Какие свойства диодов используются в выпрямителях

Выпрямительный диод это прибор проводящий ток только в одну сторону. В основе его конструкции один p-n переход и два вывода. Такой диод изменяет ток переменный на постоянный. Помимо этого, их повсеместно практикуют в электросхемах умножения напряжения, цепях, где отсутствуют жесткие требования к параметрам сигнала по времени и частоте.
Принцип работы
Принцип работы этого устройства основывается на особенностях p-n перехода. Возле переходов двух полупроводников расположен слой, в котором отсутствуют носители заряда. Это запирающий слой. Его сопротивление велико.
При воздействии на слой определенного внешнего переменного напряжения, толщина его становится меньше, а впоследствии и вообще исчезнет. Возрастающий при этом ток называют прямым. Он проходит от анода к катоду. Если внешнее переменное напряжение будет иметь другую полярность, то запирающий слой будет больше, сопротивление возрастет.
Разновидности устройств, их обозначение
По конструкции различают приборы двух видов: точечные и плоскостные. В промышленности наиболее распространены кремниевые (обозначение — Si) и германиевые (обозначение — Ge). У первых рабочая температура выше. Преимущество вторых — малое падение напряжения при прямом токе.
Принцип обозначений диодов – это буквенно-цифровой код:
- Первый элемент – обозначение материала из которого он выполнен,
- Второй определяет подкласс,
- Третий обозначает рабочие возможности,
- Четвертый является порядковым номером разработки,
- Пятый – обозначение разбраковки по параметрам.
Вольт-амперная характеристика
Вольт-амперную характеристику (ВАХ) выпрямительного диода можно представить графически. Из графика видно, что ВАХ устройства нелинейная.
В начальном квадранте Вольт-амперной характеристики ее прямая ветвь отражает наибольшую проводимость устройства, когда к нему приложена прямая разность потенциалов. Обратная ветвь (третий квадрант) ВАХ отражает ситуацию низкой проводимости. Это происходит при обратной разности потенциалов.
Реальные Вольт-амперные характеристики подвластны температуре. С повышением температуры прямая разность потенциалов уменьшается.
Из графика Вольт-амперной характеристики следует, что при низкой проводимости ток через устройство не проходит. Однако при определенной величине обратного напряжения происходит лавинный пробой.
ВАХ кремниевых устройств отличается от германиевых. ВАХ приведены в зависимости от различных температур окружающей среды. Обратный ток кремниевых приборов намного меньше аналогичного параметра германиевых. Из графиков ВАХ следует, что она возрастает с увеличением температуры.
Важнейшим свойством является резкая асимметрия ВАХ. При прямом смещении – высокая проводимость, при обратном – низкая. Именно это свойство используется в выпрямительных приборах.
Коэффициент выпрямления
Анализируя приборные характеристики, следует отметить: учитываются такие величины, как коэффициент выпрямления, сопротивление, емкость устройства. Это дифференциальные параметры.
Он отражает качество выпрямителя.
Его можно рассчитать: он будет равен отношению прямого тока прибора к обратному. Такой расчет приемлем для идеального устройства. Значение коэффициента выпрямления может достигать нескольких сотен тысяч. Чем он больше, тем лучше выпрямитель делает свою работу.
Основные параметры устройств
Какие же параметры характеризуют приборы? Основные параметры выпрямительных диодов:
- Наибольшее значение среднего прямого тока,
- Наибольшее допустимое значение обратного напряжения,
- Максимально допустимая частота разности потенциалов при заданном прямом токе.
Исходя из максимального значения прямого тока, выпрямительные диоды разделяют на:
- Приборы малой мощности. У них значение прямого тока до 300 мА,
- Выпрямительные диоды средней мощности. Диапазон изменения прямого тока от 300 мА до 10 А,
- Силовые (большой мощности). Значение более 10 А.
Существуют силовые устройства, зависящие от формы, материала, типа монтажа. Наиболее распространенные из них:
- Силовые приборы средней мощности. Их технические параметры позволяют работать с напряжением до 1,3 килоВольт,
- Силовые, большой мощности, могущие пропускать ток до 400 А. Это высоковольтные устройства. Существуют разные корпуса исполнения силовых диодов. Наиболее распространены штыревой и таблеточный вид.
Выпрямительные схемы
Схемы включения силовых устройств бывают различными. Для выпрямления сетевого напряжения они делятся на однофазные и многофазные, однополупериодные и двухполупериодные. Большинство из них однофазные. Ниже представлена конструкция такого однополупериодного выпрямителя и двух графиков напряжения на временной диаграмме.
