Какие свойства имеет высота

Какие свойства имеет высота thumbnail

Там, где есть высота, есть и прямой угол.

А значит, и прямоугольный треугольник, который поможет тебе решить массу задач!

И простые подобия, и «хитрые подобия с косинусом», и другие свойства прямоугольных треугольников!

И самое главное – не нужно ничего запоминать.

Научись выводить и никогда не ошибёшься, сможешь всегда себя проверить и решить любую задачу!

Все в этой статье. Читай.

ШПОРА ПО ВЫСОТЕ ТРЕУГОЛЬНИКА

Высота – линия, проведённая из вершины треугольника перпендикулярно противоположной стороне (прямой, которая эту сторону содержит).

Три высоты любого треугольника пересекаются в одной точке.

Высоты треугольника обратно пропорциональны сторонам, на которые они опущены: ( displaystyle A{{H}_{A}}:B{{H}_{B}}:C{{H}_{C}}=frac{1}{BC}:frac{1}{AC}:frac{1}{AB}).

Способы вычисления длины высоты, проведенной к стороне BC:

  • Через сторону и угол треугольника: ( displaystyle A{{H}_{A}}=ACcdot sin C=ABcdot sin B).
  • Через все 3 стороны треугольника:( displaystyle A{{H}_{A}}=frac{2}{BC}cdot sqrt{pcdot (p-BC)cdot (p-AC)cdot (p-AB)}),где ( displaystyle p) – полупериметр треугольника: ( displaystyle p=frac{AB+BC+AC}{2}).
  • Через сторону и площадь треугольника: ( displaystyle A{{H}_{A}}=frac{2S}{BC}).
  • Через стороны треугольника и радиус описанной окружности:
    ( displaystyle A{{H}_{A}}=frac{ABcdot AC}{2R}),где ( displaystyle R) – радиус описанной окружности.

НАЧАЛЬНЫЙ УРОВЕНЬ

Высота – линия, проведённая из вершины треугольника перпендикулярно противоположной стороне (прямой, которая эту сторону содержит).

Давай нарисуем:

На этом рисунке ( displaystyle BH) – высота.

Но иногда высота ведёт себя, как непослушный ребенок – «выбегает» из треугольника. Это бывает в тупоугольном треугольнике.

И тогда получается так:

В общем, не нужно пугаться, если основание высоты оказалось не на стороне треугольника, а «за» треугольником, на продолжении стороны. Как же решать задачи, в которых участвует высота?

Нужно стремиться применить какие-нибудь знания о прямоугольном треугольнике – ведь где высота – там и прямой угол.

Давай попробуем.

НЕ ПРОПУСТИ!

Автор этого учебника, Алексей Шевчук, проводит бесплатные вебинары по самым сложным задачам ЕГЭ по математике и информатике.

На вебинарах все будет еще понятнее. Шорткаты, лайфхаки, разбор “капканов” – все там.

Регистрируйся здесь и приходи!

Пример решения задачи

Вот есть, скажем, задача:

В треугольнике ( displaystyle ABC) с тупым углом ( displaystyle C) проведена высота ( displaystyle BH). Найти ( displaystyle AC), если ( AB=2sqrt{10}), ( BC=sqrt{13}), ( BH=2).

Решаем: 

Смотри: из-за того, что угол ( C) – тупой, высота ( BH) опустилась на продолжение стороны ( AC), а не на саму сторону.

Теперь давай увидим во всём этом два прямоугольных треугольника.

Смотри их целых два:

Применяем теорему Пифагора к треугольнику ( BCH):

( B{{C}^{2}}=B{{H}^{2}}+C{{H}^{2}}), то есть ( 13=4+C{{H}^{2}}); ( CH=3).

А теперь теорема Пифагора для ( Delta ABH):

( A{{B}^{2}}=A{{H}^{2}}+B{{H}^{2}}); то есть ( 40=A{{H}^{2}}+4); ( AH=6).

Теперь осталось только заметить, что ( AC=AH-CH=6-3=3).

Нашли!

