Какие свойства используются при решении уравнений

Какие свойства используются при решении уравнений thumbnail

Муниципальное бюджетное общеобразовательное учреждение «Школа № 12 г.Феодосии Республики Крым»

Урок математики в 6 классе

Тема урока:

Учитель математики Дубинина Татьяна Яковлевна

2016г.

Цель урока: раскрыть понятие уравнения, решения уравнения; рассмотреть основные свойства уравнений; разобрать понятие линейного уравнения с одной переменной; закрепить на простейших примерах. Продолжать формировать умения и навыки выполнения действий над рациональными числами.

Ход урока

  1. Организационный момент (слайд 2): на тему выделено 12 часов, планируются 1 самостоятельная работа, 1 математический диктант и 1 контрольная работа.

  2. Оглашение цели урока: сегодня наша с вами задача понять, что же такое уравнение, его корни, что значит решить уравнение, разобрать свойства уравнений и к концу урока на начальном уровне уже уметь ими пользоваться.

  3. Восприятие новой темы

1.Давайте подумаем и попробуем сами определить: что же такое уравнение. Приведите пример уравнения и попробуйте дать определение уравнению. Подумайте, что должно быть в записи, чтобы это было уравнение.

(Дети пытаются приводить примеры, учитель записывает их на доске)

Слайд 3

1)2х +6;

2)4+9=13;

3)х+5=8.

Обсудить каждую запись:

1)буквенное выражение

Вопрос классу: чего не хватает в этой записи? Ответ: знака «равно» и ответа;

2)числовое равенство

Вопрос классу: почему это не уравнение? Ответ: нет буквы (переменной)

3)уравнение

Итак, давайте попробуем дать определение уравнения с одной переменной: (под запись в конспекты) Уравнением с одной переменной называется равенство, содержащее одну переменную.

Предложить нескольким учащимся повторить определение уравнения и ответить на вопрос, какие из записей на слайде являются уравнением:

Слайд 4

х+5;

х2+х=3;

х-у=1;

2х+1=х-5;

8+3=2+9.

2.Теперь разберём, что же называется корнем уравнения с одной переменной.

Слайд 5

х+2=5

Из чисел -1; 4; 3; 0 выберите корень данного уравнения.

1)х=-1

-1+2=1, 15, значит, х=-1 не является корнем уравнения

2)х=4

4+2=6, 65, значит, х=4 не является корнем уравнения

3)х=3

3+2=5, 5=5, значит, х=3 является корнем уравнения

4)х=0

0+2=2, 25, значит, х=0 не является корнем уравнения

Делаем вывод: (под запись в тетрадь)

Корнем уравнения с одной переменной называется числовое значение переменной, обращающее уравнение в верное числовое равенство.

4. Давайте решим следующие уравнения:

Слайд 6

х2=4; 0х=6; 0х=0; х+2=-9

Записывают уравнения в тетрадь и решают их, обсуждая:

1)х2=4;

х=2 или х=-2;

2)0х=6;

нет корней;

3)0х=0;

х-любое число.

Делаем вывод (с записью в тетради):

Решить уравнение – это значит найти все его корни или показать, что таковых нет.

5.Разберём теперь свойства уравнений (слайд 6). Все видели чашечные весы на рынке, представим себе, что на одну чашу положили 5 кг сахара, а на вторую – 5-ти килограммовую гирю. Что при этом происходит с весами?

Ответ: весы находятся в равновесии.

Вопрос: если теперь на обе чаши добавить по 1 кг, что при этом изменится, а что – нет?

Ответ: изменится вес на каждой чаше, но не изменится равновесие.

Вот так и в уравнении: важно равновесие, мы сейчас выясним, что можно делать с уравнением, чтобы корни его не изменились.

Вывод:

свойство 1

Корень уравнения не изменится, если к обеим частям прибавить одно и то же выражение.

Пример

2х+3=-х+6; /-3

2х+3-3=-х+6-3;

2х=-х+6-3; /+х

2х+х=-х+6-3+х;

2х+х=6-3;

3х=3;

х=1.

