Какие свойства излучения присущи конвекции
Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 3 мая 2019; проверки требуют 16 правок.
Эта иллюстрация показывает расчетную картину конвективного движения в мантии Земли
Конвекция (от лат. convectiō — «перенесение») — вид теплообмена (теплопередачи), при котором внутренняя энергия передается струями и потоками самого вещества. Существует так называемая естественная конвекция, которая возникает в веществе самопроизвольно при его неравномерном нагревании в поле тяготения. При такой конвекции нижние слои вещества нагреваются, становятся легче и всплывают, а верхние слои, наоборот, остывают, становятся тяжелее и опускаются вниз, после чего процесс повторяется снова и снова. При некоторых условиях процесс перемешивания самоорганизуется в структуру отдельных вихрей и получается более или менее правильная решётка из конвекционных ячеек.
Различают ламинарную и турбулентную конвекцию.
Естественной конвекции обязаны многие атмосферные явления, в том числе, образование облаков. Благодаря тому же явлению движутся тектонические плиты. Конвекция ответственна за появление гранул на Солнце.
При вынужденной (принудительной) конвекции перемещение вещества обусловлено действием внешних сил (насос, лопасти вентилятора и т. п.). Она применяется, когда естественная конвекция является недостаточно эффективной.
Конвекцией также называют перенос теплоты, массы или электрических зарядов движущейся средой.
Виды конвекции[править | править код]
Естественная — нагревание/остывание жидкости, воздуха в комнате, воды в океане, устойчивые ветра (пассаты, муссоны).
Вынужденная — перемешивание жидкости или газа (мешалкой, ложкой, насосом, вентилятором).
Виды конвекции по причине появления[править | править код]
- Термогравитационная конвекция — обычная, под действием разности температур в поле гравитации, из-за силы Архимеда
- Ячейки Бенара
- Термокапиллярная конвекция — под действием силы поверхностного натяжения
- Концентрационная конвекция — под действием градиента концентрации растворённого вещества (осмос, см. также эффект Марангони)
- Термомагнитная конвекция — в магнитных жидкостях под действием магнитного поля в поле гравитации
- Гранулярная конвекция (англ.) — в сыпучих неоднородных средах
- Термострессовая конвекция — под действием температурных напряжений
- Термодинамическая конвекция — перенос теплоты потоком вещества, возникающих в поле сил тяжести при неравномерном нагреве газообразных, текучих или сыпучих веществ.[источник не указан 2886 дней]
Математическое описание[править | править код]
Наиболее популярной моделью для описания конвекции в жидкостях и газах является приближение Буссинеска
См. также[править | править код]
- Условие возникновения конвекции
- Конвективная зона
- Термодинамика атмосферы
Другие способы переноса теплоты
- Теплопередача
- Теплопроводность
- Тепловое излучение
- Адвекция
Ссылки[править | править код]
- Конвекция (видеурок, программа 8 класса)
- Конвекция в жидкости (видеоролик с демонстрацией опыта)
Литература[править | править код]
- Остроумов Г. А. Свободная тепловая конвекция в условиях внутренней задачи. Москва — Ленинград. Гостехиздат.— 1952.
- Ландау Л. Д., Лифшиц Е. М. Курс теоретической физики. Т. 6. Гидродинамика.— М.:Наука.— 1988.—736 с.— (§ 56 Свободная конвекция).
- Гершуни Г. З., Жуховицкий Е. М. Устойчивость конвективных течений.— М.:Наука.— 1989.
- Гершуни Г. З., Жуховицкий Е. М. Конвективная устойчивость несжимаемой жидкости.— М.:Наука.— 1972.
- Кригель А. М. О применимости приближения свободной конвекции к атмосферной турбулентности // Вестник Ленинградского гос. университета.— Сер.7.—1991.—Вып.2(14).—С.107-110.
- Кригель А. М. Вопросы термодинамики турбулентной конвекции. // Журнал Технической Физики.—2016.—86.—Вып.11.—С.136—139.
Источник
Если приблизить руку к включенной электролампе или поместить ладонь над горячей плитой, можно почувствовать движение теплых потоков воздуха. Тот же эффект можно наблюдать при колебании листа бумаги, помещенного над открытым пламенем. Оба эффекта объясняются конвекцией.
Что представляет собой?
В основе явления конвекции лежит расширение более холодного вещества при соприкосновении с горячими массами. В таких обстоятельствах нагреваемое вещество теряет плотность и становится легче по сравнению с окружающим его холодным пространством. Наиболее точно данная характеристика явления соответствует перемещению тепловых потоков при нагревании воды.
Движение молекул в противоположных направлениях под воздействием нагревания – это именно то, на чем основывается конвекция. Излучение, теплопроводность выступают схожими процессами, однако касаются прежде всего передачи тепловой энергии в твердых телах.