Переменное напряжение U1 подается на вход (рис. а). Справа на графике оно представлено синусоидой. Состояние диода открытое. Через нагрузку Rн протекает ток. При отрицательном полупериоде диод закрыт. Поэтому к нагрузке подводится только положительная разность потенциалов. На рис. в отражена его временная зависимость. Эта разность потенциалов действует в течение одного полупериода. Отсюда происходит название схемы.
Самая простая двухполупериодная схема состоит из двух однополупериодных. Для такой конструкции выпрямления достаточно двух диодов и одного резистора.
Диоды пропускают только положительную волну переменного тока. Недостатком конструкции является то, что в полупериод переменная разность потенциалов снимается лишь с половины вторичной обмотки трансформатора.
Если в конструкции вместо двух диодов применить четыре коэффициент полезного действия повысится.
Выпрямители широко используются в различных сферах промышленности. Трехфазный прибор задействован в автомобильных генераторах. А применение изобретенного генератора переменного тока способствовало уменьшению размеров этого устройства. Помимо этого, увеличилась его надежность.
В высоковольтных устройствах широко применяют высоковольтные столбы, которые скомпонованы из диодов. Соединены они последовательно.
Импульсные приборы
Импульсным называют прибор, у которого время перехода из одного состояния в другое мало. Они применяются для работы в импульсных схемах. От своих выпрямительных аналогов такие приборы отличаются малыми емкостями p-n переходов.
Для приборов подобного класса, кроме параметров, указанных выше, следует отнести следующие:
- Максимальные импульсные прямые (обратные) напряжения, токи,
- Период установки прямого напряжения,
- Период восстановления обратного сопротивления прибора.
В быстродействующих импульсных схемах широко применяют диоды Шотки.
Импортные приборы
Отечественная промышленность производит достаточное количество приборов. Однако сегодня наиболее востребованы импортные. Они считаются более качественными.
Импортные устройства широко используются в схемах телевизоров и радиоприемников. Их также применяют для защиты различных приборов при неправильном подключении (неправильная полярность). Количество видов импортных диодов разнообразно. Полноценной альтернативной замены их на отечественные пока не существует.
Источник
Одним из электронных устройств, широко использующихся в различных схемах, является выпрямительный диод, с помощью которого переменный ток преобразуется в постоянный. Его конструкция создана в виде двухэлектродного прибора с односторонней электрической проводимостью. Выпрямление переменного тока происходит на переходах металл-полупроводник и полупроводник-металл. Точно такой же эффект достигается в электронно-дырочных переходах некоторых кристаллов – германия, кремния, селена. Эти кристаллы во многих случаях используются в качестве основных элементов приборов.
Принцип работы выпрямительного диода
Выпрямительные диоды применение нашли в различных электронных, радиотехнических и электрических устройствах. С их помощью осуществляется замыкание и размыкание цепей, детектирование и коммутация импульсов и электрических сигналов, а также другие аналогичные преобразования.
Каждый диод оборудуется двумя выводами, то есть электродами – анодом и катодом. Анод соединяется с р-слоем, а катод – с n-слоем. В случае прямого включения диода на анод поступает плюс, а на катод – минус. В результате, через диод начинает проходить электрический ток.
Если же подачу тока выполнить наоборот – к аноду подать минус, а к катоду – плюс получится так называемое обратное включение диода. В этом случае течения тока уже не будет, на что указывает вольтамперная характеристика выпрямительного диода. Поэтому при поступлении на вход переменного напряжения, через диод будет проходить только одна полуволна.
Представленный рисунок наглядно отражает вольтамперную характеристику диода. Ее прямая ветвь расположена в первом квадранте графика. Она описывает диод в состоянии высокой проводимости, когда к нему приложено прямое напряжение. Данная ветвь выражается в виде кусочно-линейной функции u = U + RД x i, в которой u представляет собой напряжением на вентиле во время прохождения тока i. Соответственно, U и RД являются пороговым напряжением и динамическим сопротивлением.
Третий квадрант содержит обратную ветвь вольтамперной характеристики, указывающей на низкую проводимость при обратном напряжении, приложенном к диоду. В этом состоянии течение тока через полупроводниковую структуру практически отсутствует.
Данное положение будет правильным лишь до определенного значения обратного напряжения. В этом случае напряженность электрического поля в области p-n-перехода может достичь уровня 105 В/см. Такое поле сообщает электронам и дыркам – подвижным носителям заряда, кинетическую энергию, способную вызвать ионизацию нейтральных атомов кремния.