Из этого примера сделать вывод:

Свойство 2

Корень уравнения не изменится, если перенести слагаемое из одной его части в другую, поменяв при этом знак слагаемого на противоположный.

Пример:

3х-8=2х+6;

3х-2х=6+8;

х=14.

Свойство 3

Корень уравнения не изменится, если обе его части умножить или разделить на одно и то же число, отличное от нуля.

Пример:

4-8х=х-5;

-8х-х=-5-4; /*(-1)

8х+х=5+4;

9х=9;

х=1.

Свойство 4

Корень уравнения не изменится, если раскрыть скобки, привести подобные слагаемые, упростить обе части уравнения.

Пример:

5х-8(2-х)=11+6(х-1);

5х-16+8х=11+6х-6;

13х-16=5+6х;

13х-6х=5+16;

7х=21;

х=3.

4.Осмысление

Решают сначала самостоятельно, чтобы понять – насколько хорошо усвоили тему, а затем у доски проверяем.

618(а, б) Является ли число 2 корнем уравнения:

а) х-2=0; б)х+4=0.

626(а) Решить уравнение 3х+2х=10

627(а) Решить уравнение х+3=3х-7

628(а) Решить уравнение 2(х-5)=9

  1. Задать домашнее задание: п.3.9 – учить определение уравнения, знать понятие корня уравнения и знать, что значит решить уравнение, решать №№618(в, д), 626(г, ж), 627(г). Подумайте дома и попробуйте ответить на вопрос: зачем нужны уравнения?

  2. Рефлексия:

1)что же мы сегодня изучали на уроке?

2)достигли ли мы поставленной цели?

3)всё ли было понятно или на что-то необходимо обратить внимание на следующем уроке?

Источник

Понятие уравнения обычно проходят в самом начале школьного курса алгебры. Его определяют, как равенство с неизвестным числом, которое нужно найти.

В школьной программе за 7 класс впервые появляется понятие переменных. Их принято обозначать латинскими буквами, которые принимают разные значения. Исходя из этого можно дать более полное определение уравнению.

Например, возьмем выражение 2 + 4 = 6. При вычислении левой части получается верное числовое равенство, то есть 6 = 6.

Уравнением можно назвать выражение 2 + x = 6, с неизвестной переменной x, значение которой нужно найти. Результат должен быть таким, чтобы знак равенства был оправдан, и левая часть равнялась правой.

Корень уравнения — то самое число, которое при подстановке на место неизвестной уравнивает выражения справа и слева.

Равносильные уравнения — это те, в которых совпадают множества решений. Другими словами, у них одни и те же корни.

Решить уравнение значит найти все возможные корни или убедиться, что их нет.

Решить уравнение с двумя, тремя и более переменными — это два, три и более значения переменных, которые обращают данное выражение в верное числовое равенство.

Какие бывают виды уравнений

Уравнения могут быть разными, самые часто встречающиеся — линейные и квадратные.

Особенность преобразований алгебраических уравнений в том, что в левой части должен остаться многочлен от неизвестных, а в правой — нуль.

Линейное уравнение выглядит таках + b = 0, где a и b — действительные числа.

Что поможет в решении:

  • если а не равно нулю, то у уравнения единственный корень: х = -b : а;
  • если а равно нулю — у уравнения нет корней;
  • если а и b равны нулю, то корень уравнения — любое число.
Квадратное уравнение выглядит так:ax2 + bx + c = 0, где коэффициенты a, b и c — произвольные числа, a ≠ 0.

Система уравнений — это несколько уравнений, для которых нужно найти значения неизвестных. Она имеет вид ax + by + c = 0 и называется линейным уравнением с двумя переменными x и y, где a, b, c — числа.

Решением этого уравнения называют любую пару чисел (x; y), которая соответствует этому выражению и является верным числовым равенством.

Числовой коэффициент — число, которое стоит при неизвестной переменной.

Кроме линейных и квадратных есть и другие виды уравнений, с которыми мы познакомимся в следующий раз:

  • кубические
  • уравнение четвёртой степени
  • иррациональные и рациональные
  • системы линейных алгебраических уравнений

Как решать простые уравнения

Чтобы научиться решать простые линейные уравнения, нужно запомнить формулу и два основных правила.

