специальные транспортные белки, благодаря которым нужные для работы хлоропласта пептиды и другие вещества попадают в него из цитоплазмы. Внутренняя мембрана обладает избирательной проницаемостью и способна контролировать, какие именно вещества попадут во внутреннее пространство хлоропласта.
Для хлоропластов характерна сложная система внутренних мембран, позволяющая пространственно организовать фотосинтетический аппарат, упорядочить и разделить реакции фотосинтеза, несовместимые между собой, и их продукты. Мембраны образуют тилакоиды, которые, в свою очередь, собираются в «стопки» — граны. Пространство внутри тилакоидов называется внутритилакоидным пространством, или люменом.
Внутреннее пространство хлоропласта между гранами заполняет строма — гидрофильный слабоструктурированный матрикс. В строме содержатся необходимые для реакций синтеза сахаров ферменты, а также рибосомы, кольцевая молекула ДНК, крахмальные зёрна.
Пигменты хлоропластов
Что происходит во время фотосинтеза? На молекулярном уровне фотосинтез обеспечивают особые вещества — пигменты, благодаря которым энергия солнечного света становится доступной для биологических систем. У фотосинтезирующих организмов можно выделить три основные группы пигментов:
- Хлорофиллы:
- хлорофилл а — у большинства фотосинтезирующих организмов,
- хлорофилл b — у высших растений и зелёных водорослей,
- хлорофилл c — у бурых водорослей,
- хлорофилл d — у некоторых красных водорослей.
- Каротиноиды:
- каротины — у всех фотосинтезирующих организмов, кроме прокариот;
- ксантофиллы — у всех фотосинтезирующих организмов, кроме прокариот
- Фикобилины — красные и синие пигменты красных водорослей.
В хлоропластах пигменты ассоциированы с белками с помощью ионных, водородных и других типов связей. Не стоит забывать, что у растений есть множество других пигментов, находящихся не в хлоропластах и не принимающих участие в фотосинтезе — например, антоцианы.
Хлорофилл
Хлорофиллы выполняют функции поглощения, преобразования и транспорта энергии света. Лучше всего хлорофиллы поглощают свет в синей (430—460 нм) и красной (650—700 нм) областях спектра. Зелёную область спектра хлорофиллы эффективно отражают, что придаёт растению зелёный цвет.
Интересно, что строение молекулы хлорофилла схоже со строением гемоглобина, но центром молекулы хлорофилла является ион магния, а не железа.
Основными хлорофиллами высших растений являются хлорофилл a и хлорофилл b, они входят в состав реакционных центров фотосистем и светособирающих комплексов мембран тилакоидов хлоропластов. Светособирающие комплексы улавливают кванты света и передают энергию к фотосистемам I и II. Фотосистемы — это пигмент-белковые комплексы, играющие ключевую роль в световой фазе фотосинтеза.
Каротиноиды
Каротиноиды — это жёлтые, оранжевые или красные пигменты. В зелёных листьях каротиноиды обычно незаметны из-за наличия в листьях хлорофилла. При разрушении хлорофилла осенью именно каротиноиды придают листьям характерную жёлто-оранжевую окраску.
Функции каротиноидов:
- Антенная — входят в состав светособирающих комплексов, улавливают энергию света и передают её на хлорофиллы. Каротиноиды играют роль дополнительных светособирающих пигментов в той части солнечного спектра (450—570 нм), где хлорофиллы малоэффективны. Особенно это важно для водных экосистем, в которых волны оптимальной для хлорофиллов длины быстро исчезают с глубиной.
- Защитная функция (антиоксидантная) — обезвреживание агрессивных кислородных соединений (активных форм кислорода) и избытка хлорофилла в возбуждённом состоянии при слишком ярком освещении.
Каротиноиды химически представляют собой 40-углеродную цепь с двумя углеродными кольцами по краям цепи. В строении ксантофиллов, в отличие от каротинов, присутствуют спиртовые, эфирные или альдегидные группы.
Учите биологию вместе с домашней онлайн-школой «Фоксфорда»! По промокоду BIO72020 вы получите бесплатный доступ к курсу биологии 7 класса, в котором изучается тема фотосинтеза.
