Какие свойства и почему проявляет hno2

Какие свойства и почему проявляет hno2 thumbnail

Àçîòèñòàÿ êèñëîòà HNO2 èìååò ñëàáûé õàðàêòåð. Âåñüìà íåóñòîé÷èâà, ìîæåò áûòü òîëüêî â ðàçáàâëåííûõ ðàñòâîðàõ:

2HNO2  NO + NO2 + H2O.

Ñîëè àçîòèñòîé êèñëîòû íàçûâàþòñÿ íèòðèòàìè èëè àçîòèñòîêèñëûìè. Íèòðèòû ãîðàçäî áîëåå óñòîé÷èâû, ÷åì HNO2, âñå îíè òîêñè÷íû.

Àòîì àçîòà â àçîòèñòîé êèñëîòå èìååò ïðîìåæóòî÷íóþ ñòåïåíü îêèñëåíèÿ +3 è â ñâÿçè ñ ýòèì îí ìîæåò áûòü è îêèñëèòåëåì, è ïðîÿâëÿòü âîññòàíîâèòåëüíûå ñâîéñòâà:

2HNO2 + 2HI = I2 + 2NO + 2H2O,

HNO2 + H2O2 = HNO3 + H2O,

5KNO2 + 2KMnO4 + 3H2SO4 = 5KNO3 + K2SO4 + 2MnSO4 + 3H2O.

Ñòðîåíèå àçîòèñòîé êèñëîòû.

 ãàçîâîé ôàçå ïëàíàðíàÿ ìîëåêóëà àçîòèñòîé êèñëîòû ñóùåñòâóåò â âèäå äâóõ êîíôèãóðàöèé öèñ- è òðàíñ-:

Àçîòèñòàÿ êèñëîòà Ñâîéñòâà àçîòèñòîé êèñëîòû

Ïðè êîìíàòíîé òåìïåðàòóðå ïðåîáëàäàåò òðàíñ-èçîìåð: ýòà ñòðóêòóðà ÿâëÿåòñÿ áîëåå óñòîé÷èâîé. Òàê, äëÿ öèñ – HNO2 (ã) DG°f = −42,59 êÄæ/ìîëü, à äëÿ òðàíñ-HNO2 (ã) DG = −44,65 êÄæ/ìîëü.

Õèìè÷åñêèå ñâîéñòâà àçîòèñòîé êèñëîòû.

 âîäíûõ ðàñòâîðàõ ñóùåñòâóåò ðàâíîâåñèå:

,

Íàãðåâàÿñü, ðàñòâîð àçîòèñòîé êèñëîòû ðàñïàäàåòñÿ ñ âûäåëåíèåì NO è îáðàçîâàíèåì àçîòíîé êèñëîòû:

,

HNO2 â âîäíûõ ðàñòâîðàõ äèññîöèèðóåò (KD=4,6·10−4), íåìíîãî ñèëüíåå óêñóñíîé êèñëîòû. Ëåãêî âûòåñíÿåòñÿ áîëåå ñèëüíûìè êèñëîòàìè èç ñîëåé:

,

Àçîòèñòàÿ êèñëîòà ïðîÿâëÿåò îêèñëèòåëüíûå è âîññòàíîâèòåëüíûå ñâîéñòâà. Ïðè äåéñòâèè áîëåå ñèëüíûõ îêèñëèòåëåé (ïåðîêñèä âîäîðîäà, õëîð, ïåðìàíãàíàò êàëèÿ) ïðîèñõîäèò îêèñëåíèå â àçîòíóþ êèñëîòó:

,

,

.

Êðîìå òîãî, îíà ìîæåò îêèñëÿòü âåùåñòâà, êîòîðûå îáëàäàþò âîññòàíîâèòåëüíûìè ñâîéñòâàìè:

.

Ïîëó÷åíèå àçîòèñòîé êèñëîòû.

Àçîòèñòóþ êèñëîòó ïîëó÷àþò ïðè ðàñòâîðåíèè îêñèäà àçîòà (III) N2O3 â âîäå:

,

Êðîìå òîãî, îíà îáðàçóåòñÿ ïðè ðàñòâîðåíèè â âîäå îêñèäà àçîòà (IV) NO2:

.

