Какие свойства характерны для большинства органических веществ

Какие свойства характерны для большинства органических веществ thumbnail

Характерные свойства органических соединений

Органические вещества обладают рядом характерных особенностей, среди которых наиболее важные:

  • атомы углерода в молекулах органических соединений способны соединяться друг с другом;
  • атомы углерода в молекулах органических соединений образуют цепи и кольца, что является одной из причин многообразия органических соединений;
  • связи между атомами в молекулах органических соединений ковалентные. В своем большинстве органические вещества являются неэлектролитами, т.е. не диссоциируют на ионы в растворах, а также сравнительно медленно взаимодействуют друг с другом.
  • для органических соединений характерно явление изомерии, в связи с чем имеется множество соединений углерода, которые обладают одинаковым качественным и количественным составом, одинаковой молекулярной массой, но совершенно различными физическими и даже химическими свойствами;
  • многие органические соединения являются непосредственными носителями, участниками или продуктами процессов, которые протекают в живых организмах, – ферменты, гормоны, витамины.

Физические свойства органических соединений

Чаще всего органические соединения представляют собой газы, жидкости или низкоплавкие твердые вещества. Большое число твердых органических веществ плавится в интервале сравнительно невысоких температур (от комнатной до 400 °С).

Взаимное влияние атомов в молекулах органических соединений

Взаимное влияние атомов в молекуле передается через систему ковалентных связей с помощью электронных эффектов. Электронным эффектом называют смещение электронной плотности в молекуле под влиянием заместителей.

Индуктивный эффект (I) – смещение электронной плотности по цепи σ-связей.

Мезомерный эффект (M) — смещение электронной плотности по цепи π-связей.

-I (отрицательный индуктивный эффект): -Cl, -Br, -OH, -NH2;

+ I (положительный индуктивный эффект):-CH3, -C2H5;

-M (отрицательный мезомерный эффект): -CH=O, -COOH, -NO2;

+M (положительный мезомерный эффект):-OH, -NH2;

Химические свойства органических соединений

Реакции органических веществ классифицируют по типу разрыва связей на:

— радикальные реакции, протекающие с гомолитическим разрывом ковалентной связи

А:В → А. + В.

— ионные реакции, протекающие с гетеролитическим разрывом ковалентной связи

А:В → А:— + В+

По типу реакции:

— присоединение

RCH=CH2 +XY → RCHX + CH2Y

— замещение

RCH2X + Y → RCHY + X

— отщепление (элеменирование)

RCHX-CH2Y → RCH=CH2 + XY

— полимеризация

N(CH2=CH2) → (-CH2-CH2-)n

Окисление и восстановление в органической химии связывают с потерей и приобретением водорода и кислорода. Вещество окисляется, если оно теряет атомы Н и приобретает атомы О. Окислитель в общем виде обозначают [O].

Вещество восстанавливается, если оно приобретает атом Н и (или) теряет атомы О. Восстановитель в общем виде обозначается [H].

Генетическая связь между классами органических соединений

Генетические ряды органических соединений выглядит следующим образом:

Генетические ряды органических соединений

Рассмотрим на примере ряда этана:

CH3-CH3 +Cl2→ CH3-CH2Cl + HCl (получение из алканов галогеналканов)

CH3-CH3 → CH2=CH2 + H2↑ (получение из алканов алкенов)

CH2=CH2 → C2H2 + H2↑ (получение из алкенов алкинов)

CH2=CH2 + H2O → C2H5OH (получение из алкенов предельных одноатомных спиртов)

C2H5OH + [O] → CH3CHO + H2O (получение из предельных одноатомных спиртов альдегидов)

CH3CHO + [O] → CH3COOH (получение из альдегидов предельных одноосновных карбоновых кислот)

CH3COOH + Cl2 → CH2Cl-COOH (получение из предельных одноосновных карбоновых кислот хлорзамещенных карбоновых кислот)

CH2Cl-COOH + NH3→ NH2-CH2– COOH + HCl (получение хлорзамещенных карбоновых кислот аминокислот)

получение из аминокислот пептидов

(получение из аминокислот пептидов)

Примеры решения задач

Источник

Метан, CH4; одно из простейших органических веществ

Органи́ческие соединения, органические вещества́ — вещества, относящиеся к углеводородам или их производным, то есть это класс химических соединений, объединяющий почти все химические соединения, в состав которых входит углерод[1] (за исключением карбидов, угольной кислоты, карбонатов, некоторых оксидов углерода, роданидов, цианидов).

