Какие свойства ацетилена имеют отношение к строительным профессиям

Какие свойства ацетилена имеют отношение к строительным профессиям thumbnail

Ацетилен — один из самых востребованных в химической промышленности газов. Примерно 70 % его производится для синтезирования сложных органических соединений. В частности, речь идёт о выпуске пластмасс, оргстекла, лакокрасочных веществ, уксуса, спиртовых соединений, взрывчатки, каучука и многого другого.

 Применение ацетилена в промышленности

Применяется ацетилен при обработке металлов, при конструировании машин и механизмов. Одним из главных процессов, где не обойтись без этого соединения, является газосварка. Ацетилен обладает немаловажным преимуществом: сварочный процесс обладает эффектом восстановления, который легко поддаётся контролю и регулировке. Газосварка с использованием ацетилена характеризуется высокой степенью стыковки образующихся зазоров. Сварщику не требуется много времени и сил тратить на подготовку швов. Это очень удобно, когда приходится сваривать кромки, не имея возможности чётко зафиксировать их по отношению друг к другу.

Другие ситуации, в которых активно применяется ацетилен:

  • Он находит своё применение, когда с помощью газосварки скрепляют пластиковые изделия. Например, это актуально при восстановлении автомобильных бамперов.
  • Среди прочих газов ацетилен отлично подходит, когда требуется провести термическую резку.
  • Когда осуществляется резка поверхностей, ацетилен также незаменим. Например, если сварщик устраняет недостатки проведённой операции или подготавливает места сварки проходов в корне шва.
  • Однотипные и разнотипные материалы без проблем можно соединять методом твёрдого припоя. Это также становится возможным благодаря свойствам ацетилена.
  • Газ применяется при огневой чистке металлических поверхностей. Прежде чем обрабатывать металл дальше, с помощью ацетилена можно удалить следы ржавчины, окалину и другие загрязнения.
  • Ацетилен задействуют, чтобы выгибать трубы, уменьшать площадь поперечного сечения трамблеров, придавать корабельным днищам вогнутую форму, готовить изделия к горячей штамповке. Ацетилен незаменим при выгибании и правке огневым методом, при нагреве во время сварки и резки.
  • Применяется этот газ, когда изделия из чёрных металлов необходимо закалить, чтобы сделать более износостойкими. Закалка происходит, когда определённые участки изделия сначала разогреваются, а потом охлаждаются без повреждения расположенного в середине материала.
  • С помощью ацетилена напыляют расплавленную проволоку или порошок на поверхность металлического или неметаллического изделия. Пламя на основе ацетилена направляют на изделие, предварительно обработав его, с помощью газовой или воздушной струи. Поскольку это пламя обладает очень высокой температурой, то расплавить можно практически любой материал. Именно за счёт этого получаемые покрытия обладают такой высокой износостойкостью. Например, это могут быть цинковые, алюминиевые, медные, хром-никелированные стальные покрытия против коррозии.
  • Наконец, с помощью ацетилена формы для выпуска сосудов из стекла изнутри покрывают воспроизводимым слоем из углерода. За счёт этого итоговые изделия получаются более качественными, внутри стеклянного слоя образуется значительно меньше пузырьков.

Наша компания производит заправку баллонов ацетиленом, быстро и качественно.

Источник

>>> Перейти на мобильную версию сайта >>>

Учебник для 10 класса

Химия

   
   

Как вы уже знаете, ацетилен — продукт неполного разложения метана. Этот процесс называют пиролизом (от греч. пир — огонь, лизис — разложение). Теоретически ацетилен можно представить как продукт дегидрирования этилена:

На практике ацетилен, кроме пиролизного способа, очень часто получают из карбида кальция:

Особенность строения молекулы ацетилена (рис. 21) состоит в том, что между атомами углерода имеется тройная связь, т. е. он является еще более непредельным соединением, чем этилен, молекула которого содержит двойную углерод-углеродную связь.

Какие свойства ацетилена имеют отношение к строительным профессиям

Рис. 21.
Модели молекулы ацетилена: 1 — шаростержневая; 2 — масштабная

Ацетилен является родоначальником гомологического ряда алкинов, или ацетиленовых углеводородов.