Ïðèìåíåíèå àçîòèñòîé êèñëîòû.

Àçîòèñòàÿ êèñëîòà ïðèìåíÿåòñÿ äëÿ äèàçîòèðîâàíèÿ ïåðâè÷íûõ àðîìàòè÷åñêèõ àìèíîâ è îáðàçîâàíèÿ ñîëåé äèàçîíèÿ. Íèòðèòû ïðèìåíÿþòñÿ â îðãàíè÷åñêîì ñèíòåçå â ïðîèçâîäñòâå îðãàíè÷åñêèõ êðàñèòåëåé.

Ôèçèîëîãè÷åñêîå äåéñòâèå àçîòèñòîé êèñëîòû.

Àçîòèñòàÿ êèñëîòà ÿâëÿåòñÿ òîêñè÷íîé è îáëàäàåò ÿðêî âûðàæåííûì ìóòàãåííûì äåéñòâèåì, òàê êàê ÿâëÿåòñÿ äåàìèíèðóþùèì àãåíòîì.

  

Êàëüêóëÿòîðû ïî õèìèè

Õèìèÿ îíëàéí íà íàøåì ñàéòå äëÿ ðåøåíèÿ çàäà÷ è óðàâíåíèé.
Êàëüêóëÿòîðû ïî õèìèè
  

Êèñëîòû, ñâîéñòâà êèñëîò.

Óãîëüíàÿ, ôîñôîðíàÿ, íóêëåèíîâàÿ, õëîðíàÿ, éîäíàÿ, êàðáîíîâàÿ, êðåìíèåâàÿ, ñåðíàÿ, àçîòíàÿ è äðóãèå êèñëîòû è èõ ñâîéñòâà
Êèñëîòû, ñâîéñòâà êèñëîò.
  

Õèìèÿ 7,8,9,10,11 êëàññ, ÅÃÝ, ÃÈÀ

Îñíîâíàÿ èíôîðìàöèÿ ïî êóðñó õèìèè äëÿ îáó÷åíèÿ è ïîäãîòîâêè â ýêçàìåíàì, ÃÂÝ, ÅÃÝ, ÎÃÝ, ÃÈÀ
Õèìèÿ 7,8,9,10,11 êëàññ, ÅÃÝ, ÃÈÀ
  

Êèñëîòû.

Êèñëîòû – êëàññ ñîåäèíåíèé, êîòîðûå ñîñòîÿò èç ïðîòîíà ( âîäîðîäà ) è êèñëîòíîãî îñòàòêà.
Êèñëîòû.
  

Êèñëîòû è èõ ñîëè.

Êèñëîòû è èõ ñîëè, ñîëè ñåðíîé êèñëîòû, îêñèä, îáðàçîâàíèå ñîëè, ñîëÿíàÿ êèñëîòà, ñîëè àçîòíîé êèñëîòû, ãèäðîêñèäû è òä.
Êèñëîòû è èõ ñîëè.

Источник

Оксид азота​(IV)​
Систематическое
наименование
Оксид азота​(IV)​
Традиционные названия диоксид азота; двуокись азота, тетраоксид диазота
Хим. формула NO2
Рац. формула NO2
Состояние бурый газ или желтоватая жидкость
Молярная масса 46,0055 г/моль
Плотность г. 2,0527 г/л
ж. 1,4910г/см³
тв. 1,536 г/см³
Энергия ионизации 1,6E−18 Дж[1]
Температура
 • плавления -11,2 °C
 • кипения +21,1 °C
Энтальпия
 • образования 33,10 кДж/моль
Давление пара 720 ± 1 мм рт.ст.[1]
Рег. номер CAS 10102-44-0
PubChem 3032552
Рег. номер EINECS 233-272-6
SMILES

N(=O)[O]

InChI

InChI=1S/NO2/c2-1-3

JCXJVPUVTGWSNB-UHFFFAOYSA-N

RTECS QW9800000
ChEBI 33101
Номер ООН 1067
ChemSpider 2297499
Предельная концентрация 2 мг/м³
Токсичность Токсичен, окислитель
NFPA 704

3

2

OX

Приведены данные для стандартных условий (25 °C, 100 кПа), если не указано иное.
 Медиафайлы на Викискладе

Оксид азота (IV) (диоксид азота, двуокись азота) NO2— бинарное неорганическое соединение азота с кислородом. Представляет собой ядовитый газ красно-бурого цвета с резким неприятным запахом или желтоватую жидкость.

