Какие свойства алюминия используют при изготовлении зеркал
Вопросы, рассмотренные в материале:
- Как был открыт алюминий и каковы его основные свойства
- Основные физические свойства алюминия
- Основные химические свойства алюминия
- Как применяют основные свойства алюминия
- Как используют основные свойства алюминия в строительстве
Основные свойства алюминия делают этот материал по-настоящему универсальным и ценным. Его используют во всех видах промышленного производства, в сельском хозяйстве, в быту, в коммерции. Обладает огромным количеством преимуществ по отношению к стали и другим видам металла.
Самые популярные сферы применения алюминия – изготовление металлоконструкций и металлообработка. О том, какие свойства металла и где конкретно они нашли свое применение, читайте далее.
Как был открыт алюминий и каковы его основные свойства
Алюминий представляет собой парамагнитный металл, достаточно легкий, имеющий серебристый цвет. Он хорошо поддается механической обработке и литью, просто формуется. В земной коре этот элемент третий по распространенности, впереди только кислород и кремний. Наши недра содержат целых 8 % данного металла, что значительно больше золота, количество которого составляет не более пяти миллионных долей процента.
Алюминий активно используется в большинстве сфер производства. Его сплавы применяются для изготовления бытовой техники, транспорта, в машиностроении и электротехнике. Капитальное строительство также не может обойтись без него.
Он чрезвычайно распространен в земной коре, являясь первым из металлов и третьим химическим элементом (первое место у кислорода, второе – у кремния). Доля алюминия в наших недрах – 8,8 %. Металл является частью большого количества горных пород и минералов, основной из которых – алюмосиликат.
В виде соединений алюминий находится в базальтах, полевых шпатах, гранитах, глине и пр. Однако в основном его получают из бокситов, которые достаточно редко встречаются в виде месторождений. В России такие залежи есть только на Урале и в Сибири. В промышленных масштабах алюминий можно также добывать из нефелинов и алунитов.
Ткани животных и растений содержат алюминий в виде микроэлемента. Некоторые организмы, например, моллюски и плауны, являются его концентраторами, накапливая в своих органах.
Человечеству с давних времен знакомо соединение алюминия под названием алюмокалиевые квасцы. Применялось оно в процессе выделки кожи, в качестве средства, которое, набухая, связывает различные компоненты смеси. Во второй половине XVIII в. ученые открыли оксид алюминия. А вот вещество в чистом виде получили значительно позже.
Впервые это удалось Ч. К. Эрстеду, который выделил алюминий из хлорида. Проводя опыт, он обрабатывал соли калия амальгамой, в результате чего выделился порошок серого цвета, признанный всеми чистым алюминием.
В дальнейшем, исследуя металл, ученые определили его химические свойства, проявляющиеся в высокой способности к восстановлению и активности. Именно поэтому с алюминием долгое время не работали.
Но уже в 1854 г. французский ученый Девиль, применив электролиз расплава, сумел получить металл в слитках. Данный метод используется и сейчас. В промышленных масштабах алюминий стали производить в начале XX в., когда предприятия смогли получить доступ к большому количеству электроэнергии.
Сегодня алюминий является одним из самых используемых в производстве бытовой техники и строительстве металлом.
Основные физические свойства алюминия
Основные характеристики алюминия – высокая электро- и теплопроводность, пластичность, устойчивость к холоду и коррозии. Его можно обрабатывать посредством прокатки, ковки, штамповки, волочения. Алюминий прекрасно поддается сварке.
Примеси, присутствующие в металле в различных количествах, значительно ухудшают механические, технологические и физико-химические свойства чистого алюминия. Основными из них являются титан, кремний, железо, медь и цинк.
По степени очистки алюминий разделяют на технический металл и высокой чистоты. На практике различия данных типов – в стойкости к коррозии в различной среде. Стоимость напрямую зависит от чистоты алюминия. Технический металл подходит для производства проката, различных сплавов, кабельно-проводниковых изделий. Чистый используют для специальных целей.
Алюминий обладает высокой электропроводностью, уступая только золоту, серебру, меди. Однако сочетание данного показателя с малой плотностью позволяет использовать его при производстве кабельно-проводниковых изделий наравне с медью. Электропроводность металла может увеличиваться при длительном отжиге или ухудшаться при нагартовке.
Увеличивая чистоту алюминия, производители повышают его теплопроводность. Снизить данное свойство способны примеси меди, марганца и магния. Более высокую теплопроводность имеют исключительно медь и серебро. Именно благодаря данному свойству данный металл используют для производства радиаторов охлаждения и теплообменников.
