Какие свойства имеет резина по сравнению с каучуком

Какие свойства имеет резина по сравнению с каучуком thumbnail

27 декабря 2018

Автор
КакПросто!

Резиновые изделия и те, что выполнены из каучука, нередко очень похожи: они имеют практически одинаковую плотность, текстуру, физические свойства. Однако сами материалы принципиально разнятся.

Содержание статьи

  • Каучук
  • Резина

Каучук начал применяться с 1823 года в качестве пропитки для плащей, которые изобрел К. Макинтош.

Сырье это бывает двух видов: натуральный и искусственный. Натуральный каучук получают из латекса каучуковых растений, которые растут в Латинской Америке, и к ним относятся следующие виды деревьев:
– гевея;
– фикусы каучуковые;
– разновидности ландольфии.

Искусственный каучук называют синтетическим. В его основе лежит синтез изопрена и бутиллития при помощи химического катализатора. При производстве синтетического каучука также используются производные нефти в качестве растворителя. Впервые он был получен в 1920 году, а в 1931 началось его серийное производство в промышленных масштабах. В настоящее время существуют следующие виды синтетических каучуков:
– бутадиен стирольный;
– полибутадиеновый;
– полизопреновый;
– бутилкаучук;
– этилен–пропиленовый;
– хлоропреновый;
– бутадиен – нитрильный.

Резина получается путем вулканизации каучука и добавлением различных химических элементов, которые призваны повысить прочность материала. Первая резина появилась в 1839 году путем вулканизации под воздействием на каучук серы, при котором на молекулярном уровне происходит укрепление сеточных структур.

При синтезе резины с применением синтетического каучука получается материал, который обладает повышенными качествами стойкости по отношению к агрессивным средам, таким как:
– жидкости с повышенным содержанием октана (бензин, керосин);
– продукты переработки нефти (различного рода масла).

Также у резины намного лучше характеристики по отношению к механическому воздействию на нее со стороны внешних факторов. Она имеет значительно более плотную структуру по отношению к каучуку, за счет чего она получила широкое распространение во всех отраслях народного хозяйства.

Резина в силу ее искусственного происхождения устойчива к различным атмосферным воздействиям. Кроме всего прочего она обладает диэлектрическими свойствами. Но главным отличием натурального и искусственного каучука от резины является повышенная пластичность каучуковой массы. Ее специально добавляют в резину при производстве, чтобы добавить гибкости, тягучести. Каучук в чистом виде почти не используется в виду его небольшой прочности, но зато при добавлении его в резину получается очень прочный, износостойкий материал.

Источник

Сложность статьи  

КАУЧУКИ

Определение

Каучуки – полимеры сопряженных диеновых соединений. Число мономерных звеньев в молекуле такого полимера может достигать нескольких десятков тысяч.

Промышленность производит много видов синтетических каучуков. Каучуки служат примером эластичных полимеров, обладающих способностью в широком температурном интервале подвергаться значительным обратимым деформациям. Каучуки широко применяются в различных отраслях хозяйства: в производстве автомобильных шин, различных резинотехнических изделий, обуви и т.д. Каучуки, как правило, не токсичны. На основе синтетических и натурального невулканизированного каучуков изготавливают лейкопластыри. Каучуки используются в производстве эластичных зондов, катетеров, хирургических перчаток и других изделий медицинского назначения.

До 30-х гг. прошлого столетия использовали натуральный каучук, выделенный из млечного сока (латекса) тропического растения гевеи и других каучуконосов.  Ни один синтетический каучук не мог заменить натуральный. Изучение натурального каучука показало, что это полимер изопрена, в котором все элементарные звенья имеют цис-конфигурацию:

Трас-изомер так же является природным полимером и известен под названием “гуттаперча“. В отличии от натурального каучука, гуттаперча не обладает эластичностью:

Какие свойства имеет резина по сравнению с каучуком

Синтетические каучуки

Синтетический каучук в промышленном масштабе впервые был получен в 1931 году в СССР по способу С.В.Лебедева. На полузаводской установке было получено 260 кг синтетического каучука из дивинила, а в 1932 году впервые в мире осуществлен его промышленный синтез. В Германии каучук был синтезирован в 1936-1937 годах, а в США – в 1942 году.