Яркие примеры конвекции – перемещение теплого воздуха в середине помещения с отопительными приборами, когда нагретые потоки движутся под потолок, а холодный воздух опускается к самой поверхности пола. Именно поэтому при включенном отоплении вверху комнаты воздух заметно теплее по сравнению с нижней частью помещения.
Закон Архимеда и тепловое расширение физических тел
Чтобы понять, что представляет собой естественная конвекция, достаточно рассмотреть процесс на примере действия закона Архимеда и явления расширения тел под воздействием теплового излучения. Так, согласно закону, повышение температуры обязательно приводит к увеличению объемов жидкости. Нагреваемая снизу жидкость в емкостях поднимается выше, а влага большей плотности, соответственно, перемещается ниже. В случае нагрева сверху более и менее плотные жидкости останутся на своих местах, в таком случае явления не произойдет.
Возникновение понятия
Впервые термин «конвекция» был предложен английским ученым Вильямом Прутом еще в 1834 году. Использовался он для описания перемещения тепловых масс в нагретых, движущихся жидкостях.
Первые теоретические исследования явления конвекции стартовали лишь в 1916 году. В ходе экспериментов было установлено, что переход от диффузии к конвекции в подогреваемых снизу жидкостях возникает при достижении некоторых критических температурных значений. Позже это значение получило определение «число Роэля». Оно было так названо в честь исследователя, занимавшегося его изучением. Результаты опытов позволили дать объяснение перемещению тепловых потоков под влиянием сил Архимеда.
Виды конвекции
Существует несколько видов описываемого нами явления – естественная и вынужденная конвекция. Пример перемещения потоков горячего и холодного воздуха в середине помещения как нельзя лучше характеризует процесс естественной конвекции. Что касается вынужденной, то ее можно наблюдать при перемешивании жидкости ложкой, насосом или мешалкой.
Конвекция невозможна при нагревании твердых тел. Всему виной достаточно сильное взаимное притяжение при колебании их твердых частиц. В результате нагрева тел твердой структуры не возникают конвекция, излучение. Теплопроводность заменяет указанные явления в таких телах и способствует передаче тепловой энергии.
Отдельным видом выступает так называемая капиллярная конвекция. Происходит процесс при перепадах температуры во время движения жидкости по трубам. В естественных условиях значение такой конвекции наряду с естественной и вынужденной крайне несущественно. Однако в космической технике капиллярная конвекция, излучение и теплопроводность материалов становятся весьма значимыми факторами. Даже самые слабые конвективные движения в условиях невесомости приводят к затруднению реализации некоторых технических задач.
Конвекция в слоях земной коры
Процессы конвекции неразрывно связаны с естественным образованием газообразных веществ в толще земной коры. Рассматривать земной шар можно как сферу, состоящую из нескольких концентрических слоев. В самом центре располагается массивное горячее ядро, которое представляет собой жидкую массу высокой плотности с содержанием железа, никеля, а также прочих металлов.
Окружающими слоями для земного ядра выступают литосфера и полужидкая мантия. Верхний слой земного шара представляет собой непосредственно земную кору. Литосфера сформирована из отдельных плит, которые находятся в свободном движении, перемещаясь по поверхности жидкой мантии. В ходе неравномерного нагревания различных участков мантии и горных пород, которые отличаются разным составом и плотностью, происходит образование конвективных потоков. Именно под воздействием таких потоков возникает естественное преобразование ложа океанов и перемещение несущих континентов.
Отличия конвекции от теплопроводности
Под теплопроводностью следует понимать способность физических тел к передаче тепла посредством движения атомных и молекулярных соединений. Металлы выступают отличными проводниками тепла, так как их молекулы находятся в неразрывном контакте друг с другом. Напротив, газообразные и летучие вещества выступают плохими проводниками тепла.
Как происходит конвекция? Физика процесса основывается на переносе тепла за счет свободного движения массы молекул веществ. В свою очередь, теплопроводность заключается исключительно в передаче энергии между составляющими частицами физического тела. Однако и тот, и другой процесс невозможен без наличия частиц вещества.
Примеры явления
Наиболее простым и доступным для понимания примером конвекции может послужить процесс работы обыкновенного холодильника. Циркуляция охлажденного газа фреона по трубам холодильной камеры приводит к снижению температуры верхних пластов воздуха. Соответственно, замещаясь более теплыми потоками, холодные опускаются вниз, охлаждая, таким образом, продукты.
Расположенная на тыльной панели холодильника решетка играет роль элемента, способствующего отводу теплого воздуха, образованного в компрессоре агрегата во время сжатия газа. Охлаждение решетки также основывается на конвективных механизмах. Именно по этой причине не рекомендуется загромождать пространство позади холодильника. Ведь только в таком случае охлаждение может происходить без затруднений.