В обычном состоянии NO2 существует в равновесии со своим димером N2O4. Склонность к его образованию объясняется наличием в молекуле NO2 неспаренного электрона.

При температуре 140 °C диоксид азота состоит только из молекул NO2, но очень тёмного, почти чёрного цвета.
В точке кипения NO2 представляет собой желтоватую жидкость, содержащую около 0,1 % NO2.
При температуре ниже +21°С — это бесцветная жидкость (или желтоватая из-за примеси мономера).
При температуре ниже −12 °C белые кристаллы состоят только из молекул N2O4.

Получение[править | править код]

В лаборатории NO2 обычно получают воздействием концентрированной азотной кислоты на медь:

.

Также взаимодействием нитритов с серной кислотой:

,

оксид азота(II) NO тотчас же реагирует с кислородом:

/

Также его можно получить термическим разложением нитрата свинца, однако при проведении реакции следует соблюдать осторожность[почему?]:

Разработан более совершенный лабораторный способ получения NO2[2].

Последняя реакция была разработана и реализована в новой химической машине – генераторе окислителя ракетного топлива марки NTO согласно ГОСТ Р ИСО 15859-5-2010[3].

Другие способы получения оксида азота(IV) перечислены в статье [2].

Химические свойства[править | править код]

Кислотный оксид. NO2 отличается высокой химической активностью. Он взаимодействует с неметаллами (фосфор, сера и углерод горят в нём). В этих реакциях NO2 — окислитель:

Окисляет SO2 в SO3 — на этой реакции основан нитрозный метод получения серной кислоты:

При растворении оксида азота(IV) в воде образуются азотная и азотистая кислоты (реакция диспропорционирования):

Поскольку азотистая кислота неустойчива, при растворении NO2 в тёплой воде образуются HNO3 и NO:

Если растворение проводить в избытке кислорода, образуется только азотная кислота (NO2 проявляет свойства восстановителя):

При растворении NO2 в щелочах образуются как нитраты, так и нитриты:

Жидкий NO2 применяется для получения безводных нитратов:

В реакциях с галогенами образует соли нитрония, нитрозила и оксиды галогенов:

Применение[править | править код]

Диоксид азота применяется при производстве серной и азотной кислот. Также диоксид азота используется в качестве окислителя в жидком ракетном топливе и смесевых взрывчатых веществах.

Физиологическое действие и токсичность[править | править код]

Оксид азота (IV) (диоксид азота) особо токсичен, является мощным окислителем. Числится в списке сильнодействующих ядовитых веществ. В больших дозах может стать сильнейшим неорганическим ядом. Даже в небольших концентрациях он раздражает дыхательные пути, в больших концентрациях вызывает отёк лёгких.

«Лисий хвост»[править | править код]

На фото справа — «лисий хвост» на Нижнетагильском металлургическом комбинате

«Лисий хвост» — жаргонное название выбросов в атмосферу оксидов азота (NOx) на химических предприятиях (иногда — из выхлопных труб автомобилей). Название происходит от оранжево-бурого цвета диоксида азота. При низких температурах диоксид азота димеризуется и становится бесцветным. В летний сезон «лисьи хвосты» наиболее заметны, так как в выбросах возрастает концентрация мономерной формы.

Вредное воздействие[править | править код]

Оксиды азота, улетучивающиеся в атмосферу, представляют серьёзную опасность для экологической ситуации, так как способны вызывать кислотные дожди, а также сами по себе являются токсичными веществами, вызывающими раздражение слизистых оболочек.

Двуокись азота воздействует в основном на дыхательные пути и лёгкие, а также вызывает изменения состава крови, в частности, уменьшает содержание в крови гемоглобина.

Образующаяся в результате взаимодействия диоксида азота с водой азотная кислота является сильным коррозионным агентом.