Пересечение высот

А теперь давай зададимся вопросом: а сколько вообще высот у треугольника? Конечно, три! И вот, есть такое утверждение, доказывать которое мы здесь не будем, но знать его нужно, тем более, что запоминается оно просто:

В любом треугольнике все три высоты (или их продолжения) пересекаются в одной точке.

Смотрим, как это бывает:

a) Сами высоты пересекаются:

b) Пересекаются продолжения:

Ну вот, про высоту и запоминать-то нужно всего ничего:

  • Задача про высоту часто решается с помощью знаний о прямоугольном треугольнике.
  • Три высоты (или три продолжения) пересекаются в одной точке.
    (Но! Это НЕ центр НИКАКОЙ окружности)

НРАВИТСЯ УЧЕБНИК?

Его автор, Алексей Шевчук, ведет наши курсы подготовки к ЕГЭ по математике и информатике.

Приходи, научишься решать задачи любой сложности с самого нуля. Шаг за шагом.

От 2000 до 3990 руб / месяц, 3 раза в неделю по 2 часа.

СРЕДНИЙ УРОВЕНЬ

Высота треугольника –линия, проведённая из вершины треугольника перпендикулярно противоположной стороне (прямой, содержащей эту высоту).

Обрати внимание, что, в отличие от биссектрисы и медианы,высота может находиться вне треугольника. Вот так, например:

Немного о терминологии: основанием высоты называют ту точку, в которой высота пересекает противоположную сторону (или её продолжение).

Задачи, связанные с высотой, часто решаются при помощи знаний о прямоугольном треугольнике. Но попадаются задачи и похитрее, при решении которых лучше обладать дополнительными знаниями заранее, а не выводить их «с нуля». Сейчас мы обсудим некоторые из них.

Первый «неожиданный факт»:

( displaystyle Delta AB{{H}_{A}}sim Delta ~CB{{H}_{C}})

Почему бы это? Да очень просто! У них общий угол ( displaystyle B) и оба – прямоугольные. Значит, подобны по двум углам.

Второй «неожиданный» факт:

( Delta A{{H}_{C}}Hsim{ }Delta C{{H}_{A}}H)

Здесь тоже подобие по двум углам: ( angle 1=angle 2) (как вертикальные) и по прямому углу.

Третий, по-настоящему неожиданный факт:

( Delta ABCsim Delta {{H}_{A}}B{{H}_{C}})

Вот это уже интереснее, правда? Давай разбираться, почему так.

  • Во-первых, конечно, у этих треугольников есть одинаковый (и даже общий) угол ( B).
  • А во-вторых… Ты помнишь ещё первый “неожиданный” факт? Ну, что ( Delta A{{H}_{A}}Bsim Delta C{{H}_{C}}B)? Вспоминаем и применяем!

Запишем отношения соответствующих сторон.

Итак, ( Delta A{{H}_{A}}Bsim Delta C{{H}_{C}}B).

Следовательно, ( frac{{{H}_{C}}B}{{{H}_{A}}B}=frac{BC}{AB})

Перепишем по–другому: ( frac{{{H}_{C}}B}{BC}=frac{{{H}_{A}}B}{AB})

Ух, да это же – отношение сторон для треугольников ( ABC) и ( {{H}_{A}}B{{H}_{C}})!

В итоге мы получили, что у треугольников ( ABC) и ( {{H}_{A}}B{{H}_{C}})

  • Угол ( B) – общий;
  • Отношение сторон, заключающих этот угол – одинаковы: ( frac{{{H}_{C}}B}{BC}=frac{{{H}_{A}}B}{AB}).

Значит, мы получили, что:

( Delta ABCsim Delta {{H}_{A}}B{{H}_{C}})

Но самое интересное ещё впереди!

Каков же коэффициент подобия этих треугольников? То есть чему же равно это самое отношение ( frac{{{H}_{C}}B}{BC})?

Рисуем:

Где наши знания о прямоугольном треугольнике?

Что такое ( {{H}_{C}}B)? Катет, прилежащий к углу ( B).

