Какие свойства имеет касательная к окружности

Какие свойства имеет касательная к окружности thumbnail

Общие сведения

Важно знать терминологию, соотношения и теоремы для решения задач этого класса. Касательной к окружности называется прямая, которая имеет с ней только одну точку соприкосновения. Прямая — это линия, не имеющая границ, т. е. она ничем не ограничена. Окружностью называется геометрическое место точек, удаленных от центра на одинаковые расстояния.

Следует отметить, что касательные бывают внешними и внутренними. Внешней называет прямая линия, проходящая с внешней стороны окружности. Внутренние касательные пересекают отрезок, который соединяет центры двух окружностей. Последний тип прямых не существует, когда два круга пересекаются. Касательные нужно уметь правильно строить, поскольку от этого зависит правильность решения задачи.

Построение касательных

Для построения касательной к окружности следует на последней отметить произвольную точку. Затем необходимо через нее провести прямую. Нужно отметить, что у круга может быть несколько таких прямых. Когда даны две окружности, тогда можно проводить не только внешние, но и внутренние. Существует определенный алгоритм, по которому можно построить первый тип:

Общие сведения о касательной к окружности

  1. Начертить 2 окружности с центрами в точках О1 и О2. При этом должно соблюдаться условие r1 > r2, где r1 и r2 — радиусы I и II соответственно.
  2. Нарисовать III окружность с центром в О1 и радиусом r3 = r1 — r2.
  3. Провести 2 касательные из точки О2 к III. Они параллельны искомым, поскольку радиусы I и II уменьшаются на r2.

Существует более простая модель построения таких прямых. Для этого следует начертить один круг, а затем отметить две произвольные точки на его противоположных сторонах. Далее начертить II круг, превышающий I по радиусу. Отметить на нем точки, воспользовавшись подобием, т. е. они должны быть в тех же местах, что и на I. Затем провести прямые, которые должны соприкасаться с I и II кругами только в одной точке.

Для построения внутренних касательных существует определенная методика. В интернете можно найти много информации. В одних источниках алгоритм построения является сложным, а в других — простым. Однако есть один метод, позволяющий осуществить данную операцию. Специалисты описали его на «понятном» языке для новичков. Суть методики заключается в следующем:

Построение касательных к окружности

  1. Необходимо построить два круга, которые не пересекаются, с радиусами r1 и r2. Расстояния между ними должно составлять r1 + r2.
  2. Соединить их центры (середины) отрезком.
  3. Отметить на нем среднюю точку, которая делит его на две равные части.
  4. Через точку, полученную на третьем шаге методики, провести прямую. Она должна иметь только одну точку соприкосновения с I и II окружностями.
  5. Аналогично провести еще одну прямую.
  6. Искомые прямые являются внутренними касательными.

Далее нужно рассмотреть некоторые свойства, на основании которых можно решать задачи и доказывать геометрические тождества.

Основные свойства

Свойства — утверждения, полученные в результате доказательства теорем о касательной к окружности. Первые нет необходимости доказывать, поскольку об этом уже позаботились математики. Они выделяют всего 4 свойства касательных к окружности:

Основные свойства касательной к окружности

  1. Если провести из одной точки две касательные к некоторой окружности, то отрезки, лежащие на них, будут равны. Искомый угол будет делиться радиусом пополам.
  2. Любая касательная и радиус, проведенный к ее точке, образуют прямой угол. Справедливо и обратное утверждение: радиус, который проведен в точку касания, перпендикулярен данной прямой.
  3. Вся секущая, умноженная на свою внешнюю часть, равна квадрату расстояния касательной, которая проведена из общей с ней точки.
  4. Образованный угол между касательной и секущей, эквивалентен градусной мере угла, который опирается на образованную хорду.

Для рассмотрения I свойства необходимо начертить окружность с центром О1. Затем нужно отметить точку М вне окружности. Из М провести одну прямую, которая соприкасается с кругом в точке А. Такую же операцию следует проделать и для другой касательной. Точку соприкосновения назвать В. Отрезки АМ и ВМ равны между собой.