Примечания[править | править код]

Литература[править | править код]

  • 1. Химическая энциклопедия / Редкол.: Кнунянц И.Л. и др.. — М.: Советская энциклопедия, 1988. — Т. 1 (Абл-Дар). — 623 с.
  • 2. A New Method of Nitrogen Dioxide Production / D.A. Rudakov / June 2018. doi: 10.13140/RG.2.2.19010.27844 (https://www.researchgate.net/publication/325846942_A_New_Method_of_Nitrogen_Dioxide_Production)

Источник

Азотистая кислота в чистом виде не выделена и существует лишь в растворах, которые получают на холоде подкислением растворов ее солей:

Ba(NO2)2 + H2SO4 = 2HNO2 + BaSO4

Эти растворы имеют голубую окраску, они относительно устойчивы при 0 °С, а при нагревании до комнатной температуры разлагаются: 3HNO2= HNO3 + 2NO + H2O

Азотистая кислота легко диспропорционирует.

Окислительные свойства и прочность HNO3 и HNO2 удобно сопоставить с помощью диаграммы вольт-эквивалент — степень окисления. Легко заметить, что значение вольт-эквивалента HNO2 лежит выше прямой, соединяющей значения вольт-эквивалентов NO и HNO3. Следовательно, G реакции диспропорционирования оказывается меньше нуля, иными словами, HNO2 является неустойчивой кислотой и стремится диспропорционировать на NO и HNO3. Кроме того, в разбавленных растворах одинаковой концентрации (0,1 М) HNO2 оказывается сильным окислителем, по силе превосходящим даже HNO3. Так, 0,05 М HNO2, мгновенно окисляет иодид калия:

2NaNO2 + 2H2SO4 + 2KI = I2 + 2NO + K2SO4 + Na2SO4 + 2H2O

а азотная кислота той же концентрации с KI не реагирует. Это следует и из диаграммы вольт-эквивалент—степень окисления. Действительно, наклон прямой, соединяющей значения вольт-эквивалентов HNO2 и NO, оказывается круче, чем в случае пары HNO3 и NO. Атом азота в HNO2 находится в промежуточной степени окисления, поэтому для азотистой кислоты и ее солей характерны не только окислительные, но и восстановительные свойства. Так, нитриты обесцвечивают подкисленный раствор перманганата калия: 5KNO2 + 2KMnO4 + 3H2SO4 = 2MnSO4 + 5KNO3 + K2SO4 + 3H2O

Нитриты щелочных, щелочноземельных металлов и аммония — бесцветные или желтоватые кристаллические вещества, хорошо растворимые в воде и плавящиеся без разложения. Нитриты переходных металлов в воде малорастворимы, а при нагревании легко разлагаются.

Отношение нитратов металлов к нагреванию.

Ме находящиеся левее Mg (кроме Li): МеNO2+O2

Ме находящиеся между [Mg и Cu] (и Li): MeO+NO2+O2

Ме находящиеся правее Cu: Ме+NO2+O2

Азотноватистая (гипоазотистая) кислота H2N2O2.Бесцветные кристаллы.Азотноватистая кислота — слабая и очень неустойчивая. Она и ее соли проявляют восстановительные свойства. При обезвоживании H2N2O2 концентрированной H2SO4 образуется оксид азота N2O, который формально можно рассматривать как ее ангидрид.

Нитроксиловая кислота H4N2O4. Всвободном виде она неустойчива.

2. Все щелочные металлы взаимодействуют с водой, выделяя водород:

2Ме+2H2O=2МеOH+H2

Эта экзотермическая реакция протекает очень быстро, натрий часто воспламеняется, а более тяжелые металлы реагируют со взрывом. Относительно низкая активность лития по отношению к воде определяется прежде всего кинетическими, а не термодинамическими причинами: литий наиболее твердый из щелочных металлов и имеет самую высокую температуру плавления, поэтому он медленнее дробится на капли и реагирует спокойнее других щелочных металлов.

Состав продуктов, образующихся при сгорании щелочных металлов на воздухе или в кислороде, зависит от природы металла. Так, литий образует оксид Li2O, натрий — пероксид Na2O2, калий, рубидий и цезий — супероксиды (надпероксиды) КO2, RbO2, CsO2. Все эти вещества имеют ионную кристаллическую решетку. Пероксиды: ст.окисл. -1, а супероксиды (надпероксиды) ст.окисл .