Алкины — это непредельные углеводороды, молекулы которых содержат, помимо одинарных связей, одну тройную углерод-углеродную связь. Состав их отражает общая формула CnH2n-2

Ацетилен — это бесцветный газ без запаха, малорастворимый в воде.

Рассмотрим химические свойства ацетилена, которые лежат в основе его применения.

Ацетилен на воздухе горит коптящим пламенем из-за высокого содержания углерода в его молекуле, поэтому для сжигания ацетилена используют кислород:

Температура ацетиленокислородного пламени достигает 3200 °С. Таким пламенем можно резать и сваривать металлы (рис. 22).

Какие свойства ацетилена имеют отношение к строительным профессиям

Рис. 22.
Ацетиленокислородное пламя используют для резки и сварки металла

Как и все непредельные соединения, ацетилен активно вступает в реакции присоединения. 1) галогенов (галогенирование), 2) водорода (гидрирование), 3) галогеноводородов (гидрогалогенирование), 4) воды (гидратация).

Рассмотрим, например, реакцию гидрохлорирования — присоединения хлороводорода:

Почему продукт гидрохлорирования ацетилена называют хлорэтеном, вам понятно. А почему — винилхлоридом? Потому что одновалентный радикал этилена СН2=СН— называют винилом. Винилхлорид — это исходное соединение для получения полимера — поливинилхлорида, который находит широкое применение (рис. 23). В настоящее время винилхлорид получают не гидрохлорированием ацетилена, а другими способами.

Какие свойства ацетилена имеют отношение к строительным профессиям

Рис. 23.
Применение поливинилхлорида:
1 — искусственная кожа; 2 — изолента; 3 — изоляция проводов; 4 — трубы; 5 — линолеум; 6 — клеенка

Поливинилхлорид получают с помощью уже знакомой вам реакции полимеризации. Полимеризация винилхло-рида в поливинилхлорид может быть описана с помощью следующей схемы:

Какие свойства ацетилена имеют отношение к строительным профессиям

или уравнения реакции:

Реакция гидратации, протекающая в присутствии солей ртути, содержащих катион Hg2+, в качестве катализатора, носит имя выдающегося русского химика-органика М. Г. Кучерова и раньше широко использовалась для получения очень важного органического соединения — уксусного альдегида:

Какие свойства ацетилена имеют отношение к строительным профессиям

Реакцию присоединения брома — бромирование — используют как качественную реакцию на кратную (двойную или тройную) связь. При пропускании ацетилена (или этилена, или большинства других непредельных органических соединений) через бромную воду можно наблюдать ее обесцвечивание. При этом происходят следующие химические превращения:

и далее:

Какие свойства ацетилена имеют отношение к строительным профессиям

Еще одной качественной реакцией на ацетилен и непредельные органические соединения является обесцвечивание раствора перманганата калия.

Ацетилен — важнейший продукт химической промышленности, который имеет широкое применение (рис. 24).

Какие свойства ацетилена имеют отношение к строительным профессиям

Рис. 24.
Применение ацетилена:
1 — резка и сварка металлов; 2—4 — производство органических соединений (растворителей 2, поливинилхлорида 3, клея 4)

Новые слова и понятия

  1. Алкины.
  2. Ацетилен.
  3. Химические свойства, ацетилена: горение, присоединение галогеноводородов, воды (реакция Кучерова), галогенов.
  4. Поливинилхлорид.
  5. Качественные реакции на кратную связь: обесцвечивание бромной воды и раствора перманганата калия.

