Какие промежуточные продукты в цикле трикарбоновых кислот

Какие промежуточные продукты в цикле трикарбоновых кислот thumbnail

Представьте себе, что все белки, жиры и углеводы, которые мы получаем с приемом пищи, распадаются на маленькие пазлы, которые собираются вновь только в одном определенном участке нашего организма – митохондриях. Там же происходит сортировка и параллельное протекание реакций созидания и разрушения. Разберемся подробнее:

Что такое цикл Кребса

Цикл Кребса – это цепочка химических реакций, происходящих в митохондриях каждой клетки нашего тела, которая называется циклом потому, что продолжается непрерывно. Она же является и общим конечным путем окисления ацетильных групп (в виде ацетил-КоА), в которые превращается в процессе распада большая часть органических молекул, играющих роль «клеточного топлива» или «субстратов окисления»: углеводов, жирных кислот и аминокислот.

Функции цикла Кребса:

  • анаболическая (синтез новых органических веществ);
  • энергетическая (питание организма)
  • катаболическая (превращение некоторых веществ в катализаторы)
  • транспортная (транспортировка водорода, участвующего в дыхании клеток).

Атомы водорода, высвобождающиеся в окислительно-восстановительных реакциях, доставляются в цепь переноса электронов при участии НАД-  и ФАД-  зависимых дегидрогеназ, в результате чего происходит образование 12 высокоэнергетических фосфатных связей: синтез 12 молекул аденозинтрифосфорной кислоты (АТФ) из аденозиндифосфорной кислоты (АДФ).

Как работает цикл Кребса?

В организме аминокислоты, жирные кислоты и пируват образуют ацетил-КоА.

Когда ацетил-КоА попадает в митохондриальный матрикс, он связывается с молекулой оксалацетата и превращается в лимонную кислоту (цитрат). Цитрат, в свою очередь, под действием фермента аконитазы превращается в цис-аконитат, оставляя молекулу воды.

Какие промежуточные продукты в цикле трикарбоновых кислот

В свою очередь цис-аконитат превращается в изоцитрат под действием фермента изоцитратдегидрогеназы. Изоцитрат превращается в альфа-кетоглутарат под действием изоцитратдегидрогеназы.

Альфа-кетоглутарат превращается в сукцинил-КоА альфа-кетоглутаратдегидрогеназой и добавлением ацетил-КоА. Он подвергается сукцинату под действием сукцинат-тиокиназы. Сукцинатдегидрогеназа превращает его в фумарат. Фумарат превращается в L-малат через фумаразу. L-малат под действием фермента малатдегидрогеназы восстанавливает оксалацетат, который может снова вступать в реакцию с молекулой ацетил-КоА и повторять цикл.

Результатом этого цикла является образование CO2 и водорода, а также воды. Ионы на выходе из процесса участвуют в ресинтезе АТФ, что помогает организму восстановить еще один источник энергии – трифосфат аденозина.

Стадии цикла Кребса

Окисление ацетильного остатка происходит в несколько стадий, образующих циклический процесс из 8 основных этапов:

Основные этапы цикла Кребса

I этап

Конденсация ацетил-КоА и оксалоацетата с образованием цитрата.

Происходит реакция отщепление карбоксильной группы аминокислот, в процессе которой образуется ацетил-КоА

*он выполняет функцию транспортировки углерода в различных обменных процессах.

При соединении с молекулой щавелевой кислоты получается цитрат

*фигурирует в буферных обменах.

На данном этапе кофермент А полностью высвобождается, и получаем молекулу воды.

Данная реакция необратима.

II этап

Превращение цитрата в изоцитрат.

Дегидрирование (отщепление молекул воды) от цитрата, в результате которого получается цис-аконитат. И присоединяя молекулу воды, переходит в изолимонную кислоту (изоцитрат)

III этап

Превращение изоцитрата в а-кетоглутарат.

Изолимонная кислота(изоцитрат) дегидрируется в присутствии НАД- зависимой изо-цитратдегидрогеназы.На выходе получаем альфа-кетоглутарат.

*Альфа-кетоглутарат участвует в регуляции всасывания аминокислот, нормализует метаболизм и положительно влияет на антистрессорные процессы.

Также образуется NADH (аллостерический фермент)

IV этап

Окисление α-кетоглутарата до сукцинил-КоА

Окислительное декарбоксилирование а-кетоглутарата с образованием сукцинил-КоА – тиоэфира, содержащего высокоэнергетическую фосфатную связь.

