Какие свойства характерны для многоклеточных растений

Какие свойства характерны для многоклеточных растений thumbnail

Органы многоклеточных растений и регуляция их функций

Органы многоклеточных растений и регуляция их функций

Органы многоклеточных растений и регуляция их функций

Многоклеточные низшие растения (водоросли) и грибы

Для этих организмов характерно отсутствие дифференцированных тканей. Не выражены вегетативные органы. Тело водорослей называется талломом, или слоевищем. Лишь у высокоорганизованных водорослей (бурые, пурпурные) появляются подобные тканям слабо дифференцированные клетки, разветвление таллома, подобное органам высших растений.

У грибов тело – грибница, или мицелий, который представляет собой совокупность нитчатых образований – гифов. Гифы бывают одноклеточные или многоклеточные. Грибы объединяют признаки растений и животных. У многих грибов внутри гифов нет клеточных стенок. Переплетаясь, гифы образуют подобную ткани структуру. Клетки таких гифов делятся лишь в одном направлении.

Органы высших многоклеточных растений и регуляция их функций

Органы высших растений делятся на вегетативные и генеративные. Наиболее развиты органы у покрытосеменных. К вегетативным органам относят побег и корень, к генеративным – цветок, семена, плод. Все высшие растения имеют побег и (кроме мохообразных) корень.

Вегетативные органы высших растений

Вегетативные органы служат для поддержания индивидуальной жизни растения. Почти все вегетативные органы и большинство их видов способны к вегетативному размножению. Древнейшим из вегетативных органов является побег. Корень возникает позднее (отсутствует у мохообразных).

Для корня и стебля характерно осевое строение. Они состоят из концентрических слоев, образованных определенными тканями. Многолетний стебель дерева, например, построен из концентрических слоев – коры, камбия, древесины и сердцевины.

Корень

Корень – это осевой подземный орган.

Корень – это осевой подземный орган.

Корень – это осевой подземный орган.

Основные функции корня

Обеспечивает закрепление растения в почве, всасывание почвенного водного раствора солей и транспорт его к надземным частям растения.

Дополнительные функции корня

Запасание питательных веществ, фотосинтез, дыхание, вегетативное размножение, выделение, симбиоз с микроорганизмами, грибами. Первые настоящие корни появились у папоротникообразных.

Зародыш корня называется зародышевым корнем и закладывается одновременно с почкой в зародыше семени.

Виды корней у растений

Виды корней у растений

Виды корней у растений

У растений различают:

  1. Главный корень. Он образуется из зародышевого и сохраняется на протяжении всей жизни. Всегда один.
  2. Боковые корни. Ответвляются от корней (главного, дополнительных, боковых). Образуют при ветвлении корни 2-го, 3-го и т. д. порядка.
  3. Дополнительные корни. Образуются в любой части растения (стебле, листьях).

Совокупность всех корней растения образует корневую систему. Корневая система формируется в течение всей жизни растения. Ее формирование обеспечивают преимущественно боковые корни.

Типы корневой системы

Типы корневой системы

Типы корневой системы

Различают два типа корневой системы: стержневую и мочковатую.

Стержневая корневая система

Стержневая система имеет хорошо развитый главный корень, который развивается из зародышевого и ветвится за счет боковых корней. Главный корень способен проникать на значительную глубину.

Мочковатая корневая система

Мочковатая корневая система образована совокупностью дополнительных, растущих от стебля, и боковых корней. Главный корень в ней отсутствует. Формируется мочковатая корневая система во время кущения. На подземной части стебля при этом образуется узел кущения, из которого развиваются дополнительные побеги, то есть происходит подземное ветвление стебля, с многочисленными дополнительными корнями.

Тип корневой системы является таксономическим признаком: для двудольных характерна преимущественно стержневая корневая система, для однодольных и некоторых травянистых двудольных – мочковатая.

У однодольных растений при прорастании семени главный корень отмирает или развивается слабо, а из тканей стебля прорастают дополнительные, которые образуют мочковатую корневую систему.

Поверхность корневой системы значительно больше, чем поверхность надземной части. У разных видов растений различаются число и длина корней. Особенно глубоко проникает в почву стержневая корневая система. Например, корни осота проникают в почву на глубину 6 м, у люцерны посевной – на 10-12 м, у деревьев – еще глубже (свыше 20 м).

Человек использует знания по формированию корневых систем при пересаживании рассады овощных и декоративных культур. Чем лучше развита корневая система у растений, тем больше площадь питания, надземная часть растения, то есть можно получить больший урожай. У проростка отщепляется кончик главного корня, чтобы усилить ветвление за счет образования новых, разрастания боковых корней. Этот способ получил название пикирования (от франц. пика, пикетка – копье).