Вопросы и задания

  1. Назовите способы получения ацетилена. Запишите уравнения соответствующих реакций.
  2. Назовите две качественные реакции, с помощью которых можно обнаружить непредельный характер органического соединения.
  3. Рассчитайте объем ацетилена, который может быть получен из 128 г карбида кальция, содержащего 5% примесей, если выход ацетилена составляет 80% от теоретически возможного.
  4. Запишите уравнения реакций, с помощью которых можно осуществить следующие превращения:

    Какие свойства ацетилена имеют отношение к строительным профессиям

  5. Рассчитайте массовую долю углерода в молекулах: а) этана; б) этилена; в) ацетилена. Каков характер пламени при горении этих веществ?
  6. Запишите формулы возможных изомеров 3-метилпентина-1. Дайте названия всех соединений.
  7. Вычислите объем кислорода (н, у,), который потребуется для сжигания 56 м3 смеси этана и ацетилена, если объемная доля последнего составляет в ней 75%.
  8. Назовите область применения реакции горения ацетилена.
  9. Назовите область применения продукта реакции гидрохлорирования ацетилена.
  10. Какие свойства ацетилена имеют отношение к строительным профессиям? Почему?
  11. Рассчитайте количество теплоты, которое выделится при сжигании 30 м3 ацетилена (н. у.), если термохимическое уравнение реакции его горения

Читайте также:  Какими свойствами обладают общественные блага исключительно доступа

Источник

Ацетилен относится к углеводородам ненасыщенного ряда. Это соединение, а также его различные гомологи служат сырьем для синтеза большого количества химических продуктов.

Свойства и получение ацетилена

В условиях атмосферного давления и нормальной температуры ацетилен представляет собой бесцветный газ. Если температура опускается до значения -85 градусов и ниже, то это соединение переходит в другое состояние – твердое. При этом образуются кристаллы. Следует отметить, что в жидком и твердом состоянии ацетилен может легко взрываться под воздействием трения или при ударе (гидравлическом или механическом). Именно это свойство во многом обусловливает его область применения. Реакции горения ацетилена происходят в присутствии кислорода. В результате данного процесса возникает пламя, характеризующееся самыми высокими показателями температуры (3150 градусов) по сравнению с другими видами горючего.

Основным способом получения ацетилена является реакция, в которой взаимодействуют карбид кальция и вода. Данный процесс протекает при показателях температуры около 2000 градусов и является эндотермическим.

Существует такое понятие, как выход ацетилена. Это такое его количество, которое выделяется в результате разложения 1 кг карбида кальция. ГОСТ 1460-56 устанавливает конкретные значения данной величины, которая находится в прямой зависимости от степени грануляции исходного вещества. Таким образом, следствием относительно небольшого размера частиц карбида кальция является снижение выхода ацетилена.

Данная закономерность является следствием наличия в мелких частицах карбида посторонних примесей, например оксида кальция.

Существуют и другие, менее громоздкие, дорогие и энергозатратные способы получения ацетилена. Например, реакция термоокислительного пиролиза метана из природного газа; разложение нефти, керосина и других видов горючего путем электропиролиза.

Хранение и транспортировка

Все способы хранения и транспортировки предусматривают использование баллонов. Они заполняются специальной массой пористой консистенции. Ее пропитывают ацетоном, который хорошо растворяет ацетилен. Применение данного способа позволяет значительно увеличить наполняемость баллона ацетилена и, что немаловажно, понижает его взрывоопасность.

Длительное соприкосновение ацетилена с такими металлами, как медь и серебро, может привести к повышению его взрывоопасности. Следовательно, недопустимо использование материалов, которые могут содержать эти металлы, например в вентилях.

Как правило, баллоны должны иметь специальные вентили, предназначенные именно для хранения ацетилена.

Полного использования всей емкости баллона можно достигнуть, храня пустые емкости так, чтобы ацетон был распределен по всему объему баллона. А это возможно только в горизонтальном положении. Наполнение баллона должно происходить очень медленно, что важно для соблюдения условий химической реакции растворения ацетилена в ацетоне, а в частности ее скорости.

Преимущества растворенного ацетилена

Основное преимущество растворенного ацетилена перед тем, который получают с использованием переносных генераторов из карбида кальция, состоит в том, что при применении баллонов происходит повышение труда сварщика примерно на 20 %, а потери ацетилена при этом снижаются на 25 %. Также следует отметить повышение оперативности и маневренности сварочного поста, безопасность. В отличие от газа, полученного из карбида кальция, растворенный ацетилен содержит значительно меньше посторонних веществ, то есть примесей, что позволяет использовать его в особо ответственных сварочных работах.