Если провести радиусы к точкам А и В, то можно сделать вывод, что углы являются прямыми. Чтобы понять третье свойство, необходимо начертить окружность и отметить некоторую точку М за ее пределами. После этого следует из искомой точки провести секущую и касательную. Первой называется прямая, проходящая через окружность и пересекающая ее в двух точках. Для касательной точку соприкосновения необходимо обозначить А. Тогда секущая пересекает круг в точках В (ближняя) и С (дальняя). В результате этого получается такое соотношение: АМ 2 = АВ * МС.

Когда для произвольной окружности существуют касательная и секущая, тогда между ними образуется некоторый угол.

Хорда, полученная в результате прохождения через окружность, образует также угол. Он опирается на искомую хорду и является вписанным. Следовательно, по свойству градусные меры углов равны между собой. Далее нужно разобрать частные случаи, на основании которых можно сделать вывод о количестве касательных.

Свойства и уравнение касательной к окружности

Когда окружность вписана в ромб, тогда их точки касания нужно рассматривать по первому свойству. Радиус окружности можно найти по следующим формулам:

  1. Через диагонали (d1, d2) и сторону (a): r = (d1 * d2) / 4а.
  2. Только по диагоналям: r = (d1 * d2) / [(d1)^2 + (d2)^2]^(½).

Следует отметить, что у ромба две диагонали. Они различаются по размеру. Одна из них больше другой (d1 > d2).

Частные случаи

В некоторых задачах нужно определить количество касательных у двух окружностей. Можно выполнить ряд сложных и трудоемких доказательств. В результате этого будет потрачено много времени, а можно воспользоваться уже готовыми дополнительными свойствами:

Читайте также:  Какое свойство относится к физическим свойствам

Уравнение касательной к окружности

  1. Четыре касательных: круги не соприкасаются, т. е. d > r1 + r2 (значение диаметра больше суммы радиусов r1 и r2).
  2. Две общие внешние и одна внутренняя: окружности соприкасаются только в одной точке (d = r1 + r2).
  3. Только две внешние: пересечение окружностей в двух точках (|r1 — r2| < d < r1 + r2).
  4. Одна общая внешняя: окружности касаются внутри друг друга (d = |r1 — r2|).
  5. Отсутствуют: один круг находится внутри другого (d < |r1 — r2|).

В последнем случае любая касательная будет являться секущей для другой окружности. Существует еще одно положение, когда окружности совпадают. Тогда любая касательная считается общей. В высшей математике разбирается также «отрицательный» радиус. Тогда вышеперечисленные свойства можно править следующим образом:

  1. Нет касательных: окружности не соприкасаются, и для них выполняется условие d < – (r1 + r2).
  2. Две внутренние (общие) и одна внешняя: круги соприкасаются в одной точке (d = -r1 — r2).
  3. Одна пара внутренних: пересечение в 2 точках (|r1 — r2| > d > – r1 — r2).
  4. Внутренняя общая (одна): соприкасаются внутри (d = |r2 — r1|).
  5. Четыре: при d > |r1 — r2|.

Когда заданы окружности, радиус одной из которых равен 0, тогда «нулевой» круг эквивалентен двойной точке. Прямая является двойной и проходит через эту точку. В этом случае математики определяют всего две внешних. Если r1 = r2 = 0, то всего 4 внешних общих касательных. Далее для решения задач нужно разобрать доказательства некоторых свойств.

Доказательства утверждений

Очень важно знать доказательства некоторых свойств и теорем, поскольку одним из типов задач считаются упражнения повышенной сложности, требующие логических расчетов в общем виде. Например, нужно доказать, что касательная образует с радиусом, проведенным к точке касания, прямой угол. Существует тип доказательства от противного.