Органические соединения редки в земной коре, но обладают большой важностью, потому что все известные формы жизни основаны на органических соединениях. Такие вещества часто включены в дальнейший круговорот жизни, как например органические вещества почвы (к слову, годовая продукция биосферы составляет 380 млрд.т)[2]. Основные дистилляты нефти считаются строительными блоками органических соединений[3]. Органические соединения, кроме углерода (C), чаще всего содержат водород (H), кислород (O), азот (N), значительно реже — серу (S), фосфор (P), галогены (F, Cl, Br, I), бор (B) и некоторые металлы (порознь или в различных комбинациях)[4].

История[править | править код]

Название органические вещества появилось на ранней стадии развития химии во времена господства виталистических воззрений, продолжавших традицию Аристотеля и Плиния Старшего о разделении мира на живое и неживое. В 1807 году шведский химик Якоб Берцелиус предложил назвать вещества, получаемые из организмов, органическими, а науку, изучающую их, — органической химией. Считалось, что для синтеза органических веществ необходима особая «жизненная сила» (лат. vis vitalis), присущая только живому, и поэтому синтез органических веществ из неорганических невозможен. Это представление было опровергнуто Фридрихом Вёлером, учеником Берцелиуса, в 1829 году путём синтеза «органической» мочевины из «минерального» цианата аммония, однако деление веществ на органические и неорганические сохранилось в химической терминологии и по сей день.

Количество известных органических соединений составляет почти 27 млн.
Таким образом, органические соединения — самый обширный класс химических соединений. Многообразие органических соединений связано с уникальным свойством углерода образовывать цепочки из атомов, что в свою очередь обусловлено высокой стабильностью (то есть энергией) углерод-углеродной связи. Связь углерод-углерод может быть как одинарной, так и кратной — двойной, тройной. При увеличении кратности углерод-углеродной связи возрастает её энергия, то есть стабильность, а длина уменьшается. Высокая валентность углерода — 4, а также возможность образовывать кратные связи, позволяет образовывать структуры различной размерности (линейные, плоские, объёмные).

Классификация[править | править код]

Основные классы органических соединений биологического происхождения — белки, липиды, углеводы, нуклеиновые кислоты — содержат, помимо углерода, преимущественно водород, азот, кислород, серу и фосфор. Именно поэтому «классические» органические соединения содержат прежде всего водород, кислород, азот и серу — несмотря на то, что элементами, составляющими органические соединения, помимо углерода могут быть практически любые элементы.

Соединения углерода с другими элементами составляют особый класс органических соединений — элементоорганические соединения. Металлоорганические соединения содержат связь металл-углерод и составляют обширный подкласс элементоорганических соединений.

Характерные свойства[править | править код]

Существует несколько важных свойств, которые выделяют органические соединения в отдельный, ни на что не похожий класс химических соединений.

  • Органические соединения обычно представляют собой газы, жидкости или легкоплавкие твёрдые вещества, в отличие от неорганических соединений, которые в большинстве своём представляют собой твёрдые вещества с высокой температурой плавления.
  • Органические соединения большей частью построены ковалентно, а неорганические соединения — ионно.
  • Различная топология образования связей между атомами, образующими органические соединения (прежде всего, атомами углерода), приводит к появлению изомеров — соединений, имеющих один и тот же состав и молекулярную массу, но обладающих различными физико-химическими свойствами. Данное явление носит название изомерии.
  • Явление гомологии — существование рядов органических соединений, в которых формула любых двух соседей ряда (гомологов) отличается на одну и ту же группу — гомологическую разницу CH2. Целый ряд физико-химических свойств в первом приближении изменяется симбатно (мера схожести зависимостей в математическом анализе) по ходу гомологического ряда. Это важное свойство используется в материаловедении при поиске веществ с заранее заданными свойствами.
  • Горючесть. [источник не указан 1447 дней]

Номенклатура[править | править код]

Органическая номенклатура — это система классификации и наименований органических веществ.
В настоящее время распространена номенклатура ИЮПАК.