Что происходит в процессе фотосинтеза
Как уже было сказано ранее, в ходе фотосинтеза в хлоропластах под действием солнечного света образуются органические вещества.
Процесс фотосинтеза можно разделить на две фазы:
1. Световая.
2. Темновая.
В ходе световой фазы фотосинтеза образуется энергия в виде АТФ и универсальный донор атома водорода — восстановитель НАДФН (НАДФ·Н2). Эти вещества необходимы для протекания темновой фазы. Также образуется побочный продукт — кислород. Световая фаза может проходить только на мембранах тилакоидов и на свету.
Благодаря сложному биохимическому процессу — циклу Кальвина — в темновую фазу фотосинтеза образуются органические вещества (сахара). Темновая фаза проходит в строме хлоропластов и на свету, и в темноте. Темновые ферментативные процессы протекают медленнее, чем световые, поэтому при очень ярком освещении скорость протекания фотосинтеза будет полностью определяться скоростью темновой фазы. Схемы процессов фотосинтеза представлены на рис.2. Подробное описание процессов смотри далее.
Рис.2. Схема процессов фотосинтеза и суммарное уравнение фотосинтеза.
Световая фаза фотосинтеза
Чтобы лучше понять, что происходит во время фотосинтеза, разберём фазы фотосинтеза. Световая фаза фотосинтеза включает в себя фотохимические и фотофизические процессы, и может быть поделена на три этапа:
- Фаза поглощения — энергия света улавливается при помощи светособирающих комплексов, переходит в энергию электронного возбуждения пигментов, передаётся в реакционный центр фотосистем I и II.
- Фаза реакционных центров — энергия электронного возбуждения пигментов светособирающих комплексов используется для активации реакционных центров фотосистем. В реакционном центре электрон от возбуждённого хлорофилла передаётся другим компонентам электрон-транспортной цепи, пигмент после отдачи электрона переходит в окисленное состояние и становится способным, в свою очередь, отнимать электроны у других веществ. Именно в этом процессе происходит преобразование физической формы энергии в химическую.
- Фаза электрон-транспортной цепи — электроны переносятся по цепи переносчиков, образуются АТФ, НАДФН, O2. Необходимо, чтобы каждый переносчик электрон-транспортной цепи поочерёдно восстанавливался и окислялся, обеспечивая таким образом перенос энергии электронов. Любой этап переноса электрона сопровождается высвобождением или поглощением энергии. Часть энергии теряется. На некоторых участках электрон-транспортной цепи перенос электрона сопряжён с переносом протона.
Для того чтобы понять, что происходит во время фазы фотосинтеза, рассмотрим эти процессы подробнее. Кванты света улавливаются светособирающими комплексами фотосистемы I — молекула хлорофилла в составе светособирающего комплекса переходит в возбуждённое состояние, и энергия передаётся в реакционный центр фотосистемы I. Происходит возбуждение молекул хлорофилла фотосистемы I, отщепляется электрон. Пройдя по цепочке внутренних компонентов фотосистемы I и внешних переносчиков, электрон в конце концов попадает к НАДФ+ — образуется восстановитель НАДФН. Получается, что хлорофилл фотосистемы I отдал электрон и приобрёл положительный заряд, и для дальнейшего функционирования необходимо восстановить нейтральность молекулы, получить электрон, чтобы закрыть «дырку». Этот электрон приходит от фотосистемы II.
На светособирающие комплексы фотосистемы II попадают кванты света — происходит возбуждение молекулы хлорофилла фотосистемы II, молекула хлорофилла отдаёт электрон и переходит в окисленное состояние. Нехватку электрона хлорофилл восполняет благодаря фотолизу воды, при этом образуется протоны H+, а также важный побочный продукт фотосинтеза — кислород. По цепи переносчиков электрон от хлорофилла фотосистемы II попадает к хлорофиллу реакционного центра фотосистемы I и восстанавливает его. Теперь этот хлорофилл может снова поглощать энергию кванта света и отдавать электрон в электрон-транспортную цепь.