Основные области применения ацетилена

  • Сварка и резка металлов.
  • Использование в качестве источника яркого, белого света. В данном случае речь идет об ацетилене, получаемом путем взаимодействия карбида кальция и воды. При этом используются автономные светильники.
  • Производство взрывчатых веществ.
  • Получение других соединений и материалов, которыми являются уксусная кислота, этиловый спирт, растворители, пластические массы, каучук, ароматические углеводороды.

Ацетилен: применение в строительстве и промышленности

Автогенные и сварочные работы сопровождают практически все этапы строительства. Именно в этих видах работ применяется ацетилен. В специальном устройстве под названием горелка происходит смешивание газов и непосредственно сама реакция горения. Наивысшая температура данной реакции достигается при содержании ацетилена 45 % от всего объема баллона.

Баллоны с этим газом маркируют следующим образом: окрашивают в белый цвет и большими красными буквами наносят надпись: «Ацетилен»

Строительные работы проводятся в основном на открытом воздухе. Применение ацетилена и его гомологов в этих условиях не должно проходить под воздействием прямых солнечных лучей. Небольшие перерывы должны сопровождаться перекрыванием вентилей на горелке, а длительные – перекрыванием вентилей на самих баллонах.

В химической промышленности очень востребован ацетилен. Применение его заключается в использовании данного вещества в процессе получения продуктов органического синтеза. Это синтетический каучук, пластмассы, растворители, уксусная кислота и т.д.

Ацетилен, являясь универсальным горючим, часто используется в процессах, сопровождающихся газопламенной обработкой. Важно, что применение ацетилена в промышленности возможно только при соблюдении мер безопасности, так как он является взрывоопасным газом.

Карбидные лампы

Название «карбидная лампа» обусловлено использованием в качестве источника света открытого пламени струи сжигаемого ацетилена. Он, соответственно, получен в результате взаимодействия карбида кальция с водой.

Такие лампы были широко распространены в прошлом. Их можно было увидеть на каретах, автомобилях и даже велосипедах. В современное время карбидные лампы используют только в случае острой необходимости в мощном автономном светильнике. Так, спелеологи часто пользуются ими. Отдаленные маяки снабжают именно такими лампами, ведь такой тип освещения намного выгоднее, нежели подведение линий электропередач. Достаточно распространенным является использование таких ламп на судах дальнего плавания.

Читайте также:  При какой температуре свойства меда пропадают

Ацетилен: применение в медицине

Как используется вещество в этой сфере? Общая анестезия предполагает применение алкинов. Ацетилен является одним из тех газов, которые используются при ингаляционном наркозе. Но повсеместное его применение в этом качестве осталось в прошлом. Сейчас появились более современные и безопасные способы анестезии.

Хотя следует отметить, что и применение ацетилена не представляло большой опасности, так как прежде чем значение его концентрации во вдыхаемом воздухе дойдет до опасного предела, нижний порог горючести будет пройден.

Самым главным условием использования данного газа является соблюдение мер безопасности. Сложно переоценить, насколько опасен ацетилен. Применение его возможно только после проведения всех необходимых инструктажей с работниками различных сфер, в которых он используется.

Ацетилен в условиях нормальной влажности воздуха и температуры является бесцветным газом, который получают в стационарных генераторах методом действия воды на карбид кальция. При понижении температуры до -85 градусов по Цельсию вещество переходит в твердое состояние, одновременно с этим образуются кристаллы. Важным свойством ацетилена является то, что при ударах или под воздействием трения он взрывается. Этот параметр во многом определяет область использования.

Сварочные работы с использованием ацетилена

Традиционно этот газ применяют при проведении процедуры по автогенной сварке, а также резке металлов. Технология подразумевает использованием двух баллонов с газом, в одном из которых находится кислород, а в другом — ацетилен. Вещества поступают в специализированную горелку, и при сгорании образуется очень горячее пламя. Его температура может достигать 3200 градусов по Цельсию. Самым «эффективным» считается сочетание газов, при котором в смеси содержится 45% ацетилена. При таких условиях удается оперативно расплавить даже достаточно толстые куски листовой стали.