Классификация органических соединений построена на важном принципе, согласно которому физические и химические свойства органического соединения в первом приближении определяются двумя основными критериями — строением углеродного скелета соединения и его функциональными группами.

В зависимости от природы углеродного скелета органические соединения можно разделить на ациклические и циклические. Среди ациклических соединений различают предельные и непредельные. Циклические соединения разделяются на карбоциклические (алициклические и ароматические) и гетероциклические.

  • Органические соединения
    • Углеводороды
      • Ациклические соединения
        • Предельные углеводороды (алканы)
        • Непредельные углеводороды
          • Алкены
          • Алкины
          • Алкадиены (диеновые углеводороды)
      • Циклические углеводороды
        • Карбоциклические соединения
          • Алициклические соединения
          • Ароматические соединения
        • Гетероциклические соединения
    • Функциональные производные углеводородов:
      • Спирты, Фенолы
      • Простые эфиры
      • Альдегиды, Кетоны
      • Карбоновые кислоты
      • Сложные эфиры
      • Жиры
      • Углеводы
        • Моносахариды
        • Олигосахариды
        • Полисахариды
        • Мукополисахариды
      • Амины
      • Аминокислоты
      • Белки
      • Нуклеиновые кислоты

Алифатические соединения[править | править код]

Алифатические соединения — органические вещества, не содержащие в структуре ароматических систем.

Углеводороды — Алканы — Алкены — Диены или Алкадиены — Алкины — Галогенуглеводороды — Спирты — Тиолы — Простые эфиры — Альдегиды — Кетоны — Карбоновые кислоты — Сложные эфиры — Углеводы или сахара — Нафтены — Амиды — Амины — Липиды — Нитрилы

Ароматические соединения[править | править код]

Ароматические соединения, или арены, — органические вещества, в структуру которых входит одна (или более) ароматическая циклическая система (см. Ароматизация).

Бензол-Толуол-Ксилол-Анилин-Фенол-Ацетофенон-Бензонитрил-
Галогенарены-Нафталин-Антрацен-Фенантрен-Бензпирен-Коронен-Азулен-Бифенил-Ионол.

Гетероциклические соединения[править | править код]

Гетероциклические соединения — вещества, в молекулярной структуре которых присутствует хотя бы один цикл с одним (или несколькими) гетероатомом.

Пиррол-Тиофен-Фуран-Пиридин

Полимеры[править | править код]

Полимеры представляют собой особый вид веществ, также известный как высокомолекулярные соединения. В их структуру обычно входят многочисленные сегменты (соединения) меньшего размера. Эти сегменты могут быть идентичны, и тогда речь идёт о гомополимере. Полимеры относятся к макромолекулам — классу веществ, состоящих из молекул очень большого размера и массы.
Полимеры могут быть органическими (полиэтилен, полипропилен, плексиглас и т. д.) или неорганическими (силикон); синтетическими (поливинилхлорид) или природными (целлюлоза, крахмал).

Структурный анализ[править | править код]

В настоящее время существует несколько методов характеристики органических соединений:

  • Кристаллография (рентгеноструктурный анализ) — наиболее точный метод, требующий, однако, наличия высококачественного кристалла достаточного размера для получения высокого разрешения. Поэтому пока этот метод не используется слишком часто.
  • Элементный анализ — деструктивный метод, использующийся для количественного определения содержания элементов в молекуле вещества.
  • Инфракрасная спектроскопия (ИК): используется главным образом для доказательства наличия (или отсутствия) определённых функциональных групп.
  • Масс-спектрометрия: используется для определения молекулярных масс веществ и способов их фрагментации.
  • Спектроскопия ядерного магнитного резонанса ЯМР.
  • Ультрафиолетовая спектроскопия (УФ): используется для определения степени сопряжения в системе.