А что такое ( BC)? Гипотенуза!

Значит, ( frac{{{H}_{C}}B}{BC}=cosangle B).

Потрясающе, не правда ли?

Давай сформулируем ещё раз, чтобы лучше запомнить:

( displaystyle Delta {{H}_{A}}B{{H}_{C}}sim Delta ABC)( k=cos angle B)

Ну вот, две высоты в треугольнике рассмотрены. А теперь…

НЕ ПРОПУСТИ!

Автор этого учебника, Алексей Шевчук, проводит бесплатные вебинары по самым сложным задачам ЕГЭ по математике и информатике.

На вебинарах все будет еще понятнее. Шорткаты, лайфхаки, разбор “капканов” – все там.

Регистрируйся здесь и приходи!

В треугольнике проведены три высоты

Как и для медиан, и для биссектрис, для высот треугольника верно следующее утверждение:

В любом треугольнике три высоты или их продолжения пересекаются в одной точке.

Доказывать это утверждение мы здесь, пожалуй, не будем.

Давай просто нарисуем, чтобы понять, как это бывает «высоты или их продолжения».

Зарегистрируйся один раз и ты откроешь все 100 статей учебника

А также получишь доступ к видеоурокам и другим бесплатным материалам курса “Подготовка к ЕГЭ с репетитором”

* Если не понравятся бесплатные материалы, ты сможешь отписаться в любой момент

1. Треугольник остроугольный – тогда пересекаются сами высоты:

2. Треугольник тупоугольный – тогда пересекаются продолжения высот:

Что же полезного мы ещё не обсудили?

Угол между высотами

Давай узнаем, вдруг угол между высотами можно как–то выразить через углы треугольника? Давай рассмотрим остроугольный треугольник.

Итак, нам хотелось бы найти ( displaystyle angle varphi ).

Смотрим на ( displaystyle Delta AHC). Замечаем, что наш ( displaystyle angle varphi ) – внешний угол в этом треугольнике.

Значит, ( angle varphi =angle 1+angle 2).

Чему же равны ( displaystyle angle 1) и ( displaystyle angle 2)?

Смотри: из ( Delta A{{H}_{A}}C) выходит, что ( angle 1=90{}^circ -angle C).

Конечно, таким же образом из ( Delta C{{H}_{C}}A) получается, что ( angle 2=90{}^circ -angle A).

Теперь ( angle ~varphi =angle ~1+angle ~2=90{}^circ -angle ~C+90{}^circ -angle ~A=180{}^circ -angle ~A-angle ~C).

Но что же это такое? Ведь сумма угла углов треугольника – ( 180{}^circ )! Значит, ( angle varphi =angle B).

Итак, что получилось?

Угол между высотами в остроугольном треугольнике равен углу между сторонами, к которым эти высоты проведены.

А как же дело обстоит в тупоугольном треугольнике? Давай смотреть…очень внимательно!

Представим, что у нас «главный» не ( displaystyle Delta ABC), а ( displaystyle Delta AHC).

Тогда оказывается, что прямые ( displaystyle AB), ( displaystyle BC) и ( displaystyle HB) – высоты в ( displaystyle Delta AHC).

Но ( displaystyle Delta AHC) уже остроугольный (так как все высоты оказались внутри), а про остроугольный треугольник мы уже всё знаем: ( displaystyle angle alpha =angle H).

НО! ( displaystyle angle alpha =180{}^circ -angle B)

Значит, для тупоугольного треугольника:

( angle ~H=180{}^circ -angle ~B).

НРАВИТСЯ УЧЕБНИК?

Его автор, Алексей Шевчук, ведет наши курсы подготовки к ЕГЭ по математике и информатике.

Приходи, научишься решать задачи любой сложности с самого нуля. Шаг за шагом.

От 2000 до 3990 руб / месяц, 3 раза в неделю по 2 часа.

И ещё кое–что…

Вернёмся–ка к остроугольному треугольнику. Отметим на рисунке равные углы:

Что видим теперь? Ещё подобные треугольники!