Удельная теплоемкость алюминия, как и температура его плавления, достаточно высока. Данные показатели значительно превышают аналогичные значения большей части металлов. С повышением чистоты металла увеличивается и его способность отражать от поверхности световые лучи. Алюминий хорошо поддается полировке и прекрасно анодируется.
Металл близок по свойствам к кислороду, его поверхность на воздухе быстро затягивается пленкой из оксида алюминия – тонкой и прочной. Обладая антикоррозионными свойствами, она защищает металл от образования ржавчины и предупреждает дальнейшее окисление. Алюминий не взаимодействует с азотной кислотой (концентрированной и разбавленной) и органическими кислотами, он стоек к воздействию пресной, соленой воды.
Эти особенности алюминия придают ему устойчивость к коррозии, что и используется людьми. Именно поэтому его особенно широко применяют в строительстве. Интерес к нему увеличивается еще и по причине его легкости в сочетании с прочностью и мягкостью. Такие характеристики есть далеко не у всякого вещества.
Помимо вышеуказанных, алюминий имеет еще несколько интересных физических свойств:
- Ковкость и пластичность – алюминий стал материалом изготовления прочной и легкой тонкой фольги, а также проволоки.
- Плавление происходит при температуре +660 °С.
- Температура кипения +2 450 °С.
- Плотность – 2,7 г/см³.
- Наличие объемной гранецентрированной металлической кристаллической решетки.
- Тип связи – металлический.
Области использования алюминия определяются его химическими и физическими свойствами. Характеристики металла, рассмотренные выше, применяются в бытовых целях. Основные свойства алюминия, как прочного, особо легкого, антикоррозийного материала, используются в судо- и авиастроении. Именно поэтому важно их знать.
Основные химические свойства алюминия
С химической точки зрения алюминий является чрезвычайно сильным восстановителем, имеющим способность в чистом виде быть высоко активным веществом. Основное условие – убрать оксидную пленку.
Алюминий способен вступать в реакции с:
- щелочными соединениями;
- кислотами;
- серой;
- галогенами.
Алюминий не взаимодействует в обычных условиях с водой. Йод – единственный из галогенов, с которым у металла происходит реакция без нагревания. Для взаимодействия с прочими требуется увеличение температуры.
Рассмотрим несколько примеров, показывающих химические свойства данного металла. Это уравнения, иллюстрирующие взаимодействие с:
- щелочами: 2Al + 6H2O + 2NaOH = Na[Al(OH)4] + 3Н2;
- кислотами: AL + HCL = AlCL3 + H2;
- серой: 2AL + 3S = AL2S3;
- галогенами: AL + Hal = ALHal3.
Основным свойством алюминия считается его способность восстанавливать иные вещества из их соединений.
Реакции его взаимодействия с оксидами иных металлов хорошо показывают все восстановительные свойства вещества. Алюминий прекрасно выделяет металлы из различных соединений. Примером может служить: Cr2O3 + AL = AL2O3 + Cr.
Металлургическая промышленность активно использует эту способность алюминия. Методика получения веществ, которая основывается на данной реакции, называется алюминотермия. Химическая индустрия использует алюминий чаще всего для получения иных металлов.
Как применяют основные свойства алюминия
Алюминий в чистом виде имеет слабые механические свойства. Именно поэтому наиболее часто применяют его сплавы.
Таких сплавов достаточно много, вот основные из них:
- алюминий с марганцем;
- дюралюминий;
- алюминий с магнием;
- алюминий с медью;
- авиаль;
- силумины.
В основе этих сплавов лежит алюминий, отличаются они исключительно добавками. Последние же делают материал прочным, легким в обработке, более стойким к износу, коррозии.
Есть несколько основных областей применения алюминия (чистого или в виде сплава). Из металла изготавливают:
- фольгу и проволоку для бытового использования;
- посуду;
- морские и речные суда;
- самолеты;
- реакторы;
- космические аппараты;
- архитектурные и строительные элементы и конструкции.
Алюминий является одним из самых важных металлов наравне с железом и его сплавами. Эти два элемента таблицы Менделеева наиболее широко применяются человеком в своей деятельности.