1. Правило переноса. При переносе из одной части в другую, член уравнения меняет свой знак на противоположный.

Для примера рассмотрим простейшее уравнение: x+3=5

Начнем с того, что в каждом уравнении есть левая и правая часть.

Перенесем 3 из левой части в правую и меняем знак на противоположный.

Можно проверить: 2 + 3 = 5. Все верно. Корень равен 2.

Решим еще один пример: 6x = 5x + 10.

Как решаем:

  1. Перенесем 6x из левой части в правую. Знак меняем на противоположный, то есть минус.

    6x −5x = 10

  2. Приведем подобные и завершим решение.

    x = 10

Ответ: x = 10.

2. Правило деления. В любом уравнении можно разделить левую и правую часть на одно и то же число. Это может ускорить процесс решения. Главное — быть внимательным, чтобы не допустить глупых ошибок.

Применим правило при решении примера: 4x=8.

При неизвестной х стоит числовой коэффициент — 4. Их объединяет действие — умножение.

Чтобы решить уравнение, нужно сделать так, чтобы при неизвестной x стояла единица.

Разделим каждую часть на 4. Как это выглядит:

Теперь сократим дроби, которые у нас получились и завершим решение линейного уравнения:

Рассмотрим пример, когда неизвестная переменная стоит со знаком минус: −4x = 12

Как решаем:

  1. Сократим обе части на −4, чтобы коэффициент при неизвестной стал равен единице.

    −4x = 12 | :(−4)
    x = −3

Ответ: x = −3.

Если знак минус стоит перед скобками, и по ходу вычислений его убрали — важно не забыть поменять знаки внутри скобок на противоположные. Этот простой факт позволит не допустить обидные ошибки, особенно в старших классах.

Напомним, что не у каждого линейного уравнения есть решение — иногда корней просто нет. Изредка среди корней может оказаться ноль — ничего страшного, это не значит, что ход решения оказался неправильным. Ноль — такое же число, как и остальные.

Способов решения линейных уравнений немного, нужно запомнить только один алгоритм, который будет эффективен для любой задачки.

Алгоритм решения простого линейного уравнения
  1. Раскрываем скобки, если они есть.
  2. Группируем члены, которые содержат неизвестную переменную в одну часть уравнения, остальные члены — в другую.
  3. Приводим подобные члены в каждой части уравнения.
  4. Решаем уравнение, которое получилось: aх = b. Делим обе части на коэффициент при неизвестном.

Чтобы быстрее запомнить ход решения и формулу линейного уравнения, скачайте или распечатайте схему-подсказку — храните ее в телефоне, учебники или на рабочем столе.

А вот и видео «Простейшие линейные уравнения» для тех, кто учиться в 5, 6 и 7 классе.

Примеры линейных уравнений

Теперь мы знаем, как решать линейные уравнения. Осталось попрактиковаться на задачках, чтобы чувствовать себя увереннее на контрольных. Давайте решать вместе!

Пример 1. Как правильно решить уравнение: 6х + 1 = 19.

Решаем так:

  1. Перенести 1 из левой части в правую со знаком минус.

    6х = 19 — 1

  2. Выполнить вычитание.

    6х = 18

  3. Разделить обе части на общий множитель, то есть 6.

    х = 2

Ответ: х = 2.

Пример 2. Как решить уравнение: 5(х — 3) + 2 = 3 (х — 4) + 2х — 1.

Решаем так:

  1. Раскрыть скобки

    5х — 15 + 2 = 3х — 2 + 2х — 1

  2. Сгруппировать в левой части члены с неизвестными, а в правой — свободные члены.

    5х — 3х — 2х = – 12 — 1 + 15 — 2

  3. Приведем подобные члены.

    0х = 0

Ответ: х — любое число.

Пример 3. Решить: 4х = 1/8.

Решаем так:

  1. Найти неизвестную переменную.

    х = 1/8 : 4

    х = 1/12

Ответ: 1/12 или 0,83. О десятичных дробях можно почитать здесь.