Использование в промышленности и быту

Впрочем, автогенная сварка и резка металлов — не единственная сфера применения. Достаточно часто ацетилен используют в качестве источника яркого белого света в автономных приборах освещения. В данном случае его получают с помощью реакции воды и карбида кальция.

Такие лампы были крайне востребованы в прошлом столетии, ими освещали кареты и автомобили. Но и сегодня карбидные устройства, то есть созданные с использованием ацетилена, применяют при благоустройстве отдаленных маяков. Ключевое преимущество карбидных ламп — экономичность и отсутствие необходимости в подключении к электросети. Соответственно, при их установке на маяке не возникает необходимости в подведении линии электропередач, то есть оплате дорогостоящей услуги. Также лампы востребованы на судах дальнего плавания.

Ацетилен используют в промышленности. Его применяют при получении различных продуктов органического синтеза. Например, его используют для создания:

  • уксусной кислоты;
  • синтетического каучука;
  • растворителей;
  • некоторых видов пластмасс.

Следует отметить, что ацетилен нашел применение и в медицине, например, его иногда используют при ингаляционном наркозе.

Содержание

  • 1 Получение
  • 1.1 В лаборатории
  • 1.2 В промышленности
  • 1.2.1 Получение пиролизом
  • 1.2.1.1 Электрокрекинг
  • 1.2.1.2 Регенеративный пиролиз
  • 1.2.1.3 Окислительный пиролиз
  • 1.2.1.4 Гомогенный пиролиз
  • 1.2.1.5 Пиролиз в струе низкотемпературной плазмы
  • 1.2.2 Карбидный метод
  • 2 Физические свойства
  • 3 Химические свойства
  • 4 История
  • 5 Применение
  • 6 Безопасность
  • 7 Примечания
  • 8 Литература
  • 9 Ссылки
  • Получение

    В лаборатории

    В лаборатории ацетилен получают действием воды на карбид кальция см. видео данного процесса (Ф. Вёлер, 1862 г.),

    а также при дегидрировании двух молекул метана при температуре свыше 1400 °C:

    В промышленности

    В промышленности ацетилен получают из карбида кальция и пиролизом углеводородного сырья – метана или пропана с бутаном. В последнем случае ацетилен получают совместно с этиленом. Карбидный метод позволяет получать чистый ацетилен, но требует высокого расхода электроэнергии. Пиролиз менее энергозатратен, но образующийся ацетилен имеет низкую концентрацию в газовом потоке и требует выделения. Экономические оценки обоих методов многочисленны, но противоречивы .

    Получение пиролизом

    Метан превращают в ацетилен и водород в электродуговых печах (температура 2000-3000°С, напряжение между электродами 1000 В). Метан при этом разогревается до 1600°С. Расход электроэнергии составляет около 13000 кВт*ч на 1 тонну ацетилена, что относительно много (примерно равно затрачиваемой энергии по карбидному методу) и потому является недостатком процесса. Выход ацетилена составляет 50%.

    Иное название – Вульф-процесс. Сначала разогревают насадку печи путем сжигания метана при 1350-1400°С. Далее через разогретую насадку пропускают метан. Время пребывания метана в зоне реакции очень мало и составляет доли секунды. Процесс реализован в промышленности, но экономически оказался не таким перспективным как считалось на стадии проектирования.

    Метан смешивают с кислородом. Часть сырья сжигают, а образующееся тепло расходуют на нагрев остатка сырья до 1600°С. Выход ацетилена составляет 30-32%. Метод имеет преимущества – непрерывный характер процесса и низкие энергозатраты. Кроме того, с ацетиленом образуется еще и синтез-газ. Этот процесс (Заксе-процесс или BASF-процесс) получил наиболее широкое внедрение.

    Является разновидностью окислительного пиролиза. Часть сырья сжигают с кислородом в топке печи, газ нагревается до 2000°С. Затем в среднюю часть печи вводят остаток сырья, предварительно нагретый до 600°С. Образуется ацетилен. Метод характеризуется большей безопасностью и надежностью работы печи.