Как используют основные свойства алюминия в строительстве
Строительство – одна из основных отраслей-потребителей алюминия. 25 % всего вырабатываемого металла используется именно в ней. Современный облик мегаполисов был бы невозможен без использования алюминия. Он дает возможность создавать функциональные и красивые здания, стремящиеся ввысь. Небоскребы офисных центров имеют фасады из стекла, закрепленные на прочных, легких рамах из алюминия.
Современные торговые, развлекательные и выставочные центры в основе своей имеют каркас из алюминия. Конструкции из данного металла используются для возведения бассейнов, стадионов и других спортивных строений. Алюминий – один из самых востребованных у архитекторов, строителей, дизайнеров металлов. Почему? Давайте разберемся.
Алюминий – прочный и легкий металл, не поддающийся коррозии, имеющий долгий срок службы и совершенно нетоксичный. Он легко поддается обработке, сварке, паянию, его просто сверлить, распиливать, связывать и соединять шурупами. Этот металл способен принять любую форму посредством экструзии. Алюминий поможет воплотить самый смелый замысел архитектора. Из него изготавливаются конструкции, которые невозможно сделать из иных материалов: пластика, дерева или стали.
За прошлый век алюминий прошел путь от металла, редко используемого в строительстве из-за дороговизны и недостаточных объемов производства, до наиболее часто применяемого. 1920-е годы стали переломными. Благодаря электролизной технологии значительно снизилась стоимость его производства – в 5 раз. Алюминий стали применять в производстве стеновых панелей и водостоков, декоративных элементов, а не только для сводов и отделки крыш.
Empire State Building – первый небоскреб, при возведении которого широко применялся алюминий. Он был построен в 1931 году и оставался самым высоким в мире до 1970 г.
Алюминий активно использовался в конструкциях этого здания. В интерьере его также применяли достаточно широко. Фреска, расположенная на стенах и полке лобби, являющаяся визитной карточкой сооружения, сделана из алюминия и золота в 23 карата.
80 лет – таков минимальный срок эксплуатации конструкций из алюминия. Применение этого металла не ограничено климатическими условиями, его свойства остаются прежними при температурах от -80 °С и до +300 °C. Пожары редко могут разрушить алюминиевые сооружения. Низкие же температуры, наоборот, увеличивают его прочность.
Примером может служить алюминиевый сайдинг. Отражающее покрытие в виде фольги и теплоизоляция создают вместе с ним прекрасную защиту от холода, которая в 4 раза более эффективна, чем облицовка кирпичом толщиной 10 см или камнем толщиной 20 см. Именно поэтому алюминий все чаще можно встретить при строительстве объектов в условиях холодного климата: в РФ – на Северном Урале, в Якутии и Сибири.
Но еще более важным качеством алюминия является его легкость. При одинаковой жесткости пластина из алюминия в два раза легче стальной. И все благодаря низкому удельному весу. Если посчитать, то выйдет, что вес алюминиевой конструкции при равной несущей способности в два, а иногда и в три раза ниже массы стальной и в семь раз ниже железобетонной.
В настоящее время алюминий используют для строительства небоскребов и иных высоких строений. Металл делает здание значительно легче, что удешевляет постройку за счет меньшей глубины фундамента. Ведь чем больший вес имеют сооружения, тем фундамент должен быть глубже. Разводные мосты, выполненные из алюминия, также имеют небольшой вес, что облегчает работу механизмов, противовесы для таких конструкций должны быть минимальными. Данный металл вообще дает возможность архитекторам не ограничивать фантазию. Да и работать с таким легким материалом значительно проще, быстрее и удобнее.
Почему следует обращаться именно к нам
Мы с уважением относимся ко всем клиентам и одинаково скрупулезно выполняем задания любого объема.
Наши производственные мощности позволяют обрабатывать различные материалы:
- цветные металлы;
- чугун;
- нержавеющую сталь.
При выполнении заказа наши специалисты применяют все известные способы механической обработки металла. Современное оборудование последнего поколения дает возможность добиваться максимального соответствия изначальным чертежам.
Для того чтобы приблизить заготовку к предъявленному заказчиком эскизу, наши специалисты используют универсальное оборудование, предназначенное для ювелирной заточки инструмента для особо сложных операций. В наших производственных цехах металл становится пластичным материалом, из которого можно выполнить любую заготовку.
Преимуществом обращения к нашим специалистам является соблюдение ими ГОСТа и всех технологических нормативов. На каждом этапе работы ведется жесткий контроль качества, поэтому мы гарантируем клиентам добросовестно выполненный продукт.