Протоны, попадающие во внутритилакоидное пространство, используются для синтеза АТФ. С помощью фермента АТФ-синтазы за счёт градиента протонов образуется АТФ из АДФ и фосфата. Под градиентом понимают неравномерное распределение: во внутритилакоидном пространстве H+ больше, в строме — меньше. Поэтому частицы стремятся проникнуть в строму, переходят в неё через АТФ-синтазу, а в процессе пути сквозь белковый комплекс отдают ему часть энергии, которая и используется для синтеза АТФ.
Темновая фаза фотосинтеза
Что образуется при фотосинтезе в темновую фазу? В строме хлоропластов с помощью энергии АТФ и восстановителя НАДФН, полученных в световую фазу, образуются простые сахара, из которых в ходе других процессов образуется крахмал. Ферментативные процессы не нуждаются в наличии света. Важнейший процесс, происходящий в темновую фазу фотосинтеза, — фиксация углекислого газа воздуха. Синтез и превращения сахаров в хлоропластах имеют циклический характер и носят название цикл Кальвина.
В нём можно выделить три этапа:
- Фаза карбоксилирования (введение CO2 в цикл).
- Фаза восстановления (используются АТФ и НАДФН, полученные в световую фазу).
- Фаза регенерации (превращения сахаров).
В строме хлоропластов находится производное простого пятиуглеродного сахара рибозы. С помощью особого фермента (Рубиско) к производному рибозы присоединяется CO2 (реакция карбоксилирования) — образуется неустойчивое шестиуглеродное соединение, которое быстро распадается на две трехуглеродные молекулы. Дальше, с затратой АТФ и НАДФН, полученных в ходе световых процессов, трехуглеродное соединение модифицируется — образуется восстановленное соединение с атомом фосфора и альдегидной группой в составе. Теперь перед клеткой стоит проблема: необходимо получить шестиуглеродное соединение — глюкозу для синтеза крахмала, а также пятиуглеродное — производное рибозы для того, чтобы эти процессы могли начаться заново. Для решения этих проблем в фазу регенерации из полученных ранее трехуглеродных соединений под действием ферментов образуются четырёх-, пяти-, шести- и семиуглеродные сахара. Из шестиуглеродной молекулы образуется глюкоза, из которой синтезируется крахмал. Из пятиуглеродной молекулы образуется производное рибозы и цикл замыкается. Остальные сахара также используются клеткой в других биохимических процессах.
Отдельно стоит сказать про крайне важный фермент первой фазы цикла Кальвина — рибулозо-1,5-дифосфаткарбоксилазу (Рубиско). Это сложный фермент, состоящий из 16 субъединиц, с молекулярной массой в 8 раз больше, чем у гемоглобина. Является одним из важнейших ферментов в природе, поскольку играет центральную роль в основном механизме поступления неорганического углерода (из CO2) в биологический круговорот. Содержание Рубиско в листьях растений очень велико, он считается самым распространённым ферментом на Земле.
Рис.3. Суммарные уравнения и частные реакции фотосинтеза.
Значение фотосинтеза
В процессе фотосинтеза энергия света заключается в энергию химических связей органических веществ. Поэтому фотосинтез служит первичным источником почти всей энергии, используемой живыми организмами в процессе жизнедеятельности. Практически все живые организмы, за исключением хемосинтетиков, так или иначе пользуются теми продуктами, что выделяются при фотосинтезе.
За счёт фотосинтеза сформировалась и поддерживается пригодная для дыхания атмосфера с высоким содержанием кислорода.
Фиксация углекислого газа в ходе фотосинтеза служит главным местом входа неорганического углерода в биогеохимический цикл. Также ассимиляция CO2 препятствует перегреву Земли, предотвращая парниковый эффект.
Заключение
Каждый год на нашей планете благодаря фотосинтезу производится около 200 миллиардов тонн кислорода, из которого образуется озоновый слой, защищающий от ультрафиолетовой радиации. Фотосинтез помогает поддерживать состав атмосферы и препятствует увеличению количества углекислого газа. Без растений и кислорода, который они выделяют в процессе фотосинтеза, жизнь на нашей планете была бы просто невозможна.
Источник