Важнейшими мономерами для синтетического каучука служат преимущественно такие сопряженные диеновые углеводороды, как дивинил, изопрен, хлоропрен:

Какие свойства имеет резина по сравнению с каучуком

Сырьем для получения исходных продуктов синтеза каучуков являются природный н-бутан (для получения бутадиена) и 2-метилбутан (для синтеза изопрена):

Какие свойства имеет резина по сравнению с каучуком

Кроме того, для получения бутадиена используется этиловый спирт (синтез Лебедева):

Какие свойства имеет резина по сравнению с каучуком

1,3-бутадиен (дивинил) $hspace {9 cm}$

ИЗОПРЕНОВЫЙ КАУЧУК

Изопреновые каучуки –  продукты полимеризации изопрена. Синтез проводится в присутствии катализаторов стереоспецифической полимеризации – металлорганических соединений, и приводит к образованию стереорегулярных полимеров, аналогичных по структуре натуральному каучуку. Такими катализаторами являются комплексные соединения типа $AlR_3 +TiX_4$ , где R — алкил, Х — галоген (так называемые координационно-ионные катализаторы Циглера — Натта), литийорганические соединения, например литийалкилы, или металлический литий. 

Макромолекулы изопренового каучука характеризуются высоким (65—99%) содержанием звеньев структуры 1,4-цис (I); они содержат также звенья 1,4-транс (II) и звенья 3,4 (III). На комплексных катализаторах получают каучуки с наибольшим содержанием звеньев 1,4-цис-звеньев (92—99%)

Какие свойства имеет резина по сравнению с каучуком

БУТАДИЕНОВЫЙ КАУЧУК

Дивинил (1,3-бутадиен) – важнейший мономер для синтетического каучука – может быть полимеризован по радикальному или ионному механизму (см. подробнее тему “Производство пластмасс“). В первом промышленном синтезе каучука инициатором полимеризации был металлический натрий, на поверхности которого происходила адсорбция и поляризация 1,3-бутадиена. В современном производстве при получении бутадиенового каучука из бутадиена используются металлорганические соединения:

Какие свойства имеет резина по сравнению с каучуком

бутадиен-1,3$hspace {15 cm}$ бутадиеновый каучук

СПОСОБЫ УЛУЧШЕНИЯ СВОЙСТВ КАУЧУКОВ

Для улучшения технических свойств каучука диены часто полимеризуют совместно с мономерами, содержащими активный винильный остаток (например, с акрилонитратом, со стиролом):

Какие свойства имеет резина по сравнению с каучуком

бутадиен-стирольный каучук

Какие свойства имеет резина по сравнению с каучуком

бутадиен-нитрильный каучук

В молекулах этих каучуков звенья бутадиена чередуются со звеньями соответственно стирола и акрилонитрила, а реакции относятся к реакциям сополимеризации.  Бутадиен-стирольный каучук отличается повышенной износостойкостью и применяется в производстве автомобильных шин, конвейерных лент, резиновой обуви. Бутадиен-нитрильные каучуки — бензо- и маслостойкие, и поэтому используются, например, в производстве сальников.

РЕЗИНА. ВУЛКАНИЗАЦИЯ КАУЧУКА

Натуральные и синтетические каучуки используются преимущественно в виде резины, так как она обладает значительно более высокой прочностью, эластичностью и рядом других ценных свойств. Для получения резины каучук вулканизируют. 

Определение

Резина – материал, который получают вулканизацией натурального или синтетических каучуков. Резина – упругий, эластичный материал, прочный, устойчивый к истиранию, действию температуры и органических растворителей.

При изготовлении резины проводится процесс “вулканизации” каучука: из смеси каучука с серой и наполнителями (особенно важным наполнителем служит сажа) и другими веществами формуют нужные изделия и подвергают их нагреванию. В этих условиях атомы серы присоединяются к двойным связям макромолекул каучука и «сшивают» их, образуя дисульфидные «мостики». В результате образуется гигантская молекула, имеющая три измерения в пространстве — как бы длину, ширину и толщину. Полимер приобретает пространственную структуру:

Какие свойства имеет резина по сравнению с каучуком

В результате вулканизации меняется и растворимость полимера: каучук, хотя и медленно, растворяется в бензине, резина лишь набухает в нём. Если к каучуку добавить больше серы чем нужно для образования резины, то при вулканизации линейные молекулы окажутся “сшитыми” в очень многих местах, и материал утратит эластичность, станет твердым – получится эбонит. До появления современных пластмасс эбонит считался одним из лучших изоляторов.