Благодаря опыту наших мастеров на выходе получается образцовое изделие, отвечающее самым взыскательным требованиям. При этом мы отталкиваемся от мощной материальной базы и ориентируемся на инновационные технологические наработки.
Мы работаем с заказчиками со всех регионов России. Если вы хотите сделать заказ на металлообработку, наши менеджеры готовы выслушать все условия. В случае необходимости клиенту предоставляется бесплатная профильная консультация.
Источник
Где и как применяют алюминий?
В наше время в мире производится более 50 миллионов тонн алюминия в год, например, в 2008 году по данным американской Алюминиевой Ассоциации – 53 миллиона тонн.
- Куда же идет весь этот алюминий?
- В каких отраслях промышленности применяется?
- Где мы с ним сталкиваемся в повседневной жизни?
Потребление алюминия на душу населения
Душевое потребление алюминия в развитых странах мира по состоянию на 1997 года показано на рисунке ниже.
Потребление алюминия на душу населения в Японии, США и Европе (1997 год) [4]
Потребление в промышленности и жизни
На рисунке ниже показаны восемь секторов промышленности и строительства, в которых применение алюминия происходит особенно активно. Процентные доли по различным секторам промышленности в общем потреблении представлены по статистическим данным Международного Института алюминия за 2007 год. С тех пор, думается, картина в целом не изменилась, и эти данные вполне актуальны.
Применение алюминия в готовой промышленной продукции [1]
Основными отраслями промышленности, которые активно применяют алюминий, являются:
- Строительство
- Упаковывание продукции
- Электрическая промышленность
- Транспортное машиностроение
- Производство машин и оборудования
- Производство товаров для повседневной жизни
- Порошковая металлургия
- Раскисление стали в черной металлургии
Строительство
Алюминиевые окна и фасады
Основными алюминиевыми сплавами, которые находят применение в строительной промышленности, являются сплавы 6063 и 6060, а также сплав 6082 (в Европе) и сплав 6061 (в Северной Америке). Они обладают довольно высокой прочностью (6082 и 6061 – до 400 МПа) и хорошей коррозионной стойкостью.
Оконные алюминиевые профили с терморазвязкой (сплавы 6060/6063)
Важнейшие конструкционные характеристики алюминия, которые определяют применение алюминия как материала для оконных и дверных рам:
- прочность для обеспечения жесткости и безопасности;
- способность принимать сложные формы (обеспечивается экструзией);
- привлекательный внешний вид;
- коррозионная стойкость;
- минимальная потребность в техническом обслуживании.
Навесной фасад с алюминиевым каркасом (сплавы 6060/6063)
Стоечно-ригельный фасад
Алюминиевая кровля и алюминиевая облицовка зданий
Декоративные и защитные профилированные облицовочные материалы часто изготавливают из катаных алюминиевых листов. Различные виды декоративных и защитных покрытий делают их идеальными материалами для применение в качестве кровельного материала.
Применение для кровли и облицовки зданий обеспечивают следующие свойства алюминия:
- низкая масса, благодаря низкой плотности;
- стойкость к воде;
- коррозионная стойкость;
- декоративный вид.
Алюминиевая кровля
Транспорт
Алюминий в легковых автомобилях
Средняя масса алюминия в легковых автомобилях в Европе в 2006 составляла около 118 кг и продолжала увеличиваться. Его доля в различных компонентах и деталях автомобилей составляет (в килограммах на один автомобиль):
- блоки цилиндров двигателей: 40,3
- трансмиссия: 16,3
- шасси, подвеска и управление: 12,5
- колеса: 17,7
- теплообменник: 12,3
- тормоза: 3,7
- кузов: 6,8
- тепловые экраны: 1,4
- бамперы: 2,8
- другие компоненты: 3,9.
Алюминиевый блок цилиндров автомобиля
Алюминиевый автомобильный колесный диск
Применение алюминия для изготовления автомобильных деталей обусловлено следующими его свойствами:
- низкая плотность;
- прочность;
- жесткость;
- вязкость;
- стоимость;
- коррозионная стойкость.