    Пиролиз в струе низкотемпературной плазмы

    Процесс разрабатывается с 1970-х годов, но, несмотря на перспективность, пока не внедрен в промышленности. Сущность процесса состоит в нагреве метана ионизированным газом. Преимущество метода заключается в относительно низких энергозатратах (5000-7000 кВт*ч) и высоких выходах ацетилена (87% в аргоновой плазме и 73% в водородной).

    Карбидный метод

    Этот способ известен с 19 века, но не потерял своего значения и до настоящего времени. Сначала получают карбид кальция, сплавляя оксид кальция и кокс в электропечах при 2500-3000°С:

    Известь получают из карбоната кальция:

    Далее карбид кальция обрабатывают водой:

    Получаемый ацетилен имеет высокую степень чистоты 99,9%. Основным недостатком процесса является высокий расход электроэнергии: 10000-11000 кВт*ч на 1 тонну ацетилена.

    Читайте также:  При какой температуре свойства меда теряются

    Физические свойства

    При нормальных условиях — бесцветный газ, легче воздуха. Чистый 100 % ацетилен не обладает запахом, однако технический ацетилен содержит примеси, которые придают ему резкий запах. Малорастворим в воде, хорошо растворяется в ацетоне. Температура кипения −83,6 °C. Тройная точка −80,55 °C при давлении 961,5 мм рт. ст., критическая точка 35,18 °C при давлении 61,1 атм.

    Ацетилен требует большой осторожности при обращении. Может взрываться от удара, при нагреве до 500 °C или при сжатии до 1,4 атм при комнатной температуре. Струя ацетилена, выпущенная на открытый воздух, может загореться от малейшей искры, в том числе от разряда статического электричества с пальца руки. Для хранения ацетилена используются специальные баллоны, заполненные пористым материалом, пропитанным ацетоном.

    Ацетилен обнаружен на Уране и Нептуне.

    Химические свойства

    Для ацетилена (этина) характерны реакции присоединения:

    HC≡CH + Cl2 -> СlСН=СНСl

    Ацетилен с водой, в присутствии солей ртути и других катализаторов, образует уксусный альдегид (реакция Кучерова). В силу наличия тройной связи, молекула высокоэнергетична и обладает большой удельной теплотой сгорания — 14000 ккал/м³ (50,4 МДж/Кг). При сгорании в кислороде температура пламени достигает 3150 °C. Ацетилен может полимеризироваться в бензол и другие органические соединения (полиацетилен, винилацетилен). Для полимеризации в бензол необходим графит и температура в 400 °C.

    Кроме того, атомы водорода ацетилена относительно легко отщепляются в виде протонов, то есть он проявляет кислотные свойства. Так ацетилен вытесняет метан из эфирного раствора метилмагнийбромида (образуется содержащий ацетиленид-ион раствор), образует нерастворимые взрывчатые осадки с солями серебра и одновалентной меди.

    Основные химические реакции ацетилена (реакции присоединения, сводная таблица 1.):

    Основные химические реакции ацетилена (реакции присоединения, димеризации, полимеризации, цикломеризации, сводная таблица 2.):

    Ацетилен обесцвечивает бромную воду и раствор перманганата калия.

    Реагирует с аммиачными растворами солей Cu(I) и Ag(I) с образованием малорастворимых, взрывчатых ацетиленидов — эта реакция используется для качественного определения ацетилена и его отличия от алкенов (которые тоже обесцвечивают бромную воду и раствор перманганата калия).

    История

    Открыт в 1836 г. Э. Дэви, синтезирован из угля и водорода (дуговой разряд между двумя угольными электродами в атмосфере водорода) М. Бертло (1862 г.).

    Применение

    • для газовой сварки и резки металлов,
    • как источник очень яркого, белого света в автономных светильниках, где он получается реакцией карбида кальция и воды (см. карбидная лампа),
    • в производстве взрывчатых веществ (см. ацетилениды),
    • для получения уксусной кислоты, этилового спирта, растворителей, пластических масс, каучука, ароматических углеводородов.
    • для получения технического углерода
    • в атомно-абсорбционной спектрофотометрии при пламенной атомизации
    • в ракетных двигателях (вместе с аммиаком)

    Безопасность

    Поскольку ацетилен нерастворим в воде, и его смеси с кислородом могут взрываться в очень широком диапазоне концентраций, его нельзя собирать в газометры.