Пример 4. Решить: 4(х + 2) = 6 — 7х.

Решаем так:

  1. 4х + 8 = 6 — 7х
  2. 4х + 7х = 6 — 8
  3. 11х = −2
  4. х = −2 : 11
  5. х = – 0, 18

Ответ: — 0,18.

Пример 5. Решить:

Решаем так:

  1. 3(3х — 4) = 4 · 7х + 24
  2. 9х — 12 = 28х + 24
  3. 9х — 28х = 24 + 12
  4. -19х = 36
  5. х = 36 : (-19)
  6. х = – 36/19

Ответ: 1 17/19.

Пример 6. Как решить линейное уравнение: х + 7 = х + 4.

Решаем так:

  1. Раскрыть скобки

    5х — 15 + 2 = 3х — 2 + 2х — 1

  2. Сгруппировать в левой части неизвестные члены, в правой — свободные члены:

    х — х = 4 — 7

  3. Приведем подобные члены.

    0 * х = – 3

Ответ: нет решений.

Пример 7. Решить: 2(х + 3) = 5 — 7х..

Решаем так:

  1. 2х + 6 = 5 — 7х
  2. 2х + 6х = 5 — 7
  3. 8х = −2
  4. х = −2 : 8
  5. х = – 0,25

Ответ: — 0,25.

Чтобы ребенок еще лучше учился в школе, запишите его на уроки математики в современную онлайн-школу Skysmart. Наши преподаватели понятно объяснят что угодно — от дробей до синусов — и ответят на вопросы, которые бывает неловко задать перед всем классом. А еще помогут догнать сверстников и справиться со сложной контрольной.

Вместо скучных параграфов ребенка ждут интерактивные упражнения с мгновенной автоматической проверкой и онлайн-доска, где можно рисовать и чертить вместе с преподавателем. А еще развивающие игры, квесты и головоломки на любой возраст и уровень.

Источник

Решение уравнений – навык, который необходим каждому нацеленному на успешную сдачу ЕГЭ и ОГЭ школьнику. Это поможет решить задания №5, 13 и 15 из профильного уровня математики.

Одна из их разновидностей – степенные уравнения, которые иногда также называют показательными. Основная отличительная особенность – наличие переменной (х) не в основании степени, а в самом показателе. Как это выглядит:

$$ a^{f(x)}=b^{g(x)}; $$

Не бойтесь – это самый общий вид показательных уравнений. Реальные примеры выглядят как-то так:

$$2^x=8;$$
$$ 2^x=2^{2x+1};$$
$$3^{x^2}=2^{x^2-2x+3};$$

Внимательно посмотрите на приведенные уравнения. В каждом из них присутствует, так называемая, показательная (степенная) функция. При решении необходимо помнить об основных свойствах степени, а также использовать особые правила, помогающие вычислить значение (х). Познакомиться с понятием степени и ее свойствами можно тут и тут.

И вам понадобится умение решать обыкновенные линейные и квадратные уравнения, те, что вы проходили в 7-8 классе. Вот такие:

$$ 7x+2=16;$$
$$x^2-4x+5=0;$$

И так, любое уравнение, в котором вы увидите показательную (степенную) функцию, называется показательным уравнением. Кроме самой показательной функции в уравнении могут быть любые другие математические конструкции – тригонометрические функции, логарифмы, корни, дроби и т.д. Если вы видите степень, значит перед вам показательное уравнение.

Ура! Теперь знаем, как выглядят показательные уравнения, но толку от этого не очень много. Было бы неплохо научиться их решать. Отличная новость – на наш взгляд показательные уравнения одни из самых простых типов уравнений, по сравнению с логарифмическими, тригонометрическими или иррациональными.

Простейшие показательные уравнения

Давайте начнем с самых простых типов уравнений и разберем сразу несколько примеров:

Пример 1
$$ 2^x=8;$$

Что такое решить уравнение? Это значит, что нужно найти такое число, которое при подстановке в исходное уравнение вместо (х) даст верное равенство. В нашем примере нужно найти такое число, в которое нужно возвести двойку, чтобы получить восемь. Ну это просто:

$$ 2^3=2*2*2=8; $$

Значит, если (х=3), то мы получим верное равенство, а значит мы решили уравнение.