V этап

Превращение сукцинил-КоА в сукцинат.

Пятая реакция катализируется ферментом сукцинил-КоА-синтетазой. В ходе этой реакции сукцинил-КоА при участии ГТФ и неорганического фосфата превращается в янтарную кислоту (сукцинат). Так же происходит образование высокоэргической фосфатной связи ГТФ за счет тиоэфирной связи сукцинил-КоА.

VI этап

Дегидрогенирование сукцината. Образование фумарата.

Образовавшийся сукцинат превращается в фумарат под действием фермента сукцинат-дегидрогеназы. Единственная дегидрогеназная реакция цикла Кребса, в ходе которой осуществляется прямой перенос водорода с субстрата на флавопротеин без участия НАД+.

VII этап

Образование малата из фумарата.

Под влиянием фермента фумаратгидратазы (фумаразы). Образовавшаяся при этом фумаровая кислота гидратируется,

продуктом реакции является L-яблочная кислота (L-малат). 

VIII этап

Превращение малата в оксалоацетат.

Под влиянием митохондриальной НАД-зависимой малатдегидрогеназы происходит окисление L-малата в оксалоацетат.

Происходит полное «сгорание» одной молекулы ацетил-КоА. Для непрерывной работы цикла необходимо постоянное поступление в систему ацетил-КоА. А коферменты (НАД+ и ФАД), перешедшие в восстановленное состояние, должны снова и снова окисляться.

Реакции цикла Кребса по стадиям

Какие промежуточные продукты в цикле трикарбоновых кислот

Для облегчения запоминания ферментативных реакций цикла:

Читайте также:  Туберкулез легких какие продукты полезны

ЩУКа съела ацетат, получается цитрат
через цис-аконитат будет он изоцитрат
водороды отдав НАД, он теряет СО2
этому безмерно рад альфа-кетоглутарат
окисление грядёт: НАД похитит водород
В1 и липоат с коэнзимом А спешат,
отбирают СО2, а энергия едва
в сукциниле появилась сразу ГТФ родилась
и остался сукцинат. вот добрался он до ФАДа,
водороды тому надо водороды потеряв,
стал он просто фумарат. фумарат воды напился,
и в малат он превратился тут к малату НАД пришёл,
водороды приобрёл ЩУКа снова объявилась
и тихонько затаилась Караулить ацетат…

Источник

Значение цикла Кребса в реакциях обмена веществ и клеточного дыхания

История изучения

Биологическая роль некоторых реакций цикла Кребса (ЦК) была изучена американским биохимиком венгерского происхождения Альбертом Сент-Дьердьи. В частности, он выделил ключевой компонент ЦТК — фумарат. Исследования в этом направлении продолжил Ганс Кребс. В итоге он установил всю последовательность реакций и соединений, образующиеся на всех этапах процесса. Ученый не смог определить, с преобразования какой кислоты начинается цикл — лимонной или изолимонной. Сейчас известно, что это лимонная кислота. Поэтому ЦК называют также цитратным или циклом лимонной кислоты.

Позднее американец Альберт Ленинджер, занимающийся биоэнергетикой, определил, что все реакции ЦК протекают в митохондриях клеток. С получением доступа к изотопам углерода появилась возможность более досконального изучения и уточнения данных о промежуточных соединениях на разных этапах цикла.

С пищей в организм поступают три основные группы сложных биохимических соединений — белки, жиры и углеводы. Они являются первичными метаболитами, потому что участвуют в обмене веществ или в метаболизме. Этот процесс происходит между любыми живыми клетками и окружающей средой непрерывно. Суть цикла Кребса заключается в том, что он является областью схождения двух путей метаболизма. Это следующие процессы:

  • катаболизм, при котором происходит распад более сложных веществ на простые, в частности, глюкозы на моносахариды;
  • анаболизм — синтез сложных веществ из простых, например, белков из аминокислот.

Механизм запуска и описание сути процесса

После попадания в пищеварительную систему сложные вещества расщепляются под действием ферментов на более простые, которые внутри клеток превращаются сначала в пируват (пировиноградную кислоту), а затем — в ацетильный остаток. Все эти преобразования можно назвать подготовкой к ЦК, а образование остатка — его запуском или начальным этапом.