См. также[править | править код]

  • Неорганические вещества
  • Органическая химия

Примечания[править | править код]

Источник

ЛЕКЦИЯ

Тема: Особенности органических веществ

Несмотря на отсутствие принципиальной разницы между неорганическими и органическими веществами (законы химии едины в отношении любых химических объектов), последние обладают некоторыми особенностями, которые послужили причиной выделения органической химии в отдельную область химической науки.

вещества

Органические вещества

Нет ни одного химического элемента, который входил бы в состав всех неорганических веществ.

Составной частью всех органических веществ является углерод.

В образовании неорганических веществ участвуют практически все элементы периодической системы. Так, глина и вода, питьевая сода и поваренная соль, сульфиды и нитраты и т. д. образованы атомами разных элементов.

В образовании органических веществ, кроме углерода, принимают участие небольшое число элементов; в их состав всегда входит водород, часто кислород и азот, реже сера, фосфор, галогены. Например, многие известные вам вещества состоят всего лишь из двух элементов —

углерода и водорода (метан, пропан, бензин, нефть, парафин и др.); из трех элементов — углерода, водорода и кислорода (спирты, органические кислоты, углеводы, жиры и др.).

Количество неорганических соединений исчисляется тысячами (около 500 тысяч).

Число органических соединений исчисляется миллионами (известно более 20 млн.).

Основой развития неорганической химии является периодический закон и периодическая система химических элементов Д. И. Менделеева.

Для органической химии основополагающей является теория химического строения А. М. Бутлерова, которая объясняет многообразие органических веществ, их свойства и превращения.

Некоторые элементы (сера, фосфор, кремний) способны образовывать недлинные (4— 8 атомов) цепи из одинаковых атомов.

Атомы углерода способны соединяться друг с другом, образуя цепи практически неограниченной длины и разного строения — прямые, разветвленные, циклические. Это одна из причин многообразия органических веществ.

В неорганических веществах проявляются ионные или полярные ковалентные связи. Поэтому неорганические вещества:

  • преимущественно имеют немолекулярное строение;

  • твердые, с высокой температурой плавления;

  • растворимы в воде;

  • электролиты.

В молекулах органических веществ связь атомов углерода с атомами других элементов слабополярная, а между атомами углерода — неполярная. Поэтому органические вещества:

  1. преимущественно имеют молекулярное строение;

  2. газы, жидкости, твердые вещества с низкой температурой плавления;

  3. нерастворимы или плохо растворимы в воде;

  4. в большинстве своем — неэлектролиты.

Большинство неорганических веществ негорючи (не горят на воздухе).

Большинство органических веществ горючи (горят на воздухе).

Эффективные (частичные) заряды в неорганической химии обозначают целыми числами и называют степенями окисления:

+1 -1

H Cl

В органической химии эффективные (частичные) заряды, как правило, обозначают греческой буквой (дельта):

В неорганических соединениях (за некоторыми исключениями) валентность элемента равна его степени окисления. Например:

валентность магния II, степень окисления +2; валентность кислорода II, степень окисления —2; валентность серы VI, степень окисления +6.

В молекулах органических соединений валентность углерода часто не равна его степени окисления, последняя может принимать значения от —4 до +4. Например, в развернутой структурной формуле молекулы пропана:

-3СН3+ – -2СН2+ – -3СН3+

Из примера следует: валентность всех трех атомов углерода IV, а степень окисления крайних атомов —3, среднего равна —2.

Неорганические соединения являются основным материалом неживой природы.

Органические соединения являются основным материалом, из которого построены организмы растений и животных (живая природа).

Задания:

1. Перечислите особенности органических веществ в сравнении с неорганическими веществами.

2. Объясните, почему органическую химию выделили в отдельный раздел химии.

3. В отличие от неорганических веществ органические:

а) хорошо растворяются в воде; в) разлагаются на свету;

б) легче воздуха; г) почти все горят.

4. Молекулярное строение имеют вещества набора:

а) СаС12, S02, СН4, С2Н5ОН; в) СН4, НС1, NaCl, С02;

б) С2Н6, NH3, СН3СООН, С02; г) С2Н5ОН, Са(ОН)2, NH3, S02.