Решим что-нибудь посложнее.

Пример 2
$$ 3^{4x-1}=frac{1}{9};$$

Такое уравнение выглядит сложнее. Попробуем преобразовать правую часть уравнения:

$$frac{1}{9}=frac{1}{3^2}=3^{-2};$$

Мы применили свойство отрицательной степени по формуле:

$$ a^{-n}=frac{1}{a^n};$$

Теперь наше уравнение будет выглядеть так:

$$ 3^{4x-1}=3^{-2};$$

Заметим, что слева и справа у нас стоят показательные функции, и там, и там основания одинаковые и равны (3), только вот степени разные – слева степень ((4х-1)), а справа ((-2)). Логично предположить, что если степени у такой конструкции будут равны, при условии, что основания одинаковые, то мы получим верное равенство. Так и поступим:

$$ 4x-1=-2;$$

Такое мы решать умеем, ведь это обыкновенное линейное уравнение.

$$4х=-2+1;$$
$$4x=-1;$$
$$x=-frac{1}{4}.$$

Поздравляю, мы нашли корень нашего показательного уравнения.

Пример 3
$$125^x=25;$$

Попробуем поступить так, как в предыдущем примере – преобразуем левую и правую часть, чтобы слева и справа была показательная функция с одинаковым основанием. Как это сделать? Обращаем внимание, что (125=5*5*5=5^3), а (25=5*5=5^2), подставим:

$$ (5^3)^x=5^2;$$

Воспользуемся одним из свойств степеней ((a^n)^m=a^{n*m}):

$$ 5^{3*x}=5^2;$$

И опять мы получили две показательные функции, у которых одинаковые основания и для того, чтобы равенство выполнялось, необходимо приравнять из степени:

$$ 3*x=2;$$
$$ x=frac{2}{3};$$

И еще один пример:

Пример 4
$$2^x=-4;$$

Те, кто хорошо знает свойства степеней, знают, что показательная функция не может быть отрицательной. Действительно, попробуйте возводить (2) в различную степень, вы никогда не сможете получить отрицательное число.

Внимание! Показательная функция не может быть отрицательной, поэтому, когда вы встречаете примеры на подобии примера 4, то знайте, что такого быть не может. Здесь корней нет, потому что показательная функция всегда положительна.

Теперь давайте разработаем общий метод решения показательных уравнений. И научимся решать более сложные примеры.

Общий метод решения показательных уравнений

Пусть у нас есть вот такой пример:

$$ a^x=b;$$

Где (a,b) какие-то положительные числа. ((a>0, ; b>0).

Согласно разобранным выше примерам, логично предположить, что для того, чтобы решить данное уравнение, нужно его преобразовать к виду, где слева и справа стоят показательные функции с одинаковым основанием. Так и поступим.

Слева у нас уже стоит (a^x), с этим ничего делать не будем, а вот справа у нас стоит загадочное число (b), которое нужно попытаться представить в виде (b=a^m). Тогда уравнение принимает вид:

$$ a^x=a^m;$$

Раз основания одинаковые, то мы можем просто приравнять степени:

$$x=m.$$

Вот и весь алгоритм решения. Просто нужно преобразовать исходное уравнение таким образом, чтобы слева и справа стояли показательные функции с одинаковыми основаниями, тогда приравниваем степени и вуаля – сложное показательное уравнение решено. Осталось только разобраться, как так преобразовывать. Опять разберем на примерах:

Пример 5
$$2^x=16;$$

Замечаем, что (16=2*2*2*2=2^4) это степень двойки:

$$2^x=2^4$$

Основания одинаковые, значит можно приравнять степени:

$$x=4.$$

Пример 6
$$5^{-x}=125 Rightarrow 5^{-x}=5*5*5 Rightarrow 5^{-x}=5^3 Rightarrow –x=3 Rightarrow x=-3.$$

Пример 7
$$9^{4x}=81 Rightarrow (3*3)^{4x}=3*3*3*3 Rightarrow(3^2)^{4x}=3^4 Rightarrow 3^{8x}=3^4 Rightarrow 8x=4 Rightarrow x=frac{1}{2}.$$

Здесь мы заметили, что (9=3^2) и (81=3^4) являются степенями (3).