Дальнейшие стадии цикла трикарбоновых кислот являются частью катаболизма. Процесс идет каскадно. Каждый предыдущий этап запускает последующий, а промежуточные продукты химических реакций служат не только для продолжения цикла, но и при определенных потребностях организма могут пополнять запасы веществ, необходимых для синтеза новых соединений (анаболизма).

Клеточное дыхание

Цикла Кребса в реакциях обмена веществ и клеточного дыхания

Для нормальной жизнедеятельности живым клеткам постоянно требуется энергия. Ее главный универсальный источник — аденозинтрифосфат (АТФ), способный встраиваться в белки организма напрямую. Это соединение получается в результате ряда реакций окисления, носящих общее название «клеточное дыхание». При этом происходит постепенный распад органических веществ вплоть до простейших неорганических — углекислого газа CO2 и воды H2O.

Структурное строение молекул АТФ содержит фосфорангидридные связи, которые имеют свойство накапливать высвобожденную при прохождении реакций клеточного дыхания энергию, поэтому называются макроэргическими. Так создаются энергетические запасы клеток, которые могут высвобождается при необходимости разрывом этих связей. Процесс синтеза АТФ и класса вспомогательных соединений включает три этапа:

  1. Гликолиз происходит в цитоплазме.
  2. В матриксе митохондрий проходят все химические реакции цикла Кребса.
  3. Окислительное фосфорилирование на внутренней мембране митохондрий.

Преобразование аденозиндифосфата (АДФ) в АТФ характерно для всех этапов. Но наибольшее суммарное количество молекул с макроэргическими связями образуется при фосфорилировании. Это не значит, что процессы гликолиза и ЦК менее важны. Многие соединения, образующиеся во время их протекания, участвуют в регуляции клеточного дыхания.

Описание процесса

Что такое цикл Кребса

Протекание ЦК достаточно экономно с точки зрения энергозатрат. Такой эффект достигается благодаря тому, что он связывает два метаболических направления. В процесс вовлекаются вещества, подлежащие утилизации, которые либо служат энергетическим «топливом», либо возвращаются в круг анаболизма. Подготовительная стадия ЦК заключается в распаде глюкозы, аминокислот и жирных кислот на молекулы пирувата или лактата.

Читайте также:  Какие продукты есть при зачатии девочки

Органеллы митохондрий способны преобразовывать пируват в ацетильный остаток (ацетил-коэнзим А или ацетил-КоА), представляющий собой вместе с тиольной группой, которая может его переносить, кофермент А. Некоторое соединения могут сразу распадаться до ацетил-КоА, минуя стадию пирувата. При этом пировиноградная кислота может вовлекаться непосредственно в ЦК, не преобразуясь в ацетил-КоА.

Начальные этапы

Стадии цикла

Первая стадия необратима и состоит из конденсации ацетил-КоА с четырехуглеродным веществом — оксалоацетатом (щавелевоуксусной кислотой или ЩУК), что приводит к образованию шестиуглеродного цитрата (лимонной кислоты). Во время реакции метильная группа ацетил-КоА соединяется с карбонильной группой ЩУК. Благодаря быстрому гидролизу промежуточного соединения цитроил-КоА этот этап проходит без затрат энергии извне.

На второй стадии образуется изоцитрат (изолимонная кислота) из цитрата через цис-аконитат. Это реакция обратимой изомеризации через образование промежуточной трикарбоновой кислоты, в которой катализатором выступает фермент аконитатгидратаза.

Далее происходит дегидрирование и декарбоксилирование изоцитрата до промежуточного соединения оксалосукцинат с выделением углекислого газа. После декарбоксилирования оксалосукцината образуется енольное соединение, которое перестраивается и превращается в пятиуглеродную кислоту — α-кетоглутарат (оксоглутарата), чем и завершает третью ступень ЦК. Четвертый этап — α-кетоглутарат декарбоксилирует и реагирует с ацетил-КоА. При этом получается сукцинил-КоА, соединение янтарной кислоты и коэнзима-А, выделяется СО2.

Замыкание цикла

Биохимия всех стадий цикла трикарбоновых кислот.