Алюминиевая рама автомобиля
Алюминиевые сплавы для грузовых автомобилей
Алюминиевые сплавы для автомобильных цистерн [5]
Производство алюминиевых автомобильных цистерн [5]
Алюминиевые сплавы для кузовов самосвалов [5]
Производство алюминиевых кузовов самосвалов [5]
Алюминиевые сплавы для автомобильных фургонов [5]
Алюминиевые сплавы для шасси грузовых автомобилей [5]
Алюминий в вагоностроении
Конструкция высокоскоростного поезда Intercity Express
из прессованных алюминиевых профилей – Германия, 1992
Алюминиевый вагон городского рельсового транспорта [7]
Грузовой алюминиевый вагон для перевозки угля [7]
Алюминий в судостроении
Алюминевый патрульный катер
Круизный лайнер с алюминиевой надстройкой [5]
Алюминиевая яхта-катамаран [5]
Алюминиевые сплавы для самолетов
Первый самолет братьев Райт в 1903 году был в основном деревянным с алюминиевым двигателем.
Среди алюминиевых сплавов, которые применяют в самолетостроении доминируют высокопрочные деформируемые сплавы, такие как, сплав 2024 (содержащий медь и магний) и сплав 7075 (содержащий магний, цинк и немного меди). Большинство алюминиевых сплавов, которые применяются в самолетостроении, являются несвариваемыми и их соединяют в основном заклепками.
На рисунках ниже показано применение сплавов серии 2ххх для изготовления фюзеляжа самолета и сплавов серии 7ххх – для крыльев.
(a)
(б)
Применение алюминиевых сплавов в самолетостроении:
а – сплавы серии 7ххх для фюзеляжа и б – сплавы серии 2ххх для крыльев [2].
Аэробус А380
Основные требования к алюминиевым сплавам в аэрокосмической промышленности:
- низкая плотность;
- высокая прочность;
- точность механической обработки;
- коррозионная стойкость;
- стоимость.
Космическая техника
Первым, кто понял огромный потенциал алюминия для космоса, был великий писатель-писатель Жюль Верн. В своем романе «Путешествие на Луну» от еще в 1865 году детально описал ракету из алюминия.
Алюминиевые сплавы для космических аппаратов
Корпус первого советского спутника, который был запущен в октябре 1957 года, был изготовлен из алюминиево-магниевого сплава АМг6 с содержанием магния 6 %. Алюминиево-магниевые сплавы остаются основным материалом для изготовления корпусов ракет. Во внутренних отсеках ракет применяются и дюралевые алюминиевые сплавы.
Первый искусственный космический объект – советский Спутник 1
В последние десятилетия 20-го века в космических аппаратах стали применяться алюминиево-литиевые сплавы. Плотность лития составляет всего 0,533 г/см3 – он легче воды. Добавки лития в алюминий в количестве до 2,5 % снижают плотность алюминиевого сплава , а также повышают его модуль упругости. Так, сплав 8090 имеет плотность на 10 % ниже, а модуль упругости на 11 % выше, чем у популярных в самолетостроении сплавов 2024 и 2014. На рисунке ниже показано колесо марсохода Curiosity из алюминиевого сплава 7075.
Колесо марсохода Curiosity из алюминиевого сплава 7075-Т7351
Алюминий применяется также в качестве связующего материала в бороалюминиевых композитах, которые в настоящее время также применяются в космической технике.
Бороалюминиевый композит (40 % волокон бора)
Порошковый алюминий – компонент ракетного топлива
Высокая химическая активность алюминия дает возможность применять его в составе ракетного топлива для твердотопливных ускорителей в разрабатываемой NASA системе космических запусков (SLS).
В ракетных ускорителях алюминиевый порошок и перхлорат аммиака соединяются вместе с помощью специального связующего вещества. Эта смесь, похожая на материал стирательной резинки, помещается затем в стальной корпус [3].
Когда эта смесь загорается, кислород из перхлората аммиака соединяется с алюминием с образованием оксида алюминия, хлорида алюминия, водяного пара и газообразного азота, а также с выделением огромного количества энергии.
Алюминий входит в состав твердого топлива для ракетных ускорителей NASA [3]
Упаковка продуктов
Катаный алюминий – ленты и фольга – применяют в упаковке сыпучих и жидких продуктов. Алюминиевая упаковка сопровождает нас повсюду в нашей жизни – это, например, алюминиевые банки и бутылки, фольга в упаковке продуктов и лекарств. Алюминий обладает низкой плотностью, совместимостью с продуктами и напитками и привлекательным внешним видом. Это делает его идеальным материалом для различных видов упаковки: жестких (банки) и мягких (фольга).
Алюминиевые банки для упаковки пищевых продуктов [6]
Алюминиевые банки
Из алюминия изготавливают 75 % банок для напитков и 15 % емкостей для аэрозолей. Алюминиевые банки обеспечивают значительное снижение веса упаковки по сравнению с аналогичными стальными банками.