Взаимодействие с серой: При сплавлении натрия с серой образуются персульфиды типа Na2S2, Na2S3, Na2S4 и Na2S5.

Li не образует полисульфидов. Остальные образуют: K2S+nS=K2Sn

Э2S гидролизуются медленно, окисляются до тиосульфатов:

2Na2S+2O2+H2O=Na2S2O3+2NaOH

Взаимодействие с водородом:

Получают: Li(расплав)+H2=2LiH

NaH,KH,Cs,Rb разлагаются при нагревании. Все гидролизуются в воде: 2LiH+2H2O=2LiOH+H2

Взаимодействие с галогенами:

LiF- малорастворим. LiCl,LiBr,LiI-гигроскопичны, образуют кристаллогидраты.

NaГ, KГ, CsГ, RbГ- хорошо растворимые соли.

Прочность связи Li-Г в ряду F, Cl, Br, I уменьшается, причина- сильное поляризующее влияние иона лития.

Взаимодействие с азотом:

Li3N синтезируется при обычных условиях. Остальные нитриды получают действием тихого электрического разряда на пары щелочных металлов в атмосфере азота. Они не устойчивы. В воде гидролизуются: Li3N+3H2O=3LiOH+NH3

Оксиды, гидроксиды, соли.

Оксиды М2O их можно получить путем дозированного окисления металлов, однако в

этом случае конечный продукт будет содержать примеси. Цвет оксида изменяется

от белого (Li2O и Na2O) к желтому (K2O, Rb2O) и оранжевому (Cs2O). Удобным способом получения оксида натрия является взаимодействие натрия с расплавленным едким натром: 2NaOH + 2Na=2Na2O + H2

Для всех щелочных металлов получены озониды МO3, в состав которых входит парамагнитный ион [O3]-. Солеобразные КO3, RbO3, CsO3 получают действием озона на пероксиды, супероксиды или гидроксиды: КO2 + O3 = КO3 + O2

Все озониды представляют собой оранжево-красные кристаллические вещества. Они чрезвычайно взрывоопасны и неустойчивы.

Пероксиды, надпероксиды и озониды щелочных металлов при нагревании pазлагаются. Их термическая устойчивость увеличивается с ростом радиуса катиона. Пероксиды, надпероксиды и озониды являются сильными окислителями:

Na2O2 + CO = Na2CO3

Гидроксиды элементов первой группы являются сильными основаниями. Они представляют собой бесцветные гигроскопичные вещества, легко расплывающиеся на воздухе и постепенно превращающиеся в карбонаты. Гидроксиды щелочных металлов прекрасно растворимы в воде.

Гидроксиды натрия, калия, рубидия и цезия плавятся без разложения, в то время как LiOH при прокаливании выделяет воду: 2LiOH = Li2O + Н2O

Взаимодействие гидроксидов щелочных металлов с кислотами и кислотными оксидами приводит к образованию солей.

Нитраты щелочных Ме при нагревании разлагаются:

4LiNO3=2Li2O+4NO2+O2

Но остальные: 2NaNO3=2NaNO2+O2

Na2CO3*10H2O – кристаллическая сода

NaHCO3 – питьевая сода (Получение- аммиачный способ, метод Сольве:

NaCl+NH3+CO2+H2O=NaHCO3+NH4Cl

2NaHCO3= Na2CO3+CO2+H2O (при нагревании)

Литий Li от остальных щелочных металлов отличает большее значение энергии ионизации и небольшой размер атома и иона. Литий по свойствам напоминает магний (диагональное сходство в периодической системе).