Все здорово, но проблема в том, что такая схема решения показательных уравнений работает не всегда. Что делать, если привести к одинаковому основанию не получается. Например:

Пример 8
$$ 3^x=2;$$

(3) и (2) привести к одинаковому основанию затруднительно. Но тем не менее мы должны это сделать. Воспользуемся следующей схемой преобразований: пусть есть некоторое положительное число (b>0), тогда его можно представить в виде степени любого, нужного вам, положительного числа не равного единице (a>0, ; a neq 1):

$$ b=a^{log_{a}(b)};$$

Эта очень важная формула, рекомендуем ее выучить. Вернемся к нашему примеру и по формуле представим (2) в виде (3) в какой-то степени, где (a=3), а (b=2):

$$ 2=3^{log_{3}(2)};$$

Подставим данное преобразование в наш пример:

$$3^x=3^{log_{3}(2)};$$

Получили равенство двух показательных функций с одинаковым основанием, значит можем приравнять их степени:

$$x=log_{3}(2).$$

Так в ответ и запишем. Никакой ошибки здесь нет, дело в том, что такие логарифмы можно посчитать только на калькуляторе, поэтому на ЕГЭ или в контрольной работе вы просто оставляете ответ в таком виде.

Кто забыл, что такое логарифм, можно посмотреть здесь.

Рассмотрим еще несколько аналогичных примеров.

Пример 9
$$ 7^{2x}=5;$$
$$ 7^{2x}=7^{log_{7}(5)};$$
$$2x=log_{7}(5);$$
$$x=frac{1}{2}*log_{7}(5).$$

Те, кто хорошо знает свойства логарифмов, могут поиграться с последней формулой и получить ответ в разном виде:

$$ x=frac{1}{2}*log_{7}(5)=log_{7}(5^{frac{1}{2}})=log_{7}(sqrt{5});$$

Все эти варианты ответа верные, их можно смело писать в ответ.

И так, мы с вами научились решать любые показательные уравнения вот такого вида: (a^x=b), где (a>0; ; b>0).

Но это еще далеко не все. Часто вы будете встречать показательные уравнения гораздо более сложного типа. В ЕГЭ по профильной математике это номер 15 из 2й части. Но бояться тут не нужно, все на первый взгляд сложные уравнения при помощи обычно не самых сложных преобразований сводятся к уравнениям типа (a^x=b), где (a>0; ; b>0). Рассмотрим типы сложных уравнений, которые могут попасться:

Решение показательных уравнений при помощи замены

Рассмотрим уравнение:

Пример 10
$$ 9^x-5*3^x+6=0;$$

Самое первое, что вы должны всегда делать, это пытаться привести все имеющиеся показательные функции к одинаковому основанию.

Здесь это сделать легко, замечаем, что (9=3^2), тогда (9^x=(3^2)^x=3^{2x}=(3^x)^2). Здесь мы воспользовались свойством степеней: ((a^n)^m=a^{n*m}). Подставим:

$$(3^x)^2-5*3^x+6=0;$$

Обратим внимание, что во всем уравнении все (х) «входят» в одинаковую функцию – (3^x). Сделаем замену (t=3^x, ; t>0), так как показательная функция всегда положительна.

$$t^2-5t+6=0;$$

Квадратное уравнение, которое решается через дискриминант:

$$D=5^2-4*6=25-24=1; Rightarrow t_{1}=frac{5+sqrt{1}}{2}=3; Rightarrow t_{2}=frac{5-sqrt{1}}{2}=2;$$

Оба корня больше нуля, значит оба нам подходят. Сделаем обратную замену и уравнение сводится к решению двух простых показательных уравнений:

$$ 3^x=3;$$
$$3^x=3^1;$$
$$x=1.$$

И второй корень:

$$ 3^x=2;$$
$$3^x=3^{log_{3}(2)};$$
$$x=log_{3}(2).$$

Ответ: (x_{1}=1; ; x_{2}=log_{3}(2).)