Свойства резины определяются и типом исходного сырья. Например, резина из натурального каучука характеризуется хорошей эластичностью, маслостойкостью, износостойкостью, но в то же время мало устойчива к агрессивным средам; резина из дивинилового каучука (СКД) имеет даже более высокую износостойкость, чем из натурального (НК). Бутадиенстирольный каучук (СКС) способствует повышению износостойкости. Изопреновый каучук (СКИ) определяет эластичность и прочность резины на растяжение, а хлоропреновый (СКХ) — стойкость её к действию кислорода.

Источник

СБОР ЛАТЕКСА из надреза каучуконосного дерева.
СБОР ЛАТЕКСА из надреза каучуконосного дерева.

Какие свойства имеет резина по сравнению с каучуком
Синтез 1,4-цис-полиизопрена проводился несколькими различными путями с использованием регулирующих стереоструктуру катализаторов, и это позволило наладить производство различных синтетических эластомеров. Катализатор Циглера состоит из триэтилалюминия и четыреххлористого титана; он заставляет молекулы изопрена объединяться (полимеризоваться) с образованием гигантских молекул 1,4-цис-полиизопрена (полимера). Аналогично, металлический литий или алкил- и алкиленлитиевые соединения, например бутиллитий, служат катализаторами полимеризации изопрена в 1,4-цис-полиизопрен. Реакции полимеризации с этими катализаторами проводятся в растворе с использованием углеводородов нефти в качестве растворителей. Синтетический 1,4-цис-полиизопрен обладает свойствами натурального каучука и может использоваться как его заместитель в производстве резиновых изделий.
См. также ПЛАСТМАССЫ. Полибутадиен, на 90-95% состоящий из 1,4-цис-изомера, также был синтезирован посредством регулирующих стереоструктуру катализаторов Циглера, например триэтилалюминия и четырехиодистого титана. Другие регулирующие стереоструктуру катализаторы, например хлорид кобальта и алкилалюминий, также дают полибутадиен с высоким (95%) содержанием 1,4-цис-изомера. Бутиллитий тоже способен полимеризовать бутадиен, однако дает полибутадиен с меньшим (35-40%) содержанием 1,4-цис-изомера. 1,4-цис-полибутадиен обладает чрезвычайно высокой эластичностью и может использоваться как наполнитель натурального каучука. Тиокол (полисульфидный каучук). В 1920, пытаясь получить новый антифриз из этиленхлорида и полисульфида натрия, Дж.Патрик вместо этого открыл новое каучукоподобное вещество, названное им тиоколом. Тиокол высокоустойчив к бензину и ароматическим растворителям. Он имеет хорошие характеристики старения, высокое сопротивление раздиру и низкую проницаемость для газов. Не будучи настоящим синтетическим каучуком, он, тем не менее, находит применение для изготовления резин специального назначения.
Неопрен (полихлоропрен). В 1931 компания “Дюпон” объявила о создании каучукоподобного полимера, или эластомера, названного неопреном. Неопрен изготавливают из ацетилена, который, в свою очередь, получают из угля, известняка и воды. Ацетилен сначала полимеризуют до винилацетилена, из которого путем добавления хлороводородной кислоты производят хлоропрен. Далее хлоропрен полимеризуют до неопрена. Помимо маслостойкости неопрен имеет высокую тепло- и химическую стойкость и используется в производстве шлангов, труб, перчаток, а также деталей машин, например шестерен, прокладок и приводных ремней. Буна S (SBR, бутадиенстирольный каучук). Синтетический каучук типа буна S, обозначаемый как SBR, производится в больших реакторах с рубашкой, или автоклавах, в которые загружают бутадиен, стирол, мыло, воду, катализатор (персульфат калия) и регулятор роста цепи (меркаптан). Мыло и вода служат для эмульгирования бутадиена и стирола и приведения их в близкий контакт с катализатором и регулятором роста цепи. Содержимое реактора нагревается до примерно 50° С и перемешивается в течение 12-14 ч; за это время в результате процесса полимеризации в реакторе образуется каучук. Получающийся латекс содержит каучук в форме малых частиц и имеет вид молока, очень напоминающий натуральный латекс, добытый из дерева. Латекс из реакторов обрабатывается прерывателем полимеризации для остановки реакции и антиоксидантом для сохранения каучука. Затем он очищается от избытка бутадиена и стирола. Чтобы отделить (путем коагуляции) каучук от латекса, он обрабатывается раствором хлорида натрия (пищевой соли) в кислоте либо раствором сульфата алюминия, которые отделяют каучук в форме мелкой крошки. Далее крошка промывается, сушится в печи и прессуется в кипы. Из всех эластомеров SBR используется наиболее широко. Больше всего его идет на производство автомобильных шин. Этот эластомер сходен по свойствам с натуральным каучуком. Он не маслостоек и в большинстве случаев проявляет низкую химическую стойкость, но обладает высоким сопротивлением удару и истиранию.