3. В окислительно-восстановительном процессе всегда участвуют две (сопряженные)

пары, каждая из которых включает окислитель и восстановитель. Процессу образования ионов способствует увеличение энтропии (энтропия ионов в растворе гораздо больше, чем энтропия металла) и образование гидратов, а препятствуют процессы ионизации (энергия ионизации достаточно высока) и разрушения кристаллической решетки. В состоянии равновесия на пластинке локализуется положительный заряд, который компенсируется противоионами, находящимися в растворе. Так возникает двойной электрический слой, характеризующийся некоторым скачком потенциала который зависит от природы металла, температуры и концентрации ионов металла в растворе. Величину , нельзя ни измерить, ни рассчитать. Однако, если такой полуэлемент соединить проводником с другим полуэлементом (например, то между ними будет протекать электрический ток, обусловленный разностью потенциалов. Электродвижущая сила (Е) процесса, например реакции:

будет равна с высокой степенью приближения разности потенциалов полуэлементов:

Е = 1.

Вот эту величину — электродвижущую силу — измерить можно! Поэтому для характеристики полуэлементов (окислительно-восстановительных пар) используют величину ЭДС между данным полуэлементом и так называемым электродом сравнения. За электрод сравнения принят стандартный водородный электрод

2Н+(р)+2e-=H20

Условно принято считать, что = 0 при давлении водорода, равном 1 атм,

и активности Н+, равной 1. ЭДС цепи, составленной из стандартного водородного электрода и изучаемого электрода, называют электродным потенциалом последнего. Если активности (концентрации) ионов равны единице, то этот потенциал называют

стандартным (Е°). Так, для окислительно-восстановительной пары Cu2+/Cu°, при

[Си2+] = 1 моль/л: Е = = Е° (Cu2+/Cu°).

Уравнение 1. для окислительно-восстановительного процесса в целом можно записать так:

или в более общем виде: E=Eок-Евос

где Еок — электродный потенциал пары, выступающей в качестве окислителя; Евос — электродный потенциал пары, выступающей как восстановитель.

Билет №9

Реакционная способность Р оказывается более высокой, чем азота. С металлами Р взаимодействуют с образованием фосфидов. Их получают нагреванием смеси пниктогена с металлом в инертной атмосфере или в запаянной ампуле.

Гидролиз фосфида: Mg3P2+6H2O=2PH3+3Mg(OH)2

Mg3P2+6HCl=2PH3+3MgCl2

Фосфор диспропорционирует

Р4 + 6Н2O = РН3 + ЗН3PO2

В кислой и нейтральной средах равновесие сильно смещено влево, и реакция практически не протекает. Равновесие смещается вправо под действием

щелочей: Р4 + ЗКОН + ЗH2O=PH3 + ЗКН2PO2

Фосфин образует с воздухом взрывчатые смеси, а при поджигании сгорает, превращаясь в метафосфорную кислоту: РН3 + 2O2=НРО3 + Н2O

Фосфин плохо растворим в воде. Реагирует только с очень сильными кислотами (HI, HClO4)

Алотропия фосфора.

Белый фосфор. Мягкое кристаллическое вещество с неприятным чесночным запахом, практически не растворим в воде, мало растворим в бензоле, хорошо растворим в сероуглероде. Он сильно ядовит, на воздухе горит. Имеет молекулярную решетку в узлах которой находятся тетраэдрические молекулы

P4. Высокая реакционная способность.

Красный фосфор.P∞ Образуется при нагревании белого до 320 градусов без доступа воздуха.Он не растворим в сероуглероде, но растворяется в расплавленном висмуте и свинце.

Черный фосфор. При нагревании 200 оС и давлении 1200 атм. Красный переходит в черный фосфор- термодинамически более выгодную форму. Напоминает графит.

Оксиды.

Оксиды Э2O3 получают при взаимодействии простых веществ с кислородом. Оксид фосфора(III) представляет собой белый рыхлый кристаллический порошок, легко возгоняющийся. Оксид фосфора(III) называют фосфористым ангидридом, так как он взаимодействует с холодной водой с образованием фосфористой кислоты:

Р4O6+6Н2O = 4Н3PO3

Оксиды фосфора(III) проявляют кислотные свойства

Оксиды Э2O5 (Э4О10).Оксид фосфора(V) (или фосфорный ангидрид) представляет

собой рыхлый белый порошок. Оксид фосфора(V) чрезвычайно жадно присоединяет воду. Реакция сопровождается сильным разогреванием и приводит к образованию

сложной смеси, состоящей из метафосфорных кислот разного состава, которые при кипячении гидролизуются до ортофосфорной кислоты Н3PO4.

Источник