Как от двух линий вообще могут получиться столько подобных треугольников?!

Но тем не менее…

( Delta C{{H}_{C}}Bsim Delta C{{H}_{A}}Hsim Delta A{{H}_{A}}Bsim Delta A{{H}_{C}}H)

Видишь, какое богатство? И всё это может быть использовано в задачах!

Ну вот, теперь ты узнал что-то новенькое про высоты треугольника.

Теперь пробуй применять в задачах всё это – и соображение о том, что высота образует прямоугольный треугольник, и простые подобия прямоугольных треугольников, получающихся при пересечении двух высот, и подобие похитрее – которое с косинусом, и то, что угол между высотами равен углу между сторонами…

Главное, ты не старался просто запоминать все эти факты, а осознай, что их можно очень просто вывести.

И тогда, если ты будешь точно знать, например, что две проведённые высоты приносят кучу бонусов в виде всяких подобий, то ты непременно и сам получишь все эти бонусы, а заодно – решение своей задачи!

P.S. Анонс бесплатных вебинаров на 14-е февраля 2021

Математика. ЕГЭ 13. Тригонометрическая замена. Задача-оборотень.

14 февраля 2021, воскресенье, 11-00

Мы на курсе уже прошли тригонометрию и научились решать 13-е задачи. В этих задачах чаще всего нужно синус или косинус заменить какой-то буквой, и решать квадратное уравнение.

Но что если я вам скажу, что есть такие задачи, в которых всё наоборот – нужно обычный икс заменить на синус или косинус, хотя изначально там нет никакого намёка на тригонометрию? 

Приходите на урок в ближайшее воскресенье, и увидите такую задачу-оборотня, а заодно – научитесь решать дичайшие иррациональные уравнения.

https://youclever.org/free-sunday-webinars/ – регистрация на вебинары.

Информатика. ЕГЭ 24. Решаем задачу 24 несколькими способами

14 февраля 2021, воскресенье, 12-30

Вот чем хорош язык Python? Ну в общем-то всем, конечно:) Но особенно нас при подготовке к ЕГЭ в нём порадует огромное количество встроенных функций и методов для работы с текстом. Ведь в ЕГЭ есть задача №24, в которой нужно анализировать огромный текст. Приходите на наш бесплатный вебинар в воскресенье – там мы разберём одну такую задачу несколькими способами – и вы выберете для себя, какие приёмы вам больше по душе.

https://youclever.org/free-sunday-webinars/ – регистрация на вебинары.

Зарегистрируйтесь один раз и вы будете получать приглашения на ВСЕ бесплатные вебинары до конца года. 

Источник

Общие сведения

Следует отметить, что в геометрии существуют элементы, используя которые можно строить простые и сложные фигуры. Простейшим из них считается точка. С ее помощью можно создать прямую, луч, отрезок и угол. Точкой называется базовый «кирпич» геометрии, позволяющий осуществлять построение других элементов математической науки.

Прямая — совокупность множества точек, лежащих в одной плоскости и соединенных между собой таким образом, чтобы образовалась некоторая линия без перегибов и переломов. У нее нет вообще границ. Если говорят, что нужно провести прямую, то чертится только ее часть, а затем обозначается произвольной строчной буквой (a, b, c и т. д.). Простейшая фигура не имеет начала и конца. Математически границы записываются следующим образом: (- ∞; ∞). Следовательно, левая граница находится в точке – ∞, а правая – ∞.

Луч — разновидность прямой линии, имеющей только одну границу (точку). Из последней исходит прямая в бесконечность. Примером этой модели является Солнце, испускающее пучки световой энергии. Оно является источником света, который может проходить не только через Солнечную систему, но и уходить за ее пределы в бесконечность (космическое пространство). Луч обозначается также строчной литерой. Однако точку-источник следует обозначать прописной буквой.

Отрезком является часть прямой или луча, имеющая некоторые ограничения. Они обозначаются прописными литерами. Моделями являются следующие объекты и процессы: луч Солнца, идущий к Земле (Солнце – Земля), линейка, карандаш и т. д.