И еще один пример на замену:

Пример 11
$$3^{4x^2-6x+3}-10*3^{2x^2-3x+1}+3=0;$$

Воспользуемся нашим правилом, что все нужно приводить к одинаковому основанию – а стоп, тут и так у всех показательных функций основание (3). Давайте еще внимательно посмотрим на наш пример, очень похоже на то, что он тоже делается через замену. Но у нас тут нет одинаковых показательных функций, основания то одинаковые, а вот степени отличаются. Но если быть внимательным, то можно заметить, что в первой степени можно разбить свободный член (3=2+1) и вынести общий множитель (2):

$$ 3^{4x^2-6x+2+1}=3^{2(2x^2-3x+1)+1}=3^{2*(2x^2-3x+1)}*3^1=3*(3^{2x^2-3x+1})^2;$$

Подставим в исходное уравнение:

$$3*(3^{2x^2-3x+1})^2-10*3^{2x^2-3x+1}+3=0;$$

Теперь показательные функции одинаковы и можно сделать замену:

$$t=3^{2x^2-3x+1}; ; t>0;$$
$$3*t^2-10t+3=0;$$
$$D=100-36=64; Rightarrow t_{1}=3; t_{2}=frac{1}{3};$$

Обратная замена, и наше уравнение сводится к простейшему:

$$ 3^{2x^2-3x+1}=3;$$
$$ 2x^2-3x+1=1;$$
$$x(2x-3)=0;$$
$$x=0; ; x=frac{3}{2}.$$

И второе значение (t):

$$3^{2x^2-3x+1}=frac{1}{3};$$
$$3^{2x^2-3x+1}=3^{-1};$$
$$2x^2-3x+1=-1;$$
$$2x^2-3x+2=0;$$
$$D=9-16=-7Раз дискриминант получился меньше нуля, то вторая ветка решений нам корней не дает.

Ответ: (x_{1}=0; ; x_{2}=frac{3}{2}.)

Иногда встречаются такие показательные уравнения, в которых не сразу видно, как сделать одинаковые функции, а именно одинаковые основания, чтобы произвести замену. Посмотрим на такой пример:

Пример 12
$$ 7^{x+1}+3*7^{x}=3^{x+2}+3^{x};$$

Тут у нас две показательные функции с основаниями (7) и (3), и как сделать из них одинаковые основания непонятно. Этот пример решается при помощи деления. Давайте поделим все наша уравнение на (3^x):

$$ 7^{x+1}+3*7^{x}=3^{x+2}+3^{x} ; ; :3^x$$
$$ frac{7^{x+1}}{3^x}+frac{3*7^{x}}{3^x}=frac{3^{x+2}}{3^x}+frac{3^{x}}{3^x};$$

Здесь нам придется воспользоваться свойствами степеней:

$$frac{a^n}{a^m}=a^{n-m};$$
$$ a^n*a^m=a^{n+m};$$
$$ frac{a^n}{b^n}=(frac{a}{b})^n;$$

Разберем каждое слагаемое:

$$ frac{7^{x+1}}{3^x}=frac{7*7^x}{3^x}=7*frac{7^x}{3^x}=7*(frac{7}{3})^x;$$
$$ frac{3*7^{x}}{3^x}=3*frac{7^x}{3^x}=3*(frac{7}{3})^x;$$
$$ frac{3^{x+2}}{3^x}=3^2*frac{3^x}{3^x}=3^2*1=9;$$
$$ frac{3^{x}}{3^x}=1;$$

Теперь подставим получившееся преобразования в исходное уравнение:

$$ 7*(frac{7}{3})^x+3*(frac{7}{3})^x=9+1;$$

Теперь видно, что в нашем уравнении есть одинаковая функция, которую можно убрать в замену (t=(frac{7}{3})^x):

$$7t+3t=10;$$
$$10t=10;$$
$$t=1;$$

Сделаем обратную замену:

$$(frac{7}{3})^x=1;$$

Вспоминаем, что (1=(frac{7}{3})^0):

$$(frac{7}{3})^x=(frac{7}{3})^0;$$
$$x=0.$$

Ответ: (x=0).