Другие примеры конвекции можно заметить, наблюдая за таким природным явлением, как движение ветра. Нагреваясь над засушливыми континентами и охлаждаясь над местностью с более суровыми условиями, потоки воздуха начинают вытеснять друг друга, что приводит к их движению, а также перемещению влаги и энергии.
На конвекции завязана возможность парения птиц и планеров. Менее плотные и более теплые воздушные массы при неравномерном нагревании у поверхности Земли приводят к образованию восходящих потоков, что способствует процессу парения. Для преодоления максимальных расстояний без затраты сил и энергии птицам требуется умение находить подобные потоки.
Хорошие примеры конвекции – образование дыма в дымоходах и вулканических кратерах. Перемещение дыма вверх основано на его более высокой температуре и низкой плотности по сравнению с окружающей средой. При остывании дым постепенно оседает в нижние слои атмосферы. Именно по этой причине промышленные трубы, посредством которых происходит выброс вредных веществ в атмосферу, делают максимально высокими.
Наиболее распространенные примеры конвекции в природе и технике
Среди наиболее простых, доступных для понимания примеров, которые можно наблюдать в природе, быту и технике, следует выделить:
- движение воздушных потоков во время работы бытовых батарей отопления;
- образование и движение облаков;
- процесс движения ветра, муссонов и бризов;
- смещение тектонических земных плит;
- процессы, которые приводят к свободному газообразованию.
Приготовление пищи
Все чаще явление конвекции реализуется в современных бытовых приборах, в частности в духовых шкафах. Газовый шкаф с конвекцией позволяет готовить разные блюда одновременно на отдельных уровнях при различной температуре. При этом полностью исключается смешение вкусов и запахов.
Нагрев воздуха в традиционном духовом шкафу основывается на работе единственной горелки, что приводит к неравномерному распределению тепла. За счет целенаправленного перемещения горячих потоков воздуха при помощи специализированного вентилятора блюда в конвекционном духовом шкафу получаются более сочными, лучше пропекаются. Такие устройства быстрее нагреваются, что позволяет уменьшить время, требуемое на приготовление пищи.
Естественно, для хозяек, которые готовят в духовом шкафу всего лишь несколько раз в год, бытовой прибор с функцией конвекции нельзя назвать техникой первой необходимости. Однако для тех, кто не может жить без кулинарных экспериментов, такое устройство станет просто незаменимым на кухне.
Надеемся, представленный материал оказался полезным для вас. Всего доброго!
Источник
«Виды теплопередачи:
теплопроводность, конвекция, излучение»
Теплопередача – это способ изменения внутренней энергии тела при передаче энергии от одной части тела к другой или от одного тела к другому без совершения работы. Существуют следующие виды теплопередачи: теплопроводность, конвекция и излучение.
Теплопроводность
Теплопроводность – это процесс передачи энергии от одного тел а к другому или от одной части тела к дpугой благодаря тепловому движению частиц. Важно, что при теплопроводности не происходит перемещения вещества, от одного тела к другом у или от одной части телa к другой передается энергия.
Разные вещества обладают разной теплопроводностью. Если на дно пробирки, наполненной водой, положить кусочек льда и верхний её конец поместить над пламенем спиртовки, то через некоторое время вода в верхней части пробирки закипит, а лёд при этом не растает. Следовательно, вода, так же как и все жидкости, обладает плохой теплопроводностью.
Ещё более плохой теплопроводность ю обладают газы. Возьмём пробирку, в которой нет ничего, кроме воздуха, и расположим её над пламенем спиртовки. Палец, помещённый в пробирку, не почувствует тепла. Следовательно, воздух и другие газы обладает плохой теплопроводностью.
Хорошими проводниками теплоты являются металлы, самыми плохими — сильно разреженные газы. Это объясняется особенностями их строения. Молекулы газов находятся друг от друга на расстояниях, больших, чем молекулы твёрдых тел, и значительно реже сталкиваются. Поэтому и передача энергии от одних молекул к другим в газах происходит не столь интенсивно, как в твёрдых телах. Теплопроводность жидкости занимает промежуточное положение между теплопроводностью газов и твёрдых тел.
Конвекция
Как известно, газы и жидкости плохо проводят теплоту. В то же время от батарей парового отопления нагревается воздух. Это происходит благодаря такому виду теплопроводности, как конвекция.
Если вертушку, сделанную из бумаги, поместить над источником тепла, то вертушка начнёт вращаться. Это происходит потому, что нагретые менее плотные слои воздуха под действием выталкивающей силы поднимаются вверх, а более холодные движутся вниз и занимают их место, что и приводит к вращению вертушки.
Конвекция — вид теплопередачи, при котором энергия передаётся слоями жидкости или газа. Конвекция связана с переносом вещества, поэтому она может осуществляться только в жидкостях и газах; в твёрдых телах конвекция не происходит.