Свойство растений – разрастание корневых систем в почве – используют для закрепления оврагов, подвижных песков.

Внутреннее строение корня

Внутреннее строение корня

Все корни имеют подобное строение. На продольном разрезе можно выделить участки, разные по строению и функциям – зоны корня.

Зона деления

Расположена на самом кончике корня. Ее размеры – 2-3 мм. Состоит из клеток образовательной ткани (меристемы), которые постоянно делятся. Из них ведут начало все другие клетки корня.

Читайте также:  Малина какие полезные свойства и витамины

От повреждений зона корня покрыта корневым чехликом. Корневой чехлик есть у всех растений, которые растут на суше. Его нет у водных растений. Клетки чехлика живые, тонкостенные. Извне они выделяют слизь, которая способствует передвижению (уменьшает трение) его в почве во время роста корня.

Корневой чехлик нарастает с внутренней стороны благодаря зоне деления (у двудольных) или собственной отделенной меристеме (у однодольных) и спушивается с внешней. Клетки корневого чехлика способны реагировать на влияние силы тяжести и обуславливают положительный геотропизм корня – рост к центру земли. У некоторых растений, которые имеют дыхательные корни, наблюдается отрицательный геотропизм – рост корней в противоположном направлении.

Зона роста (растяжения)

Размеры ее – несколько миллиметров.

Клетки растут, растягиваются, приобретают постоянную форму и размер, в верхней части зоны – дифференцируются, то есть проявляют принадлежность к той или иной ткани. Первыми определяются ведущие ткани. Во время роста клеток эта зона продвигает кончик корня с зоной деления и корневым чехликом вглубь грунта.

Всасывающая зона (зона корневых волосков)

Ее размеры – 5-20 мм. В этой зоне выделяют внешний слой – эпиблему (ризодерму), слой первичной коры и центральный цилиндр. Эпиблема – это один слой тонкостенных клеток, которые плотно прилегают одна к другой и образуют корневые волоски.

Корневые волоски – это отростки клеток эпиблемы, размеры которых значительно превышают размеры самой клетки. Размеры их достигают нескольких миллиметров. У травянистых растений они крупнее, чем у древесных. Можно увидеть невооруженным глазом – имеют вид пуха. Живут до 20 суток, потом отмирают. На молодых участках корня постепенно вместо отмерших формируются новые путем разрастания клеток эпиблемы.

Корневые волоски имеют очень тонкие клеточные стенки, которые облегчают поглощение питательных веществ, растворенных в воде из почвы. Ядро расположено в верхней части клетки. Почти весь объем занимает вакуоль. Вокруг клетки образуется слизистый чехол. Он способствует лучшему контакту с частичками почвы и привлекает бактерии. Корневые волоски выделяют в окружающую среду органические кислоты (яблочную, щавелевую, лимонную), которые растворяют минеральные вещества. В корневые волоски вода с растворенными в ней веществами поступает по законам осмоса, так как концентрация раствора веществ в вакуолях почти всегда больше, чем в почве. Благодаря волоскам площадь поверхности корня в сотни раз превышает площадь надземной части растения. В сухой почве корневые волоски развиваются интенсивнее, чем во влажной. Когда влаги много, волоски совсем не развиваются.

Первичная кора образована несколькими слоями живых клеток. Клеточные стенки внешних слоев способны к утолщению.

Центральный цилиндр содержит проводящую систему и кольцо живых клеток образовательной ткани – перицикл.

Проводящая зона (зона боковых корней)

Расположена над всасывающей зоной. Это посредник между всасывающей зоной корня и надземной частью растения. Не имеет корневых волосков, поэтому эта зона не способна поглощать вещества. Проводящая система этой зоны проводит воду и минеральные вещества из корня в стебель (восходящий ток). По размерам эта зона наиболее длинная (до нескольких метров). В ней происходит ветвление корней.

На поперечном разрезе во всасывающей зоне корень состоит из однослойной ризодермы. Под ней – кора, которая состоит из множества слоев основной ткани. От центрального цилиндра кора корня отделена одним слоем мертвых клеток. Между мертвыми клетками расположены живые пропускные клетки, которые легко пропускают воду с растворенными веществами в сосуды центрального цилиндра. Центральный осевой цилиндр окружен клетками перидермы, из которой образуются боковые корни в проводящей зоне. В центральной части расположены элементы проводящей ткани – сосуды и ситовидные трубки. Сосуды ксилемы образуют лучи, которые идут от периферии к центру. Между лучами ксилемы расположены группы клеток флоэмы. Это первичное строение корня.