Латексы для эмульсионных красок. Бутадиен-стирольные латексы широко используются в эмульсионных красках, в которых латекс образует смесь с пигментами обычных красок. В таком применении содержание стирола в латексе должно превышать 60%.
Низкотемпературный маслонаполненный каучук. Низкотемпературный каучук – особый тип каучука SBR. Он производится при 5° С и обеспечивает лучшую износостойкость шин, чем стандартный SBR, полученный при 50° С. Износостойкость шин еще более повышается, если низкотемпературному каучуку придать высокую ударную вязкость. Для этого в базовый латекс добавляют некоторые нефтяные масла, называемые нефтяными мягчителями. Количество добавляемого масла зависит от требуемого значения ударной вязкости: чем оно выше, тем больше вводится масла. Добавленное масло действует как мягчитель жесткого каучука. Другие свойства маслонаполненного низкотемпературного каучука такие же, как у обычного низкотемпературного.
Буна N (NBR, бутадиенакрилонитрильный каучук). Вместе с буна S в Германии был также разработан маслостойкий тип синтетического каучука под названием пербунан, или буна N. Основной компонент этого нитрильного каучука – также бутадиен, который сополимеризуется с акрилонитрилом по существу по тому же механизму, что и SBR. Сорта NBR различаются содержанием акрилонитрила, количество которого в полимере варьирует от 15 до 40% в зависимости от назначения каучука. Нитрильные каучуки маслостойки в степени, соответствующей содержанию в них акрилонитрила. NBR использовался в тех видах военного оборудования, где требовалась маслостойкость, например в шлангах, самоуплотняющихся топливных элементах и конструкциях транспортных средств.
Бутилкаучук. Бутилкаучук – еще один синтетический каучук – был открыт в 1940. Он замечателен своей низкой газопроницаемостью; камера шины из этого материала удерживает воздух в 10 раз дольше, чем камера из натурального каучука. Бутилкаучук изготавливают полимеризацией изобутилена, получаемого из нефти, с малой добавкой изопрена при температуре -100° С. Эта полимеризация не является эмульсионным процессом, а проводится в органическом растворителе, например метилхлориде. Свойства бутилкаучука могут быть сильно улучшены термообработкой маточной смеси бутилкаучука и газовой сажи при температуре от 150 до 230° С. Недавно бутилкаучук нашел новое применение как материал для протекторов шин ввиду его хороших ходовых характеристик, отсутствия шума и превосходного сцепления с дорогой. Бутилкаучук несовместим с натуральным каучуком и SBR и, значит, не может быть смешан с ними. Однако после хлорирования до хлорбутилкаучука он становится совместимым с натуральным каучуком и SBR. Хлорбутилкаучук сохраняет низкую газопроницаемость. Это свойство используется при изготовлении смешанных продуктов хлорбутилкаучука с натуральным каучуком или SBR, которые служат для производства внутреннего слоя бескамерных шин.
Этиленпропиленовый каучук. Сополимеры этилена и пропилена могут быть получены в широких диапазонах составов и молекулярных масс. Эластомеры, содержащие 60-70% этилена, вулканизуются с пероксидами и дают вулканизат с хорошими свойствами. Этиленпропиленовый каучук имеет превосходную атмосферо- и озоностойкость, высокую термо-, масло- и износостойкость, но также и высокую воздухопроницаемость. Такой каучук изготавливается из дешевых сырьевых материалов и находит многочисленные применения в промышленности. Наиболее широко применяемым типом этиленпропиленового каучука является тройной этиленпропиленовый каучук (с диеновым сомономером). Он используется в основном для изготовления оболочек проводов и кабелей, однослойной кровли и в качестве присадки для смазочных масел. Его малая плотность и превосходная озоно- и атмосферостойкость обусловливают его применение в качестве кровельного материала.
Вистанекс. Вистанекс, или полиизобутилен, – полимер изобутилена, также получаемый при низких температурах. Он подобен каучуку по свойствам, но в отличие от каучука является насыщенным углеводородом и, значит, не может быть подвергнут вулканизации. Полиизобутилен озоностоек.