Корпус банки изготавливают из сплава серии 3000 (алюминиево-марганцевые сплавы), который после глубокой высадки раскатывают до толщины стенки 0,27 мм.
Крышка банки составляет 25 % ее веса. Ее изготавливают из более прочного алюминиево-магниевого сплава. Встроенный в банку рычаг-“открывашка”, который крепится к банке на интегральной заклепке, состоит из другого алюминиево-магниевого сплава. Эту заклепку накатывают из тела крышки при ее изготовлении.
Алюминиевая банка для упаковки пива и прохладительных напитков
Требования к алюминиевым сплавам для упаковочного сектора промышленности:
- низкая плотность;
- прочность;
- хорошая формуемость;
- совместимость с продуктами и напитками;
- декоративность (способность к нанесению рисунков и надписей);
- стоимость.
Упаковочная фольга
Алюминиевую фольгу обычно изготавливают из марок технического алюминия серии 1000. Свойства алюминия, которые обеспечивают возможность его применения в качестве материала для изготовления фольги, следующие:
- прочность и непроницаемость для жидкостей и газов при малой толщине;
- низкая плотность;
- термическая проводимость;
- теплостойкость;
- стойкость к проникновению газов и жидкостей;
- совместимость с продуктами и напитками;
- эстетический и декоративный потенциал.
Алюминиевая упаковочная фольга
Провода и кабели
Высокая электрическая проводимость марок алюминия серии 1000, а также алюминиевых сплавов серии 8000, делает их весьма подходящими для изготовления электрических проводников. Алюминиевые проводники применяют в следующих случаях:
- распределительные электрические подстанции;
- силовые системы высотных зданий;
- высоковольтные линии электропередач;
- большинство подземных линий электропередач;
- силовые кабели для промышленного применения.
Большая часть алюминия в электротехнической промышленности применяется в виде кабелей (8 из 13 %). Однако его применяют также и в виде электрических шин для оборудования с большой силой тока, а также для питания электричеством больших зданий. Кроме того, кабели для промышленных, торговых и жилых зданий могут содержать много изолированных проводников, которые помещают в общий защитный алюминиевый рукав.
Требования к алюминию, который применяется для электротехнических приложений:
- приемлемая стоимость;
- достаточно высокая электрическая проводимость;
- коррозионная стойкость;
- прочность.
Машины и оборудование
Отопительные и вентиляционные системы
Алюминиевые сплавы серий 3000, 5000 и 6000 обладают хорошей термической проводимостью. В комбинации с высокой прочностью эти сплавы являются хорошим выбором для применения в системах обогрева и вентиляции. Эти системы включают следующие компоненты, в которых применяют алюминиевые сплавы:
- компрессоры;
- конденсеры/испарители;
- расширительные клапаны;
- вентиляторы;
- трубы.
Свойства алюминия, которые важны для отопительных и вентиляционных систем:
- высокая теплопроводность;
- высокий контактный коэффициент;
- малая плотность;
- высокая коррозионная стойкость.
Потребительские товары
Алюминий в больших объемах применяется при изготовлении различных компонентов, деталей и корпусов многих потребительских изделий, которые окружают нашу жизнь – бытовых товаров, например, холодильников, морозильников, посудомоечных машин. Холодильники и морозильники содержать холодильные агрегаты, которые, как упоминалось выше, также содержат значительное количество алюминия. Важными свойствами алюминия для потребительских товаров являются:
- эстетические свойства;
- коррозионная стойкость;
- прочность;
- высокая теплопроводность (для холодильных агрегатов).
Медицина
Оборудование и инструменты
Анодированный алюминий широко применяется для изделий и деталей в медицинском и зубоврачебном оборудовании, в том числе:
- Внутренняя отделка больничных палат и медицинских кабинетов
- Инструменты, которые способны выдерживать регулярную стерилизацию в автоклаве
- Больничные кровати, носилки, коляски и другие средства для перемещения пациентов
- Оборудование для медицинского кислорода
- Зубоврачебное оборудование и инструменты
- Рентгеновские аппараты
- Оборудование для диализа.
Упаковка лекарств
Алюминиевая фольга является непревзойденным барьером, который надежно защищает лекарства от микроорганизмов, солнечного света, кислорода и других газов. Поэтому эта фольга является основным материалом для защитной упаковки лекарств и фармацевтических материалов.