Касательная к окружности

Для этого следует предположить, что искомый угол не равен 90 градусам. Пусть дана некоторая касательная р. Она имеет с кругом общую точку А. Нужно провести к ней перпендикуляр (радиус). Далее нужно провести из центра О отрезок ОВ на р. Образуется прямоугольный треугольник АВО с гипотенузой ОВ. Если опираться на утверждение от противного, то гипотенуза будет меньше катета (d < r). Однако радиус не может быть больше диаметра, поскольку он рассчитывается по следующей формуле: d = 2 * r. Следовательно, утверждение доказано.

Аналогично доказывается и обратное свойство. Его формулировка имеет такой вид: прямая, проходящая под прямым углом через точку, которая образована радиусом, является касательной. В этом случае можно доказывать не от противного. Расстояние от прямой до центра окружности эквивалентно некоторой величине и является радиусом. Из определения следует, что прямая и окружность имеют общую точку, и только одну. Следовательно, она и есть касательная.

Доказательство об отрезках, проведенных из одной точки, тоже нужно разобрать, поскольку такой прием применяется в решении сложных задач. Отрезки равны между собой и образуют с прямой, проведенной к центру круга, эквивалентные углы.

Следует выполнить построение окружности с центром Р. Далее нужно обозначить точку А за ее пределами и провести из нее лучи-касательные к искомой окружности. Они образуют на круге точки А и В. Кроме того, следует доказать равенство углов ОАВ и САО. При построении образовалось два треугольника ОВА и ОСА. Фигуры являются прямоугольными на основании свойства о касательной и радиусе.

Далее необходимо доказать равенство фигур ОВА и ОСА. Это сделать довольно просто: гипотенуза — общая, катеты ОВ и ОС равны (радиусы) и углы АВО = АСО = 90. Следовательно, они равны по первому признаку, а также эквивалентны друг другу стороны АВ и АС. Кроме того, угол ОАВ = САО. Утверждение доказано. Гипотенуза является также и биссектрисой. В некоторых источниках можно встретить доказательство равенства тангенсов углов.

Пример решения задачи

Нужно составить уравнения касательных к окружности (описанной графиком функции х 2 + y 2 = 2x + 6y + 19), проходящих через координаты х =0 у= -14. Для решения задачи следует действовать по такому алгоритму:

Теорема и свойства касательной к окружности

  1. Перенести все слагаемые, кроме 19, в левую сторону: х 2 + y 2 — 2x — 6y = 19.
  2. Выделить полный квадрат для окончательной записи уравнения окружности: х 2 — 2x + 1 — 1 + y 2 — 6y +9 — 9 = (х — 1)^2 + (y — 3)^2 = 29.
  3. Уравнение прямой, проходящей через (0;-14) в общем виде: y — (-14) = k * (x — 0) или у = кх — 14.
  4. Составить систему уравнений: (х — 1)^2 + (y — 3)^2 = 29 и у = кх — 14.
  5. Подставить второе в первое: (х — 1)^2 + (кх — 14 — 3)^2 = 29.
  6. Упростить выражение: (х — 1)^2 + (кх — 14 — 3)^2 — 29 = х 2 — 2x + 1 +k 2 * x 2 — 34kx + 289 — 29 = (1 + k 2 ) * x 2 — 2 * (17k + 1) + 261.
  7. Решением уравнения должен быть один корень: D/4 = 0.
  8. Упростить тождество: D/4 = (-(17k + 1))^2 — 261 (1 + k 2 ) = 289k 2 + 34k + 1 — 261 — 261k 2 = 28k 2 + 34k — 260 = 0.
  9. Найти значение D: 17 2 — 28 * (-260) = 289 + 7280 = 7569.
  10. Первый коэффициент к1 = (-17 — 87) / 28 = -26/7.
  11. Коэффициент к2 = (-17 + 87) / 28 = 5/2.
  12. Записать уравнения прямых с учетом к1 и к2: у1 = (-26/7) * х — 14 (26х + 7у + 98 = 0) и у2 = (5/2) * х — 14 (5х — 2у — 28 = 0).