На пятой стадии сукцинил-КоА преобразуется в сукцинат (янтарную кислоту). Для этого этапа характерно субстратное фосфолирование, подобное синтезу АТФ при гликолизе. Введение в ЦК фосфорной группы РО3 становится возможным благодаря присутствию фермента ГДФ (гуанозиндифосфата) или АДФ (аденозиндифосфата), которые в процессе синтеза сукцината из дифосфатов становятся трифосфатами.

Начиная с шестой стадии, цикл начинает постепенно замыкаться. Сначала сукцинат под действием каталитического фермента сукцинатдегидрогеназы дегидрирует до фумарата. Дальнейшее дигидрирование приводит к седьмому этапу — образованию L-малата (яблочной кислоты) из фуратата через переходное соединение с карбанионом.

Последняя реакция цикла трикарбоновых кислот малат окисляется до щавелевоуксусной кислоты. Первая стадия следующего ЦК начинается с новой молекулы ацетил-КоА.

Значение и функции

Этот восьмиэтапный циклический процесс, итогом которого является окисление ацетильного остатка до углекислого газа, может показаться излишне сложным. Тем не менее, он имеет огромное значение в метаболизме промежуточных реакций и выполняет ряд функций. К ним относятся:

  • энергетическая;
  • анаболическая;
  • катаболическая;
  • транспортная.

Цикл Кребса участвуют в катаболизме жиров и углеводов. Соединения, образующиеся на разных стадиях процесса, участвуют в синтезе многих необходимых для организма веществ — глутамина, порфиринов, глицина, фенилаланина, цистеина и других. Когда промежуточные продукты покидают ЦК для участия в синтезе, происходит их замещение с помощью так называемых анаплеротических реакций, которые катализируются регуляторными ферментами, например, пируваткарбоксилазой.

Транспортная функция ЦК заключается в содействии гликолизу. Глюкозу невозможно превратить сразу в АТФ, поэтому механизм гликолиза действует поэтапно и сопровождается постоянным перемещением атомов и катионов водорода от одних соединений к другим. Для их транспортировки нужны специальные соединения, которые получаются на одной из стадий ЦТК. Участвующие в гликолизе коферменты цикла Кребса:

  • НАД*H+(Никотинамидадениндинуклеотид с катионом водорода). Образуется на III стадии ЦК.
  • ФАД*H2 (Флавинадениндинуклеотид с молекулой водорода). Появляется на V стадии ЦК.

Реакции ЦК имеют и большое клиническое значение. Хотя для людей не свойственны мутации, связанные с генами ферментов, участвующих в цикле, однако их редкие проявления губительны для здоровья. Они могут приводить к опухолям мышц и почек, нарушениям работы нервной системы.

Существует множество видов визуального и слухового отображения цикла Кребса — схемы с формулами, уравнения химических реакций, разнообразные таблицы и даже мнемонические способы для полного запоминания его главных «участников».

Источник

Цикл трикарбоновых кислот (ЦТК) или цикл лимонной кислоты или цикл Кребсапуть окислительных превращений ди- и трикарбоновых кислот, образующихся в качестве промежуточных продуктов при распаде и синтезе белков, жиров и углеводов.

Читайте также:  Какие продукты есть беременным чтобы повысить иммунитет

Цикл трикарбоновых кислот представлен в клетках всех организмов: растений, животных и микроорганизмов.

Этот цикл является основой метаболизма и выполняет две важных функции:

снабжения организма энергией;

интеграции всех главных метаболических потоков, как катаболических (биорасщепление), так и анаболических (биосинтез).

Напомню, что реакции аэробного гликолиза локализованы в цитоплазме клетки и приводят к образованию пирувата (ПВК).

!!! Последующие превращения пирувата протекают в матриксе митохондрий.

В матриксе пируват превращается в ацетил-КоАмакроэргическое соединение. Реакция катализируется ферментом НАД-зависимой пируватдекарбоксилазой:

Восстановленная формаНАДН∙Н+, образовавшаяся в результате этой реакции, поступает в дыхательную цепь и генерирует 6 молекул АТФ (в пересчете на 1 молекулу глюкозы).

!!! ЦТК представляет собой последовательность из восьми реакций, протекающих в матриксе митохондрий (Рис. 9.6):

Рис. 9.6. Схема цикла трикарбоновых кислот

1) Необратимая реакция конденсации ацетил-КоА со щавелевоуксусной кислотой (оксалоацетатом), катализируемая ферментом цитратсинтетазой, с образованием лимонной кислоты (цитрата).