Плоским углом называется элементарная фигура, состоящая из общей точки и двух лучей, исходящих из нее и не лежащих на одной прямой. Измеряется в градусах и радианах. Далее следует разобрать виды прямоугольных треугольников.

Прямоугольный треугольник

Прямоугольным называется треугольник, имеющий угол, градусная мера которого эквивалентна 90. Он состоит из трех сторон, вершин и углов. К дополнительным параметрам можно отнести следующие:

  • Периметр.
  • Площадь.
  • Высота.
  • Медиана.
  • Биссектриса.

Прямоугольный треугольник

Стороны, образующие прямой угол, называются катетами. Третья сторона, соединяющая их, является гипотенузой. Все остальные углы являются острыми. Если сумма углов любого треугольника эквивалентна 180 градусам, то 180 – 90 = 90. Следовательно, сумма двух остальных углов составляет 90, а значит, они являются острыми.

Периметр — вспомогательная величина, характеризующая суммарное значение сторон фигуры. Существует также понятие полупериметра. Последним называется полусумма всех его сторон. Площадью называется характеристика треугольника, показывающая его размерность.

Высота в прямоугольном треугольнике, проведенная к гипотенузе — отрезок, опущенный перпендикулярно относительно этой стороны. Ее еще называют проекцией. Медиана — отрезок, соединяющий вершину с серединой стороны. Если она проведена из прямого угла, то эквивалентна половине гипотенузы. Биссектрисой является некоторая прямая, которая делит искомый угол на два равных значения.

Следует отметить, что этот тип треугольника бывает двух видов — разносторонний и равнобедренный. В последнем три последних параметра не совпадают (медиана, высота и биссектриса).

Следует рассмотреть свойства высоты в прямоугольном треугольнике равнобедренного типа. Она является медианой и биссектрисой. Далее следует обратить внимание на теорему, которая применяется для взаимосвязи сторон фигуры.

Теорема Пифагора

Для удобства треугольник следует обозначить символом «Δ». Связь между сторонами прямоугольного Δ была открыта древнегреческим ученым Пифагором. Утверждение имеет следующую формулировку: в произвольном прямоугольном Δ (со сторонами a, b и c) должно выполняться равенство между квадратом гипотенузы c и алгебраической суммой квадратов двух катетов a и b. Следует отметить, что при несоблюдении этого условия заданная фигура не содержит прямой угол. Математическая запись теоремы имеет такой вид: a^2 + b^2 = c^2.

Доказательств теоремы существует огромное количество, поскольку применяются различные подходы. Однако наибольшей популярностью пользуется способ, полученный из аксиом. Кроме того, дополнительно применяется алгебраическая методика. Для выполнения операции по доказательству соотношения a^2 + b^2 = c^2 необходимо построить прямоугольный Δ с такими сторонами: BC = a, AC = b и AB = c. После этого проводится высота к гипотенузе из вершины, которая является точкой пересечения двух катетов.

Теорема Пифагора

В результате образовались два равных угла ∠АНС и ∠ВНС. Кроме того, они являются прямыми по свойству высоты. Затем нужно рассмотреть Δ АВС и Δ АСН (Δ СВН), которые подобны по двум углам. На основании признака подобия можно вывести такие соотношения в виде пропорций:

  • а / с = НВ / а.
  • b / с = АН / b.

Далее нужно перемножить крайние и средние члены двух формул: а 2 = c * НВ и b 2 = c * AH. После этого для окончательного доказательства утверждения необходимо только сложить части. Получается равенство такого вида: а^2 + b 2 = c * [НВ + AH] = c 2 .