Излучение
Третий вид теплопередачи — излучение. Если поднести руку к спирали электроплитки, включённой в сеть, к горящей электрической лампочке, к нагретому утюгу, к батарее отопления и т.п., то можно явно ощутить тепло.
Опыты также показывают, что чёрные тела хорошо поглощают и излучают энергию, а белые или блестящие плохо испускают и плохо поглощают её. Они хорошо энергию отражают. Поэтому понятно, почему летом носят светлую одежду, почему дома на юге предпочитают красить в белый цвет.
Путём излучения энергия передаётся от Солнца к Земле. Поскольку пространство между Солнцем и Землёй представляет собой вакуум (высота атмосферы Земли много меньше расстояния от неё до Солнца), то энергия не может передаваться ни путём конвекции, ни путём теплопроводности. Таким образом, для передачи энергии путём излучения не требуется наличия какой-либо среды, эта теплопередача может осуществляться и в вакууме.
Конспект урока «Виды теплопередачи: теплопроводность, конвекция, излучение».
Следующая тема: «Количество теплоты. Удельная теплоёмкость».
Источник
Конспект объясняющего модуля
Цели урока:
– познакомить с тремя способами теплопередачи, сформировать представление о механизмах и особенностях передачи энергии путём теплопроводности, конвекции и излучения;
– научить наблюдать, описывать и объяснять физические явления на основе представлений об изменении внутренней энергии при теплопередаче.
Планируемые результаты обучения учащегося:
– даёт определения теплопроводности, конвекции и излучения, приводит примеры передачи энергии перечисленными способами;
– демонстрирует знание механизмов и особенностей передачи энергии путём теплопроводности, конвекции и излучения;
– сравнивает значения теплопроводности различных веществ;
– приводит примеры и объясняет физические явления на основе полученных знаний о различных способах теплопередачи.
В окружающем нас мире происходят различные физические явления, некоторые из них связаны с изменением внутренней энергии тел.
Внутреннюю энергию можно изменить за счет совершения механической работы и теплопередачи.
Рассмотрим способ изменения внутренней энергии тела путем теплопередачи. Введем определение. Теплопередача – это процесс изменения внутренней энергии без совершения работы над телом или самим телом.
У теплопередачи есть три разновидности: теплопроводность, конвекция, излучение.
Каждый вид теплопередачи имеет свои особенности, присущие только ему.
Рассмотрим первый вид- теплопроводность.
Теплопроводность – это явление, при котором энергия передаётся от одной части тела к другой посредством движения частиц или при непосредственном контакте двух тел.
Разные тела обладают разной теплопроводностью, так как молекулярное строение и скорость движения молекул в разных веществах разная.
У металлов самая высокая (хорошая) теплопроводность, у жидкостей меньше, а у газов самая маленькая ( плохая) теплопроводность.
Важно отметить, что при теплопроводности не происходит переноса вещества и если нет частиц, то нет теплопроводности. Следующий вид теплопередачи- конвекция.
Конвекция – это явление переноса энергии слоями жидкостей или газов.
Конвекция , что следует из определения, может быть только при наличии вещества, а конкретно – жидкости или газа, если же вещества нет, то и не имеет смысла говорить о явлении конвекции.
Конвекцией, например, объясняются бризы – ночные и дневные ветры, возникающие на берегах морей и больших озер.
В летние дни суша прогревается солнцем быстрее, чем вода, поэтому и воздух над сушей нагревается больше, чем над водой. При этом воздух над сушей расширяется, после чего его давление становится меньше давления более холодного воздуха над морем. В результате холодный воздух понизу с моря (где давление больше) перемещается к берегу (где давление меньше) -дует ветер. Это и есть дневной (или морской) бриз.
Ночью вода охлаждается медленнее, чем суша, и над сушей воздух становится более холодным, чем над водой. Теперь более высокое давление оказывается над сушей, и потому воздух начинает перемещаться от берега к морю. Это ночной (или береговой) бриз.
Различают два вида конвекции: естественная и вынужденная.
Естественная конвекция происходит сама по себе без внешнего воздействия.
В вынужденной перемещение вещества обусловлено действием внешних сил (насос, лопасти вентилятора и т. п.). Рассмотрим еще один вид теплопередачи- излучение, который может осуществляться в вакууме.
Под излучением, понимают перенос энергии в виде электромагнитных волн.
У излучения есть свои особенности- темные тела быстрее поглощают и излучают энергию, у светлых поглощение и испускание энергии происходит гораздо медленнее.
Кроме того, все нагретые тела, по сравнению с температурой окружающего пространства, испускают энергию. Чем сильнее нагрето тело, тем больше энергии оно испускает.
Это можно увидеть с помощью термоскопа.
Источник