2) Обратимая реакция изомеризация лимонной кислоты (цитрата) в изолимонную кислоту (изоцитрат), в процессе которой происходит перенос гидроксигруппы к другому атому углерода, катализируется ферментом аконитазой.

Реакция идёт через образование промежуточного продукта
цис-аканитовой кислоты (цис-аконитата).

3) Необратимая реакция окислительного декарбоксилирования изолимонной кислоты (изоцитрата): гидроксигруппа изолимонной кислоты окисляется до карбонильной группыс помощью окисленной формы НАД+ и одновременно отщепляется карбоксильная группа в
β-положении
с образованием α-кетоглутаровой кислоты
(α-кетоглутарата). Промежуточный продукт этой реакции щавелевоянтарная кислота (оксалосукцинат).

!!! Это первая реакция цикла, в которой происходит восстановление окисленной формы НАД+-кофермента до НАДН∙Н+, фермента изоцитратдегидрогеназы.

Восстановленная форма НАДН∙Н поступает в дыхательную цепь, там окисляется до НАД+, что приводит к образованию 2 молекул АТФ.

4) Обратимая реакция окислительного декарбоксилирования
α-кетоглутаровой кислоты до макроэргического соединения сукцинил-КоА. Реакцию катализирует фермент 2-оксоглутаратдегидрогеназный комплекс.

5) Реакция является единственной в цикле реакцией субстратного фосфорилирования; катализируется ферментом сукцинил-КоА-синтетазой. В этой реакции сукцинил-КоА при участии гуанодиндифосфата (ГДФ) и неорганического фосфата (H3PO4) превращается в янтарную кислоту (сукцинат).

!!! Одновременно происходит синтез макроэргического соединения ГТФ за счёт макроэргической связи тиоэфирной связи сукцинил-КоА.

6) Реакция дегидрирования янтарной кислоты (сукцината) с образованием фумаровой кислоты (фумарата).

Реакция катализируется сложным ферментом сукцинатдегидрогеназой, в молекуле которой кофермент ФАД+ ковалентно связан, а белковой частью фермента. Окисленная форма ФАД+ в результате реакции восстанавливается до ФАД∙Н2.

Восстановленная форма ФАД∙Н2 поступает в дыхательную цепь, там регенерирует до окисленной формы ФАД+, что приводит к образованию двух молекул АТФ.

7) Реакция гидратации фумаровой кислоты (фумарата) до яблочной кислоты (малата). Реакция катализируется ферментом фумаразой.

8) Реакция дегидрирования яблочной кислоты до щавелеуксусной кислоты (оксалоацетата). Реакция катализируется ферментом НАД+-зависимой-малатдегидрогеназой.

В результате реакции окисленная форма НАД восстанавливается до восстановленной формы НАДН∙Н+.

Восстановленная форма НАДН∙Н поступает в дыхательную цепь, там окисляется до НАД+, что приводит к образованию 2 молекул АТФ.

Суммарное уравнение ЦТК можно записать следующим образом:

Ацетил-КоА + 3НАД+ + ФАД+ + ГДФ + H3PO4 =

2CO2 + H2O + HS-КоА + 3НАДН∙Н + ФАД∙Н2 + ГТФ

Как видно из схемы суммарного уравнения ЦТК в этом процессе восстанавливаются:

– три молекулы НАДН∙Н (реакции 3, 4, 8);

– одна молекула ФАД∙Н2 (реакция 6).

При аэробном окислении из этих молекул в электрон-транспортной цепи в процессе окислительного фосфорилирования образуется при окислении:

– одной молекулы НАДН∙Н3 молекулы АТФ;

– одной молекулы ФАД∙Н22 молекулы АТФ.

одна молекула ГТФ образуется в реакции субстратного фосфорилирования (реакция 5).

Всё это составит : 9 (3х3) АТФ + 2 АТФ + 1 АТФ (ГТФ) = 12 АТФ. Следовательно, энергетический баланс окисления ацетил-КоА (2 молекулы пирувата из аэробного гликолиза) в ЦТК составляет 24 молекулы АТФ.

!!! Полное окисление глюкозы:

8 молекул АТФ гликолиза + 6 молекул АТФ окислительного декарбоксилирование пирувата в цетил-КоА + 24 молекулы АТФ ЦТК =
38 молекул АТФ на молекулу глюкозы.

Источник