Стандартная структура выпрямительного диода предполагает наличие дырок и электронов проводимости, постоянно возникающих под действием термической генерации по всему объему структуры проводника. В дальнейшем происходит их ускорение под действием электрического поля p-n-перехода. То есть электроны и дырки также участвуют в ионизации нейтральных атомов кремния. В этом случае обратный ток нарастает лавинообразно, возникают так называемые лавинные пробои. Напряжение, при котором резко повышается обратный ток, обозначается на рисунке в виде напряжения пробоя U3.
Основные параметры выпрямительных диодов
Определяя параметры выпрямительных элементов, следует учитывать следующие факторы:
- Разница потенциалов, максимально допустимая при выпрямлении тока, когда устройство еще не может выйти из строя.
- Максимальное значение среднего выпрямленного тока.
- Максимальный показатель обратного напряжения.
Выпрямительные устройства выпускаются различной формы и могут монтироваться разными способами.
В соответствии с физическими характеристиками, они разделяются на следующие группы:
- Выпрямительные диоды большой мощности, пропускная способность которых составляет до 400 А. Они относятся к категории высоковольтных и выпускаются в двух видах корпусов. Штыревой корпус изготавливается из стекла, а таблеточный – из керамики.
- Выпрямительные диоды средней мощности с пропускной способностью от 300 мА до 10 А.
- Маломощные выпрямительные диоды с максимально допустимым значением тока до 300 мА.
Выбирая то или иное устройство, необходимо учитывать вольтамперные характеристики обратного и пикового максимальных токов, максимально допустимое прямое и обратное напряжение, среднюю силу выпрямленного тока, а также материал изделия и тип его монтажа. Все основные свойства выпрямительного диода и его параметры наносятся на корпус в виде условных обозначений. Маркировка элементов указывается в специальных справочниках и каталогах, ускоряя и облегчая их выбор.
Схемы с использованием выпрямительных диодов отличаются количеством фаз:
- Однофазные нашли широкое применение в бытовых электроприборах, автомобилях и аппаратуре для электродуговой сварки.
- Многофазные используются в промышленном оборудовании, специальном и общественном транспорте.
В зависимости от используемого материала, выпрямительные диоды и схемы с диодами могут быть германиевыми или кремниевыми. Чаще всего применяется последний вариант, благодаря физическим свойствам кремния. Данные диоды обладают значительно меньшей величиной обратных токов при одном и том же напряжении, поэтому допустимое обратное напряжение имеет очень высокую величину, в пределах 1000-1500 вольт.
Для сравнения, у германиевых диодов эта величина составляет 100-400 В. Кремниевые диоды сохраняют работоспособность в температурном диапазоне от – 60 до + 150 градусов, а германиевые – только в пределах от – 60 до + 850С. Электронно-дырочные пары при температуре, превышающей это значение, образуются с большой скоростью, что приводит к резкому увеличению обратного тока и снижению эффективности работы выпрямителя.
Схема включения выпрямительного диода
Простейший выпрямитель работает по следующей схеме. На вход подается переменное напряжение сети с положительными и отрицательными полупериодами, окрашенными соответственно в красный и синий цвета. На выходе подключается обычная нагрузка RH, а выпрямляющим элементом будет диод VD.
Когда на анод поступают положительные полупериоды напряжения, происходит открытие диода. В этот период через диод и нагрузку, запитанную от выпрямителя, будет протекать прямой ток диода Iпр. На графике, расположенном справа, эта волна обозначена красным цветом.
При поступлении на анод отрицательных полупериодов напряжения, наступает закрытие диода, и во всей цепи начинается течение незначительного обратного тока. В данном случае отрицательная полуволна переменного тока отсекается диодом. Эту отсеченную полуволну обозначает синяя прерывистая линия. На схеме условное обозначение выпрямительного диода такое же, как обычно, только поверх значка проставляются символы VD.
В результате, через нагрузку, подключенную через диод к сети, будет протекать уже не переменный, а пульсирующий ток одного направления. Фактически, это и есть выпрямленный переменный ток. Однако такое напряжение подходит лишь для нагрузок малой мощности, запитанных от сети переменного тока. Это могут быть лампы накаливания, которым не требуются особые условия питания. В этом случае напряжение будет проходить через лампу лишь во время импульсов – положительных волн. Наблюдается слабое мерцание лампы с частотой 50 Гц.
При подключении питания с таким же напряжением к приемнику или усилителю мощности, в громкоговорителе или колонках, будет слышен гул с низкой тональностью, частотой 50 Гц, известный как фон переменного тока. В этих случаях аппаратура начинает «фонить». Причиной такого состояния считается пульсирующий ток, проходящий через нагрузку и создающий в ней пульсирующее напряжение. Именно оно и создает фон.