Утверждение о высоте

Для прямоугольного Δ и высоты была выведена специальная теорема, позволяющая оптимизировать процесс вычисления основных его параметров. Ее формулировка имеет следующий вид: в прямоугольном ΔABC высота CE, опущенная на гипотенузу, делит ее по соотношению квадратов катетов к частям гипотенузы. Для доказательства нужно использовать такой алгоритм:

Высота прямоугольного треугольника

  • Построить ΔABC (∠C = 90).
  • Провести высоту к CE к гипотенузе AB.
  • Следует доказать соотношение BE / EA = (BC^2) / (AC^2).
  • Используя теорему о пропорциональности отрезков прямоугольного Δ, можно сделать вывод о подобии ΔABC и ΔACE.
  • На основании 4 пункта получается формула: CA / AB = EA / CA.
  • Перемножив крайние и средние члены по свойству пропорции, можно вывести CA^2 = AB * EA.
  • Нужно рассмотреть ΔABC и ΔBCE. Их подобие доказывается аналогично пункту 4.
  • Пропорция имеет такой вид: BC / AB = BE / BC. Окончательно: BC^2 = AB * BE.
  • Разделить полученные равенства в 8 и 6 пунктах на AC^2. Формулу можно править таким образом: BC^2 / AC^2 = BE / EA.

​Теорема доказана. Существуют и другие утверждения о высоте в прямоугольном Δ. Их необходимо также рассмотреть, но без доказательств.

Тригонометрические функции

Полезными при решении различных задач считаются тригонометрические функции. Их всего четыре:

Тригонометрические функции

  • Синус (sin) эквивалентен отношению противолежащего катета к гипотенузе Δ: sin (∠CBA) = a / c.
  • Косинусом (cos) искомого угла называется величина, характеризующая отношение противолежащего катета к гипотенузе: cos (∠CBA) = b / c.
  • Тангенс (tg) — это значение отношения двух катетов (противолежащего к прилежащему): tg (∠CBA) = a / b.
  • Котангенс (ctg) является обратной величиной для функции tg (∠CBA). Он характеризует отношение прилежащего к противолежащему. Записывается в математическом виде следующим образом: ctg (∠CBA) = b / a или ctg (∠CBA) = 1 / (tg (∠CBA)= 1 / (a / b) = b / a.

Математики выделяют 4 обратные тригонометрические функции: arcsin, arccos, arctg и arcctg. Применяются они, когда получено одно из значений тригонометрической функции. На основании этого можно найти градусную меру угла. Расчет выполняется с использованием специальных таблиц (Брадиса) или при помощи онлайн-калькуляторов.

Другие соотношения

Формулы для нахождения длины высоты происходят от некоторых теорем. Их необходимо знать, поскольку это позволит существенно сэкономить время и избежать множества ошибок при вычислениях. Для этих целей необходимо начертить прямоугольный ΔABC, у которого ∠BAD = 90, а больший катет эквивалентен величине а. Основные теоремы о высоте, проведенной из прямого угла, имеют такие формулировки:

Нахождение высоты треугольника

  • Высота делит гипотенузу на проекции катетов: Ca = a^2 / c и Cb = b^2 / c.
  • Высота эквивалентна средней геометрической величине проекций катетов: h = [Сa * Cb]^(1/2).
  • Проведенная из угла 90 высота делит исходный треугольник на 2 ему подобных.
  • Длина искомой высоты соответствует отношению произведения катетов к линейному значению гипотенузы: h = (a * b) / c.
  • Если медиана проведена из угла прямого типа, то она эквивалентна 1/2 гипотенузы. Кроме того, ее основание совпадает с центром описанной около Δ окружности, радиус которой равен медиане.
  • Радиус вписанного круга в Δ эквивалентен соотношению r = (a + b – c) / 2.
  • Размерность прямоугольного Δ или площадь S соответствуют величине, равной 1/2 от произведения катетов: S = (1/2) * a * b.

Следует отметить, что величину размерности можно найти из производных формул: S = (1/2) * c^2 * sin(∠CBA) * sin(∠BAC) = (1/2) * c^2 * sin(∠CBA) * cos(∠CBA) = (1/2) * c^2 * sin(∠BAC) * cos(∠BAC) = (1/2) * a^2 * tg(∠BAC) = (1/2) * a^2 * ctg(∠CBA).