И последний пример на замену:

Пример 13
$$2^{x+2}+0,5^{-x-1}+4*2^{x+1}=28;$$

Первым делом нужно сделать так, чтобы все показательные функции были с одинаковым основанием и в идеале с одинаковой степенью. Для этого нам понадобятся формулы для степеней:

$$ a^n*a^m=a^{n+m};$$
$$a^{-n}=frac{1}{a^n};$$
$${(a^n)}^m=a^{n*m};$$

Разберем каждое слагаемое нашего уравнения:

$$2^{x+2}=2^x*2^2=4*2^x;$$

Все десятичные дроби всегда разумно представить в виде обыкновенных дробей. И будьте внимательны – отрицательная степень не имеет никакого отношения к знаку показательной функции!

$$0,5^{-x-1}=0,5^{-(x+1)}={(frac{1}{2})}^{-(x+1)}={(2^{-1})}^{-(x+1)}=2^{x+1}=2^x*2^1=2*2^x;$$

И последнее слагаемое со степенью:

$$ 4*2^{x+1}=4*2^x*2^1=8*2^x;$$

Подставим все наши преобразования в исходное уравнение:

$$4*2^x+2*2^x+8*2^x=28;$$

Теперь можно сделать замену (t=2^x) или можно обойтись без замены, просто приведя подобные слагаемые (вынести общий множитель (2^x)):

$$2^x*(4+2+8)=28;$$
$$14*2^x=28;$$
$$2^x=frac{28}{14}=2;$$
$$2^x=2^1;$$
$$x=1.$$

Ответ: (x=1.)

Особенно стоит подчеркнуть прием, который мы использовали при решении 13-го примера.
Всегда старайтесь избавляться от десятичных дробей. Переводите их в обыкновенные дроби.

И другой тип степенных уравнений, где обычно не нужно делать замену, а необходимо отлично знать все свойства степеней, некоторые из них мы уже обсудили выше. Все про свойства степеней можно посмотреть тут

Пример 14
$$2^{x+1}*5^x=10^{x+1}*5^{x+2};$$

Вот такое уравнение, в котором у нас, во-первых, показательных функции перемножаются, а еще хуже то, что у них у всех разные основания. Катастрофа, а не пример. Но ничего, все не так страшно, как кажется. Внимательно посмотрите на основания: у нас есть в основании (2), (5) и (10). Очевидно, что (10=2*5). Воспользуемся этим и подставим в наше уравнение:

$$2^{x+1}*5^x=(2*5)^{x+1}*5^{x+2};$$

Воспользуемся формулой ((a*b)^n=a^n*b^n):

$$ 2^{x+1}*5^x=2^{x+1}*5^{x+1}*5^{x+2};$$

И перекинем все показательные функции с основанием (2) влево, а с основанием (5) вправо:

$$frac{2^{x+1}}{2^{x+1}}=frac{5^{x+1}*5^{x+2}}{5^x};$$

Сокращаем и воспользуемся формулами (a^n*a^m=a^{n+m}) и (frac{a^n}{a^m}=a^{n-m}):

$$1=frac{5^{x+1+x+2}}{5^x};$$
$$1=frac{5^{2x+3}}{5^x};$$
$$1=5^{2x+3-x};$$
$$1=5^{x+3};$$
$$5^0=5^{x+3};$$
$$x+3=0;$$
$$x=-3.$$
Ответ: (x=-3).

Самая главная идея при решении показательных уравнений – это любыми доступными способами свести все имеющиеся степенные функции к одинаковому основанию. А еще лучше и к одинаковой степени. Вот почему необходимо знать все свойства степеней, без этого решить уравнения будет проблематично.

Как же понять, где какие преобразования использовать? Не бойтесь, это придет с опытом, чем больше примеров решите, тем увереннее будете себя чувствовать на контрольных в школе или на ЕГЭ по профильной математике. Сначала потренируйтесь на простых примерах и постепенно повышайте уровень сложности. Успехов в изучении математики!

Источник