Следует отметить, что уравнение окружности с радиусом, равным единице, описывается функцией x2 + y 2 = 1. Эта запись применяется для решения задач в общем виде. Прямая — функция, описанная прямой пропорциональностью у = кх + b. Чтобы связать окружность и касательные, нужно составить систему уравнений. Этот математический ход объясняется тем, что у функций должны быть общие решения (точка на окружности). После решения можно выполнить проверочные вычисления, подставив корни в систему.

Читайте также:  Какие из нижеприведенных свойств могут к

Таким образом, для решения задач об окружности и касательной следует знать общие понятия, а также основные свойства и теоремы.

Источник

В обычной жизни ты очень хорошо представляешь себе, что значит слово «коснуться».

И вот представь себе, в математике тоже существует такое понятие.

В этой теме мы разберёмся с выражениями «прямая касается окружности» и «две окружности касаются».

 Итак, приступим!

Касательная – прямая, которая имеет с окружностью только одну общую точку.

  • Касательная окружности перпендикулярна радиусу, проведённому в точку касания.

Угол между касательной и хордой
равен половине градусной меры дуги, которая находится внутри угла: ( displaystyle angle CAB=frac{1}{2}angle AOB), где:

  • ( displaystyle DC) – касательная,
  • ( displaystyle AB) – хорда,
  • ( displaystyle BAC) – угол, внутри которого находится дуга ( displaystyle AB).
  • Отрезки касательных, проведённых из одной точки к одной окружности, равны: ( displaystyle AB=AC)
  • Углы, образованные касательными, проведёнными из одной точки, и прямой, проходящей через центр окружности и эту точку, равны: ( displaystyle angle BAO=angle CAO).
  • Секущая – прямая, которая пересекает окружность в двух различных точках: ( displaystyle D) и ( displaystyle C).
  • Для любой прямой ( displaystyle AD), пересекающей окружность:
    ( displaystyle ADcdot AC=A{{B}^{2}}),где ( displaystyle AB)- отрезок касательной.

Касание окружностей: если две окружности касаются, то точка касания лежит на прямой, соединяющей их центры. Кроме того, эта прямая перпендикулярна касательной, проведённой в точку касания окружностей:

Внешнее касание

Внутреннее касание

Для двух окружностей с центрами ( displaystyle {{O}}) и ( displaystyle {{O}_{1}}), и радиусами ( displaystyle R=OA) и ( displaystyle r={{O}_{1}}A):

  • при внешнем касании: ( displaystyle {{O}}{{O}_{1}}=R+r);
  • при внутреннем касании: ( displaystyle {{O}}{{O}_{1}}=R-r).

Определения и основная теорема

Прямая касается окружности, если имеет с ней ровно одну общую точку.

Такая прямая называется касательной к данной окружности.

Посмотри-ка внимательно: очень похоже на жизнь, не правда ли? Прямая на картинке лишь чуть-чуть дотрагивается до окружности, касается ее.

Ну вот, и точно так же:

Две окружности касаются, если имеют ровно одну общую точку.

Что же тебе нужно знать о касательных и касающихся окружности?

Самая важная теорема гласит, что:

Радиус, проведённый в точку касания, перпендикулярен касательной.

Запомни это прямо как таблицу умножения! Все остальные факты о касательных и касающихся окружностях основаны именно на этой теореме.

Доказывать её мы здесь не будем, а вот как эта самая важная теорема работает, увидим сейчас несколько раз.

НЕ ПРОПУСТИ!

Автор этого учебника, Алексей Шевчук, проводит бесплатные вебинары по самым сложным задачам ЕГЭ по математике и информатике.

На вебинарах все будет еще понятнее. Шорткаты, лайфхаки, разбор “капканов” – все там.

Регистрируйся здесь и приходи!

Угол между касательной и хордой

Угол между касательной и хордой равен половине градусной меры дуги, которая находится внутри угла.

Прежде всего: как это понимать? Подробнее о том, что такое «градусная мера дуги», написано в теме «Окружность. Вписанный угол».

Здесь напомним только, что в дуге столько же градусов, сколько в центральном угле, заключающем эту дугу. 

То есть «градусная мера дуги» – это «сколько градусов в центральном угле» – и всё!