Первичное строение у большинства растений (голосеменных и покрытосеменных) корня сохраняется недолго и заменяется вторичным. Последнее возникает с появлением боковой меристемы – камбия. За его счет получаются вторичные элементы ксилемы и флоэмы. Первичная кора отмирает и слущивается.

Источник

Многоклеточные эукариоты

Многоклеточные организмы — это организмы, тело которых состоит из множества клеток и их производных (различные виды межклеточного вещества). Характерный признак многоклеточных — неравноценность клеток, образующих их тело, а также дифференцировка клеток и их объединение в комплексы различной сложности — ткани и органы. Для многоклеточных характерно индивидуальное развитие (онтогенез), начинающееся в большинстве случаев (за исключением вегетативного размножения) с деления одной клетки (зиготы, споры). К многоклеточным организмам относят представителей трех царств.

Царства эукариот. Ранее мы рассмотрели особенности организации одноклеточных эукариот. Многоклеточные эукариоты относятся к одному из трех царств: Растения, Грибы и Животные и находятся на организменном уровне организации живой материи. Иногда для удобства применения описательно-сравнительного метода исследований гистологи выделяют тканевый и органный уровни организации. В отличие от настоящих уровней организации (клеточного, организменного, популяционно-видового, экосистемного и биосферного), эти уровни не имеют специфических черт обмена веществ и превращений энергии, неспособны к автономному существованию в естественной среде.

Читайте также:  Какое свойство растворов позволяет отличить их от других жидкостей

Царство Растения

Растения — это организмы способные к фотосинтезу. Для них характерна зелёная окраска, так как они содержат хлорофилл.

Растительный мир многообразен. Царство растений включает в себя отделы водорослей, моховидных, папоротникообразных, голосеменных и покрытосеменных.

Какие свойства характерны для многоклеточных растений

В клетках растений есть хлоропласты, в которых происходит фотосинтез. Клетки растений окружены клеточной стенкой, состоящей из целлюлозы. Крупные клеточные вакуоли содержат клеточный сок.

Связи между соседними клетками обеспечиваются благодаря плазмодесмам. Цитоплазма клеток растений часто содержит вакуоли с клеточным соком, а также различные пластиды. Благодаря наличию хлорофилла большинство растений способно к фотосинтезу, то есть автотрофному питанию. Насекомоядные (росянка, непентес и др.) или так называемые полупаразитические (например, омела) растения относятся к миксотрофам. Они способны к фотосинтезу, однако наряду с этим потребляют органические соединения насекомых (насекомоядные растения) или растения-хозяина (омела). Некоторые паразитические растения (например, Петров крест, повилика) – гетеротрофы; они не имеют хлорофилла и питаются исключительно органическими соединениями растения-хозяина.

В результате фотосинтеза в цитоплазме растительных клеток откладываются полисахариды, обычно крахмал. Кроме хлорофилла, в клетках растений часто содержатся желтые, красные или бурые пигменты (ксантофилл, антоцианы и т. п.), придающие соответствующую окраску клеткам.

Свойства растений:

  • наличие в клетках пластид;
  • большая центральная вакуоль;
  • отсутствие центриолей;
  • жёсткая целлюлозная клеточная стенка;
  • автотрофное питание;
  • размножение спорами или семенами.

Царство Грибы

Грибы — эукариотические организмы, для которых характерно наличие жёсткой клеточной стенки и отсутствие пластид. Все грибы — гетеротрофы. Они потребляют готовые органические вещества, чаще всего отмершие остатки растений и животных. Жёсткая клеточная стенка грибов может иметь различное строение, но всегда в её основе лежит хитин — полимер, похожий на целлюлозу, но содержащий азот. Некоторые из грибов, например дрожжи, являются одноклеточными организмами.

Гифы (от греч. hyphe — «ткань, паутина») — нитевидные отростки, образующие тело гриба — мицелий.

Какие свойства характерны для многоклеточных растенийГифы могут ветвиться, переплетаться между собой, образовывать сложные структуры, в основе которых всегда есть нити-гифы. Характерным свойством грибов является размножение спорами. Это одноклеточные образования, которые имеют толстую защитную стенку. Они настолько мелки, что могут переноситься ветром на десятки и сотни километров, поэтому везде, где есть подходящая питательная среда, вырастают различные грибы.