Данный недостаток частично устраняется путем параллельного подключения к нагрузке фильтрующего электролитического конденсатора Сф с большой емкостью. В течение положительных полупериодов он заряжается импульсными токами, а во время отрицательных – разряжается с помощью нагрузки RH. Большая емкость конденсатора позволяет поддерживать на нагрузке непрерывный ток в течение всех полупериодов – положительных и отрицательных. На графике такой ток представляет собой сплошную волнистую линию красного цвета.
Тем не менее, данный сглаженный ток все равно не обеспечивает нормальную работу, поскольку половина входного напряжения теряется при выпрямлении, когда задействуется только один полупериод. Этот недостаток компенсируют мощные выпрямительные диоды, собранные вместе в так называемый диодный мост. Данная схема состоит из четырех элементов, что позволяет пропускать ток в течение всех полупериодов. За счет этого преобразование переменного тока в постоянный происходит значительно эффективнее.
Источник
Основное предназначение выпрямительных диодов состоит в изменении характера переменного тока для последующего превращения его в постоянный. Данные радиокомпоненты находят применение в цепях согласования и развязки, умножителях напряжения и других устройствах без жёстких требований по частотным характеристикам сигналов. Чаще всего эти элементы используются для выпрямления переменного тока промышленной частоты 50 Гц.
Данные радиокомпоненты входят в состав выпрямителей переменного тока и блоков питания. Правда, в этом случае обычно используются не дискретные выпрямительные диоды, а так называемый диодный мост. Самый простой мост состоит из четырёх диодов. С его выхода снимается практически идеальный постоянный ток, который нуждается лишь в незначительной коррекции, для чего используются цепи, состоящие из резисторов и конденсаторов.
Основными электрическими параметрами выпрямительных диодов являются следующие:
- Максимальное постоянное обратное напряжение;
- Максимальное импульсное обратное напряжение;
- Максимальный прямой ток;
- Максимальный импульсный прямой ток;
- Постоянное прямое напряжение;
- Общая емкость диода;
- Обратный ток диода при предельном обратном напряжении;
- Рабочая частота диода;
- Рассеиваемая мощность на диоде.
Кроме того, радиокомпоненты классифицируются по температуре окружающего воздуха, при которой диод исполняет свои функции.
Особенности выпрямительного диода
Главная отличительная особенность диодов этого типа состоит в том, что в их конструкции используются так называемые плоскостные p-n-переходы, обеспечивающие нормальные условия для протекания прямого тока. Однако подобные переходные зоны обладают значительной ёмкостью, которая ограничивает рабочую частоту радиокомпонентов.
Поскольку выпрямительные диоды оперируют достаточно высокими мощностями, важную роль при их эксплуатации играет такое явление, как пробой. Принципиально его можно описать следующим образом. При росте обратного напряжения выше некоей пороговой величины в полупроводниках начинают протекать физико-химические процессы, приводящие к появлению обратной проводимости. Такой диод начинает беспрепятственно пропускать электрический ток в обоих направлениях, то есть перестаёт исполнять свою ключевую функцию.
Существует несколько видов пробоя – лавинный, туннельный, тепловой. Их концептуальное различие заключается в возможности восстановления диода после пробоя. Если после лавинного и туннельного радиодеталь при некоторых условиях может восстановиться и продолжать нормально работать, то тепловой пробой почти гарантированно приводит к фатальному выходу диода из строя.
Исполнение выпрямительных диодов
Для изготовления данных радиокомпонентов используются два полупроводника – кремний и германий. Кремниевые элементы выгоднее в функциональном отношении, так как их обратный ток гораздо меньше того же параметра германиевых изделий. Кроме того, выпрямительные диоды на основе кремния не так критичны в отношении нагрева, как германиевые, поэтому могут работать при более высокой температуре. Однако с этим связан существенный минус кремниевых элементов – если они пробиваются обратным напряжением, то пробой носит тепловой характер. Это означает, что пробитый диод из кремния почти всегда приходится заменять новым.
В большинстве случаев выпрямительные диоды заключаются в мощные металлические корпуса, которые обеспечивают не только механическую прочность изделий, но и нормальное теплоотведение. Выпрямительные диоды в сравнении с другими типами крупнее. Особенно большими являются высоковольтные устройства, рассчитанные на оперирование большими мощностями. Такие диоды используются на электрических подстанциях и прочих объектах электроэнергетической отрасли.
Источник