Ну вот, как говорит Карлсон, продолжаем разговор.

Рисуем ещё раз теорему об угле между касательной и хордой.

Смотри, хорда ( displaystyle AB) разбила окружность на две дуги. Одна дуга находится ВНУТРИ угла ( displaystyle BAC), а другая дуга – внутри угла ( displaystyle BAD).

И теорема об угле между касательной и хордой говорит, что ( displaystyle angle CAB) равен ПОЛОВИНЕ угла ( displaystyle AOB), ( displaystyle angle DAB) равен ПОЛОВИНЕ большего (на рисунке – зеленого) угла ( displaystyle AOB).

При чем же тут тот факт, что радиус, проведенный в точку касания, перпендикулярен касательной?

Сейчас и увидим. ( displaystyle OA) – радиус, ( displaystyle AC) – касательная.

Значит, ( displaystyle angle OAC=90{}^circ ). Поэтому:( displaystyle angle 1=90{}^circ -angle 4). Но ( displaystyle angle 2=angle 1) (( displaystyle OA) и ( displaystyle OB) – радиусы)( displaystyle angle 2=90{}^circ -angle 4).

И осталось вспомнить, что сумма углов треугольника ( displaystyle AOB) равна ( displaystyle 180{}^circ ).

Пишем:

Короче:

Здорово, правда? И самым главным оказалось то, что ( displaystyle angle OAC=90{}^circ ).

НРАВИТСЯ УЧЕБНИК?

Его автор, Алексей Шевчук, ведет наши курсы подготовки к ЕГЭ по математике и информатике.

Приходи, научишься решать задачи любой сложности с самого нуля. Шаг за шагом.

От 2000 до 3990 руб / месяц, 3 раза в неделю по 2 часа.

Равенство отрезков касательных

Задумывался ли ты над вопросом «а сколько касательных можно провести из одной точки к одной окружности»? Вот, представь себе, ровно две! Вот так:

А ещё более удивительный факт состоит в том, что:

Отрезки касательных, проведённых из одной точки к одной окружности, равны.

То есть, на нашем рисунке, ( displaystyle AB=AC).

Читайте также:  Какое свойство молекул имеет вода

И для этого факта тоже самым главным является то, что радиус, проведённый в точку касания, перпендикулярен касательной.

Вот, убедись.

Проведём радиусы ( displaystyle OB) и ( displaystyle OC) и соединим ( displaystyle O) и ( displaystyle A).

( displaystyle OB) – радиус.

( displaystyle AB) – касательная, значит, ( displaystyle OBbot AB).
Ну, и так же ( displaystyle OCbot AC).

Получилось два прямоугольных треугольника ( displaystyle AOB) и ( displaystyle AOC), у которых:

  • ( displaystyle OB=OC) – равные катеты
  • ( displaystyle OA) – общая гипотенуза

( displaystyle Rightarrow Delta AOB = Delta AOC)

(заглядываем в тему “Прямоугольный треугольник”, если не помним, когда бывают равны прямоугольные треугольники).

Но раз ( displaystyle Delta AOB=Delta AOC,) то( displaystyle AB=AC). УРА!

И ещё раз повторим – этот факт тоже очень важный:

Отрезки касательных, проведённых из одной точки, – равны.

И есть ещё один факт, который мы здесь не будем доказывать, но он может оказаться тебе полезен при решении задач.

Для любой прямой ( displaystyle AD), пересекающей окружность,( displaystyle ADcdot AC=A{{B}^{2}}), где ( displaystyle AB) – отрезок касательной.

Хитроумными словами об этом говорят так:

«квадрат длины отрезка касательной равен произведению секущей на её внешнюю часть».

Страшно? Не бойся, помни только, что в буквах это:

НЕ ПРОПУСТИ!

Автор этого учебника, Алексей Шевчук, проводит бесплатные вебинары по самым сложным задачам ЕГЭ по математике и информатике.

На вебинарах все будет еще понятнее. Шорткаты, лайфхаки, разбор “капканов” – все там.