5. Немолекулярное строение имеют вещества набора:

а) CH3COONa, Са(ОН)2, NaCl, MgO; в) Са(ОН)2, СН3СООН, СН4, КС1;

б) MgO, С2Н5ОН, Na2S04, С3Н8; г) С2Н6, С02, KCl, CH3COONa.

6. Наибольшее количество вещества (моль) содержат 200 г соединения:

а) СО; б) H2S; в) СН4; г) С2Н6.

Источник

История развития органической химии

В истории развития органической химии выделяют два периода: эмпирический (с середины XVII до конца XVIII века), в который познание органических веществ, способов их выделения и переработки происходило опытным путем и аналитический (конец XVIII – середина XIX века), связанный с появлением методов установления состава органических веществ. В аналитический период было установлено, что все органические вещества содержат углерод. Среди, других элементов, входящих в состав органических соединений были обнаружены водород, азот, сера, кислород и фосфор.

Важное значение в истории органической химии имеет структурный период (вторая половина XIX – начало XX века), ознаменовавшийся рождением научной теории строения органических соединений, основоположником которой был А.М. Бутлеров.

Основные положения теории строения органических соединений:

  • атомы в молекулах соединены между собой в определенном порядке химическими связями в соответствии с их валентностью. Углерод во всех органических соединениях четырехваленнтен;
  • свойства веществ зависят не только от их качественного и количественного состава, но и от порядка соединения атомов;
  • атомы в молекуле взаимно влияют друг на друга.

Порядок соединения атомов в молекуле описывается структурной формулой, в которой химические связи изображаются черточками.

Характерные свойства органических веществ

Существует несколько важных свойств, которые выделяют органические соединения в отдельный, ни на что не похожий класс химических соединений:

  1. Органические соединения обычно представляют собой газы, жидкости или легкоплавкие твердые вещества, в отличие неорганических соединений, которые в большинстве своём представляют собой твердые вещества с высокой температурой плавления.
  2. Органические соединения большей частью построены ковалентно , а неорганические соединения — ионно.
  3. Различная топология образования связей между атомами, образующими органические соединения (прежде всего, атомами углерода), приводит к появлению изомеров — соединений, имеющих один и тот же состав и молекулярную массу, но обладающих различными физико-химическими свойствами. Данное явление носит название изомерии.
  4. Явление гомологии — существование рядов органических соединений, в которых формула любых двух соседей ряда (гомологов) отличается на одну и ту же группу — гомологическую разницу CH2. Органические вещества горят.

Классификация органических веществ

В классификации принимают за основу два важных признака – строение углеродного скелета и наличие в молекуле функциональных групп.

В молекулах органических веществ атомы углерода соединяются друг с другом, образуя т.н. углеродный скелет или цепь. Цепи бывают открытыми и замкнутыми
(циклическими), открытые цепи могут быть неразветвленными (нормальными) и разветвленными:

Цепи органических веществ

По строению углеродного скелета различают:

— алициклические органические вещества, имеющие открытую углеродную цепь как разветвленную, так и неразветвленную. Например,

СН3-СН2-СН2-СН3 (бутан)

СН3-СН(СН3)-СН3 (изобутан)

— карбоциклические органические вещества, в которых углеродная цепь замкнута в цикл (кольцо). Например,

Цепь карбоциклических органических веществ

— гетероциклические органические соединения, содержащие в цикле не только атомы углерода, но и атомы других элементов, чаще всего азота, кислорода или серы:

Цепь гетероциклических органических соединений

Функциональная группа – атом или группа атомов неуглеводородного характера, которые определяют принадлежность соединения к определенному классу. Признаком, по которому органическое вещество относят к тому или иному классу, является природа функциональной группы (табл. 1).

Таблица 1. Функциональные группы и классы.

Таблица 1. Функциональные группы и классы органических веществ

Соединения могут содержать не одну, а несколько функциональных групп. Если эти группы одинаковые, то соединения называют полифункциональными, например хлороформ, глицерин. Соединения, содержащие различные функциональные группы, называют гетерофункциональными, их можно одновременно отнести к нескольким классам соединений, например молочную кислоту можно рассматривать, как карбоновую кислоту и как спирт, а коламин – как амин и спирт.

Примеры решения задач

Источник