Наличие прочной и толстой клеточной стенки не позволяет грибами поглощать частицы пищи, поэтому они питаются растворёнными в воде веществами. Такое питание называется осмофильным. Для того чтобы питаться полимерными веществами, нерастворимыми в воде (например, белками или полисахаридами), грибы вырабатывают ферменты, расщепляющие эти полимеры на мономеры, и выделяют эти ферменты в окружающую среду.
Мономеры, образовавшиеся после расщепления, всасываются грибами. Такой способ питания называется внешним пищеварением.

Строение мицелия у разных видов грибов различается. У низших грибов между клетками нет перегородок, мицелий представляет собой одну гигантскую многоядерную клетку. Такой мицелий называется несептированным. Подобный мицелий есть у белой хлебной плесени — мукора. У высших грибов между клетками мицелия существуют перегородки, поэтому его называют септированным (от лат. septum — «перегородка»). У ряда высших грибов в клетке при этом существует два разных ядра.

Какие свойства характерны для многоклеточных растенийСреди грибов известны сапротрофные, симбиотрофные и паразитические виды. Симбиотрофами называют организмы, питание которых зависит от организмов других видов, с которыми они находятся в мутуалистических отношениях. В состав клеточных стенок грибов часто, кроме других полисахаридов, входит полисахарид хитин. В цитоплазме отсутствует клеточный центр. Там же запасается полисахарид гликоген, а в вакуолях – гранулы белков. Продуктом обмена азотсодержащих соединений является мочевина. В плодовых телах и грибнице часто присутствуют несколько типов клеток, однако настоящие ткани отсутствуют.

Для большинства высших грибов характерно образование специальных органов размножения — плодовых тел.

Какие свойства характерны для многоклеточных растенийПлодовые тела — образования из плотно переплетающихся гифов гриба, которые формируются для спороношения грибов. Подразделяются пластинчатые и трубчатые.

Значительное число грибов полезно, например человек употребляет их в пищу. Пищевая ценность грибов достаточно высока, и некоторые их виды культивируют (например, шампиньоны и вешенки).

Существуют несъедобные грибы, которые не используются в пищу. К ним относят ядовитые грибы, вызывающие острые, иногда смертельные отравления.

Важную роль играют почвенные грибы, они расщепляют различные органические остатки. Вместе с бактериями эти грибы превращают полимерные органические вещества в простые соединения, доступные для растений.

Царство Животные

Какие свойства характерны для многоклеточных растенийМногоклеточные животные – исключительно гетеротрофы, хотя некоторые из них содержат в клетках симбиотические водоросли, в результате чего приобретают зеленый цвет (например, некоторые виды губок, гидр, ресничных червей). Большинство многоклеточных животных способно активно передвигаться с помощью мышц.

Животные клетки не имеют плотной стенки, над плазматической мембраной расположен лишь тонкий упругий слой гликокаликса. Благодаря отсутствию плотной клеточной стенки некоторые клетки способны к фагоцитозу. Запасным полисахаридом, как и у грибов, является гликоген.

Читайте также:  Какой элемент имеет наиболее ярко выраженные неметаллические свойства

Для большинства животных характерны следующие особенности:

  • гетеротрофный способ питания;
  • способность к росту только в молодом возрасте;
  • активное передвижение;
  • в клетках животных отсутствует жёсткая клеточная стенка;
  • нет пластид;
  • нет крупной центральной вакуоли;
  • клеточный центр содержит центриоли, делящиеся перед делением клетки.

Особенности организации многоклеточных эукариот. Мы уже знаем, что каждая клетка, входящая в состав многоклеточных организмов, предназначена для осуществления лишь определенных функций. Соответственно разные типы клеток отличаются особенностями строения, то есть дифференцированы. Поэтому функционирование многоклеточного организма как целостной биологической системы обеспечено согласованной деятельностью всех его клеток. У многоклеточных эукариот разнообразные проявления процессов жизнедеятельности (питание, дыхание, выделение, раздражимость и т. п.) лишь частично осуществляются на клеточном уровне, а преимущественно – вследствие взаимодействий тканей, органов и систем органов.

Для многоклеточных организмов характерно индивидуальное развитие (онтогенез), которое начинается от зарождения и заканчивается смертью. Онтогенез, в свою очередь, включает зародышевый и послезародышевый периоды развития.

Среди многоклеточных так же, как и среди одноклеточных, встречаются колониальные организмы. Они образуются в результате вегетативного размножения, когда особи дочерних поколений остаются соединенными с материнской (например, колонии коралловых полипов).