Коросил. Коросил, каучукоподобный материал, – это пластифицированный поливинилхлорид, приготовленный из винилхлорида, который, в свою очередь, получают из ацетилена и хлороводородной кислоты. Коросил замечательно стоек к действию окислителей, в том числе озона, азотной и хромовой кислот, и поэтому используется для внутренней облицовки цистерн с целью защиты их от коррозии. Он непроницаем для воды, масел и газов и в силу этого находит применение как покрытие для тканей и бумаги. Каландрованный материал используется в производстве плащей, душевых занавесок и обоев. Низкое водопоглощение, высокая электрическая прочность, негорючесть и высокое сопротивление старению делают пластифицированный поливинилхлорид пригодным для изготовления изоляции проводов и кабелей.
Полиуретан. Класс эластомеров, известных как полиуретаны, находит применение в производстве пеноматериалов, клеев, покрытий и формованных изделий. Изготовление полиуретанов включает несколько стадий. Сначала получают сложный полиэфир реакцией дикарбоновой кислоты, например адипиновой, с многоатомным спиртом, в частности этиленгликолем или диэтиленгликолем. Полиэфир обрабатывают диизоцианатом, например толуилен-2,4-диизоцианатом или метилендифенилендиизоцианатом. Продукт этой реакции обрабатывают водой и подходящим катализатором, в частности n-этилморфолином, и получают упругий или гибкий пенополиуретан. Добавляя диизоцианат, получают формованные изделия, в том числе шины. Меняя соотношение гликоля и дикарбоновой кислоты в процессе производства сложного полиэфира, можно изготовить полиуретаны, которые используются как клеи или перерабатываются в твердые или гибкие пеноматериалы либо формованные изделия. Пенополиуретаны огнестойки, имеют высокую прочность на растяжение, очень высокое сопротивление раздиру и истиранию. Они проявляют исключительно высокую несущую способность и хорошее сопротивление старению. Вулканизованные полиуретановые каучуки имеют высокие прочность на растяжение, сопротивление истиранию, раздиру и старению. Был разработан процесс получения полиуретанового каучука на основе простого полиэфира. Такой каучук хорошо ведет себя при низких температурах и устойчив к старению.
Кремнийорганический каучук. Кремнийорганические каучуки не имеют себе равных по пригодности к эксплуатации в широком температурном интервале (от -73 до 315° С). Для вулканизованных кремнийорганических каучуков была достигнута прочность на растяжение около 14 МПа. Их сопротивление старению и диэлектрические характеристики также весьма высоки.
Хайпалон (хлорсульфоэтиленовый каучук). Этот эластомер хлорсульфонированного полиэтилена получают обработкой полиэтилена хлором и двуокисью серы. Вулканизованный хайпалон чрезвычайно озоно- и атмосферостоек и имеет хорошую термо- и химическую стойкость.
Фторсодержащие эластомеры. Эластомер кель-F – сополимер хлортрифторэтилена и винилиденфторида. Этот каучук имеет хорошую термо- и маслостойкость. Он стоек к действию коррозионно-активных веществ, негорюч и пригоден к эксплуатации в интервале от -26 до 200° С. Витон А и флюорел – сополимеры гексафторпропилена и винилиденфторида. Эти эластомеры отличаются превосходной стойкостью к действию тепла, кислорода, озона, атмосферных факторов и солнечного света. Они имеют удовлетворительные низкотемпературные характеристики и пригодны к эксплуатации до -21° С. Фторсодержащие эластомеры используются в тех приложениях, где требуется стойкость к действию тепла и масел.
Специализированные эластомеры. Производятся специализированные эластомеры с разнообразными физическими свойствами. Многие из них очень дороги. Наиболее важные из них – акрилатные каучуки, хлорсульфонированный полиэтилен, сополимеры простых и сложных эфиров, полимеры на основе эпихлоргидрина, фторированные полимеры и термопластичные блок-сополимеры. Они используются для изготовления уплотнений, прокладок, шлангов, оболочек проводов и кабелей и клеев.
См. также
ХИМИЯ ОРГАНИЧЕСКАЯ;
ПЛАСТМАССЫ;
КРЕМНИЙОРГАНИЧЕСКИЕ ПОЛИМЕРЫ.
ЛИТЕРАТУРА
Справочник резинщика. М., 1971 Догадкин Б.А. Химия эластомеров. М., 1981 Лепетов В.А., Юрцев Л.Н. Расчеты и конструирование резиновых изделий. Л., 1987

Энциклопедия Кольера. — Открытое общество.
2000.

Источник