    Ацетилен взрывается при температуре около 500 °C или давлении выше 0,2 МПа; КПВ 2,3-80,7 %, температура самовоспламенения 335 °C. Взрывоопасность уменьшается при разбавлении ацетилена другими газами, например азотом, метаном или пропаном.

    При длительном соприкосновении ацетилена с медью и серебром образуются ацетилениды меди и серебра, которые взрываются при ударе или повышении температуры. Поэтому при хранении ацетилена не используются материалы, содержащие медь (например, вентили баллонов).

    Ацетилен обладает слабым токсическим действием. Для ацетилена нормирован ПДКм.р. = ПДК с.с. = 1,5 мг/м3 согласно гигиеническим нормативам ГН 2.1.6.1338-03 «Предельно допустимые концентрации (ПДК) загрязняющих веществ в атмосферном воздухе населенных мест».

    ПДКр.з. (рабочей зоны) не установлен (по ГОСТ 5457-75 и ГН 2.2.5.1314-03), так как концентрационные пределы распределения пламени в смеси с воздухом составляет 2,5-100 %.

    Хранят и перевозят его в заполненных инертной пористой массой (например, древесным углем) стальных баллонах белого цвета (с красной надписью «А») в виде раствора в ацетоне под давлением 1,5-2,5 МПа.

    Примечания

    1. 12 ГОСТ 5457-75. Ацетилен растворённый и газообразный технический. Технические условия
    2. А.Л.Лапидус, И.А.Голубева, Ф.Г.Жагфаров. Газохимия. Учебное пособие. — Москва: ЦентрЛитНефтеГаз, 2008. — 450 с. — ISBN 978-5-902665-31-1.
    3. Большая энциклопедия нефти и газа. Неприятный запах — ацетилен. Проверено 10 октября 2013.
    4. Корольченко, Пожаровзрывоопасность веществ, 2004, с. 198.
    5. Миллер. Ацетилен, его свойства, получение и применение, 1969, с. 72.
    6. Ацетилен. Проверено 10 октября 2013.
    7. В России разработали ракетный двигатель на аммиаке — Известия

    Литература

    • Миллер С. А. Ацетилен, его свойства, получение и применение. Том 1. — Л.: Химия, 1969. — 680 с.
    • Корольченко А. Я., Корольченко Д. А. Пожаровзрывоопасность веществ и материалов и средства их тушения. Справочник: в 2-х частях. Часть 1. — М.: Ассоциация «Пожнаука», 2004. — 713 с. — ISBN 5-901283-02-3.

    Ссылки

    • Ацетилен // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). — СПб., 1890—1907.
    Углеводороды
    АлканыМетан • Этан • Пропан • Бутан • Пентан • Гексан • Гептан • Октан • Нонан • Декан • Ундекан • Додекан • Тридекан • Тетрадекан • Гексадекан • Гептадекан • Октадекан • Нонадекан • Эйкозан • Докозан • Гектан
    АлкеныЭтилен • Пропен • Бутены • Пентены • Гексены • Гептены • Октен
    АлкиныАцетилен • Пропин • Бутин
    ДиеныПропадиен • Бутадиен • Изопрен • Циклобутадиен
    Другие ненасыщеныеВинилацетилен • Диацетилен • Каротин
    ЦиклоалканыЦиклопропан • Циклобутан • Циклопентан • Циклогексан • Декалин • Индан • Инден
    АроматическиеБензол • Толуол • Диметилбензолы • Этилбензол • Пропилбензол • Кумол • Стирол • Фенилацетилен • Индан • Дифенил • Дифенилметан • Трифенилметан • Тетрафенилметан • Инден
    ПолициклическиеНафталин • Антрацен • Бензантрацен • Пентацен • Фенантрен • Пирен • Бензпирен • Азулен • Хризен

    ацетилен, ацетилен + вода, ацетилен википедия, ацетилен вікіпедія, ацетилен гарган авах, ацетилен донецк, ацетилен получение, ацетилен формула, ацетилен хлорирование, ацетиленовий генератор

    Источник