Регистрируйся здесь и приходи!

Общая касательная к двум окружностям

Прямая, которая касается двух окружностей, называется их общей касательной.

Общие касательные бывают внешние и внутренние.

Смотри на картинки.

Зарегистрируйся один раз и ты откроешь все 100 статей учебника

А также получишь доступ к видеоурокам и другим бесплатным материалам курса “Подготовка к ЕГЭ с репетитором”

* Если не понравятся бесплатные материалы, ты сможешь отписаться в любой момент

Две внутренние общие касательные.

Две внешние общие касательные.

А всего – четыре! Не больше, но может быть меньше.

Вот так:

Есть только две внешние общие касательные.

Или так:одна внутренняя и две внешних.

А может быть вообще так:

Только одна общая касательная.

И снова факты:

  • Длины отрезков двух внутренних общих касательных равны
  • Длины отрезков двух внешних общих касательных равны.

НО! При этом: внешние и внутренние касательные – разные!(а некоторых, может, и вообще нет…)

Касающиеся окружности

Касание окружностей бывает внешним и внутренним.

Вот такая картинка называется

«окружности касаютсявнешним образом».

А вот такая картинка называется

«окружности касаются внутренним образом».

Что же самое главное нужно знать?

Если две окружности касаются, то точка касания лежит на прямой, соединяющей центры. Кроме того, эта прямая перпендикулярна касательной, проведённой в точку касания окружностей.

Если тебе показалось слишком длинно – посмотри картинку. Может быть ещё так:

Ура, теперь ты полностью вооружён на борьбу с касательными – дерзай! ????

P.S. Последний бесценный совет!

Ну вот, тема закончена. Если ты читаешь эти строки, значит, ты очень крут. Почему? Потому что только 5% людей способны освоить что-то самостоятельно. И если ты дочитал до конца, ты попал в эти 5%!

Теперь самое главное.

Ты разобрался с теорией по этой теме. И, повторюсь, это… это просто супер! Ты уже лучше, чем большинство твоих сверстников. Проблема в том, что этого может не хватить…

Для чего?

Для успешной сдачи ЕГЭ и поступления в ВУЗ мечты на бюджет и, самое главное, для жизни. Я не буду тебя ни в чем убеждать, просто скажу одну вещь…  Люди, получившие хорошее образование, зарабатывают намного больше, чем те, кто его не получил. 

Это статистика.  Но и это не главное.

Главное то, что они более счастливы (есть такие исследования). Возможно, потому, что перед ними открывается гораздо больше возможностей и жизнь становится ярче? Не знаю…

Но думай сам…

Что нужно, чтобы сдать наверняка ЕГЭ, поступить в ВУЗ мечты и быть в конечном итоге… более счастливым? Две вещи.

Первое, тебе нужно набить руку, решая задачи

На экзамене у тебя не будут спрашивать теорию. Тебе нужно будет решать задачи на время. И, если ты не решал их (много!), ты обязательно где-нибудь глупо ошибешься или просто не успеешь. Это как в спорте: нужно много раз повторить, чтобы выиграть наверняка.  “Понял” и “Умею решать” – это совершенно разные навыки. Тебе нужны оба.

Второе, заниматься по системе  – иначе у тебя уйдет много времени и ты, что-нибудь пропустишь.

И сейчас будет честная реклама наших курсов подготовки к ЕГЭ, потому что они решают обе эти проблемы.

Тебе же понятен этот учебник? Так вот наши курсы такие же понятные как этот учебник. 

Потому что их подготовил и ведет автор этого учебника Алексей Шевчук. 

Он буквально разжевывает все на вебинарах. Вы решаете задачи. Много задач. У вас будет проверка домашки и марафон «Год за месяц» в мае, чтобы «упаковать» ваши знания и улучшить результат на 20-30%.

Курсы очень бюджетные: от 2000 до 3990 тыс/мес за 12 двухчасовых занятий с Алексеем. 

Кликайте по этим кнопкам и читайте условия, там все очень подробно описано:

Источник