Примеры решения задач

Для закрепления теоретических знаний специалисты рекомендуют решить несколько задач. Они делятся на простые и сложные. Первые решаются при помощи одной или нескольких элементарных операций. Таких примеров в интернете очень много. Однако попадаются и сложные варианты, которые позволяют использовать полученные знания на все 100%.

В интернете встречаются онлайн-приложения, позволяющие найти решение. Этот инструмент нужно использовать для проверки результата. Хотя многие им злоупотребляют, а затем не получают правильного результата. Для начала необходимо взять готовый решенный пример и ознакомиться с ним. Далее попытаться воспроизвести его на бумаге. Подсматривать в исходник нельзя. При помощи такого приема происходит формирование алгоритма решения в головном мозге.

Сложное задание

Условие задачи следующее: имеется ΔMNO (∠MNO = 90) с высотой NP и стороной NM = 3, а также с известным значением тригонометрической функции cos между большим катетом и гипотенузой (cos(∠NOM) = (35)^(1/2) / 6). Следует найти OP. Для этого необходимо следовать такому алгоритму:

Сложное задание

  • Найти sin(∠NOM): [sin(∠NOM)]^2 + [cos(∠NOM)]^2 = 1. Отсюда следует, что sin(∠NOM) = [1 – [cos(∠NOM)]^2]^(1/2) = [1 – 35/36]^(1/2) = 1/6.
  • Вычислить длину гипотенузы: MO = MN / (sin(∠NOM)) = 3 / 1/6 = 18 (ед).
  • Рассмотреть ΔMNP: MN = 3, sin(∠NOM) = sin(∠MNP) = 1/6.
  • Найти MP: MP = MN * sin(∠MNP) = 3 * 1/6 = 1/2.
  • Искомая величина ОР высчитывается таким образом: OP = MO – MP = 18 – 1/2 = 17,5 (ед).

На основании пятого пункта можно сделать вывод, что длина искомого отрезка равна 17,5 (ед). Если проанализировать решение упражнения, то станет понятно, что очень часто применяются соотношения на основе тригонометрических функций.

Уровень турбо

В некоторых источниках задачи повышенной сложности называют «для турбо». К ним принадлежат все типы, которые имеют минимальный объем известных данных. Пусть дан равнобедренный ΔSTU (∠STU = 90). Гипотенуза на 2 больше катета. Необходимо найти его высоту TV, проведенную из прямого угла. Решение следует выполнять по такой инструкции:

  • Обозначить катет неизвестной «y», тогда ST = TU = y и SU = y + 2.
  • Записать формулу определения высоты: h = (a * b) / c.
  • Составить уравнение: (y + 2) = y^2 + y^2.
  • Раскрыть скобки и привести подобные слагаемые: y^2 + 4 * y + 4 – 2 * y^2 = -y^2 + 4 * y + 4 = y^2 – 4 * y – 4 = 0.
  • Найти величину дискриминанта: D = 16 + 16 = 32.
  • Первый корень: y1 = [-4 – 32^(1/2)] / 2 = [-4 – 4 * 2^(1/2)] / 2.
  • Второй: [-4 + 4 * 2^(1/2)] / 2 = -2 + 2 * 2^(1/2).
  • Первый не подходит, поскольку является величиной отрицательной.
  • ST = TU = -2 + 2 * 2^(1/2) и SU = -2 + 2 * 2^(1/2) + 2 = 2 * 2^(1/2).
  • Расчет высоты TV: TV = (-2 + 2 * 2^(1/2))^2 / 2 * 2^(1/2) = (4 – 8 * 2^(1/2) + 2) / 2 * 2^(1/2) = (6 – 8 * 2^(1/2)) / 2 * 2^(1/2) = 3 – 4 * 2^(1/2) / 2^(1/2) (ед).

Следует отметить, что в скобках необходимо указывать единицу измерения. Если размерность последней не дана, то нужно указывать ее условно.

Таким образом, для решения сложных задач по геометрии следует знать формулу высоты в прямоугольном треугольнике. Это позволяет оптимизировать решение и не совершать ошибок при вычислениях.

Источник