Многоклеточные организмы, не имеющие тканей. У многоклеточных грибов, водорослей и некоторых животных (например, губок) выраженные ткани отсутствуют, потому что их клетки слабо взаимодействуют между собой. Внешний слой клеток образует покровы, отделяющие внутреннюю среду организма от внешней. 

Тело многоклеточных грибов состоит из последовательно размещенных клеток, образующих нити – гифы. Гифам присущи верхушечный рост и боковое ветвление. Их совокупность называется грибница, или мицелий. Гифы способны быстро расти: у некоторых грибов за одни сутки мицелий разрастается на много метров. Часть мицелия расположена внутри среды, на которой растет гриб (субстратный мицелий), другая часть — на ее поверхности (воздушный мицелий). За счет воздушного мицелия образуются так называемые плодовые тела, служащие для размножения спорами. Все грибы – гетеротрофные организмы.

Какие свойства характерны для многоклеточных растений

Тело многоклеточных водорослей называется таллом. Разные группы водорослей различаются совокупностью пигментов, структурой хлоропластов, продуктами фотосинтеза, особенностями строения митохондрий и т. п. Отдел бурых водорослей представлен исключительно многоклеточными видами. Среди зеленых водорослей, кроме одноклеточных и колониальных, известны настоящие многоклеточные (хара) и так называемые нитчатые, тело которых, подобно гифе, образовано нитями из последовательно соединенных клеток.

Какие свойства характерны для многоклеточных растений

К многоклеточным не имеющим тканей животным относится несколько тысяч водных видов, которые объединяют в тип Губки. Их мешковидное тело состоит из стенок и заполненного водой внутреннего пространства, открывающегося в окружающую среду отверстием. Через него из тела животного выходит вода с непереваренными остатками пищи. Снаружи и изнутри стенки тела покрыты защитным слоем плотно прилегающих друг к другу клеток. Основная часть стенки тела состоит из беспорядочно расположенных клеток нескольких типов; в ней находятся опорные элементы (скелет), система полостей и каналов, через которые вода попадает из внешней среды во внутреннее пространство губки. Эти каналы начинаются маленькими отверстиями – порами. Скелет состоит из твердых крепких игл, состоящих из СаСО3 (так называемые известняковые губки), SiО2 или гибких волокон из рогоподобного органического вещества; две последние разновидности скелета часто находятся в одном организме, дополняя друг друга (SiО2 придает животному прочность, а волокна – гибкость).

Какие свойства характерны для многоклеточных растений

С каналами связаны так называемые воротничковые клетки со жгутиком, окруженным особым образованием («воротничком»). Битье жгутиков вызывает движение воды через тело животного; они же загоняют питательные частицы (преимущественно разные одноклеточные организмы) под воротничок, где их захватывают псевдоподии. У губок пищеварение исключительно внутриклеточное. Его в основном обеспечивают способные к фагоцитозу амебоидные клетки. Размножаются эти животные половым путем или почкованием. У губок отсутствуют половые железы, а яйцеклетки и сперматозоиды образуются из особых клеток, рассеянных в толще тела. Из оплодотворенной яйцеклетки выходит покрытая ресничками личинка, которая определенное время плавает, а затем прикрепляется к различным подводным предметам и превращается во взрослую особь. В результате почкования образуются колонии губок. Встречаются и одиночные особи.

  • Многоклеточные эукариоты относятся к одному из трех царств: Растения, Грибы или Животные.
  • Клетки, входящие в состав многоклеточных организмов, предназначены для осуществления лишь определенных функций, то есть дифференцируются на протяжении ряда последовательных делений. Поэтому функционирование многоклеточного организма как целостной биологической системы обеспечено согласованной деятельностью всех его клеток. Многоклеточным организмам присуще индивидуальное развитие (онтогенез). Стволовые клетки дают начало всем дифференцированным клеткам на протяжении всего периода онтогенеза.
  • Колониальные организмы образуются путем вегетативного размножения, когда особи дочерних поколений остаются соединенными с материнской. 
  • У многоклеточных грибов, водорослей и некоторых животных (например, губок) более-менее дифференцированные клетки почти не взаимодействуют между собой, поэтому такие организмы не имеют тканей. Тело многоклеточных грибов состоит из последовательно размещенных клеток, которые образуют нити – гифы. Их совокупность называется грибница, или мицелий. У многоклеточных водорослей тело имеет название таллом. Мешковидное тело губок состоит из стенок и заполненной водой внутренней полости.

< Предыдущая страница “Роль протист в природе и хозяйстве человека”

Следующая страница ” ” >

Источник