Какие свойства электростатического поля
Электростатическое поле и его характеристики
Электрический заряд, помещенный в некоторую точку пространства, изменяет свойства данного пространства. То есть заряд порождает вокруг себя электрическое поле. Электростатическое поле – особый вид материи.
Электростатическое поле существующий вокруг неподвижный заряженных тел, действует на заряд с некоторой силой, вблизи заряда – сильнее.
Электростатическое поле не изменяется во времени.
Силовой характеристикой электрического поля является напряженность
Напряженностью электрического поля в данной точке называется векторная физическая величина, численно равная силе, действующей на единичный положительный заряд, помещенный в данную точку поля.
За единицу измерения напряженности электрического поля в СИ принимают
Если на пробный заряд, действуют силы со стороны нескольких зарядов, то эти силы по принципу суперпозиции сил независимы, и результирующая этих сил равна векторной сумме сил. Принцип суперпозиции (наложения) электрических полей: Напряженность электрического поля системы зарядов в данной точке пространства равна векторной сумме напряженностей электрических полей, создаваемых в данной точке пространства, каждым зарядом системы в отдельности:
или
Электрическое поле удобно представлять графически с помощью силовых линий.
Силовыми линиями (линиями напряженности электрического поля) называют линии, касательные к которым в каждой точке поля совпадают с направлением вектора напряженности в данной точке.
Силовые линии начинаются на положительном заряде и заканчиваются на
отрицательном (Силовые линии электростатических полей точечных зарядов.).
Густота линий напряженности характеризует напряженность поля (чем
плотнее располагаются линии, тем поле сильнее).
Электростатическое поле точечного заряда неоднородно (ближе к заряду поле сильнее).
Силовые линии электростатических полей бесконечных равномерно заряженных плоскостей.
Электростатическое поле бесконечных равномерно заряженных плоскостей однородно. Электрическое поле, напряженность во всех точках которого одинакова, называется однородным.
Силовые линии электростатических полей двух точечных зарядов.
Потенциал – энергетическая характеристика электрического поля.
Потенциал – скалярная физическая величина, равная отношению потенциальной энергии, которой облает электрический заряд в данной точке электрического поля, к величине этого заряда.
Потенциал показывает какой потенциальной энергией будет обладать единичный положительный заряд, помещенный в данную точку электрического поля. φ = W / q
где φ – потенциал в данной точке поля, W- потенциальная энергия заряда в данной точке поля.
За единицу измерения потенциала в системе СИ принимают [φ] = В (1В = 1Дж/Кл )
За единицу потенциала принимают потенциал в такой точке, для перемещения в которую из бесконечности электрического заряда 1 Кл, требуется совершить работу, равную 1 Дж.
Рассматривая электрическое поле, созданное системой зарядов, следует для определения потенциала поля использовать принцип суперпозиции:
Потенциал электрического поля системы зарядов в данной точке пространства равен алгебраической сумме потенциалов электрических полей, создаваемых в данной точке пространства, каждым зарядом системы в отдельности:
Вектор напряженности в данной точке поля всегда направлен в область уменьшения потенциала.
Воображаемая поверхность, во всех точках которой потенциал принимает одинаковые значения, называется эквипотенциальной поверхностью. При перемещении электрического заряда от точки к точке вдоль эквипотенциальной поверхности энергия его не меняется. Эквипотенциальных поверхностей для заданного электростатического поля может быть построено бесконечное множество.
Вектор напряженности в каждой точке поля всегда перпендикулярен к эквипотенциальной поверхности, проведенной через данную точку поля.
Источник
Изображение взято из открытых источников
Предыдущий урок: Физика для чайников. Урок 17. Электростатические явления. Закон Кулона
На прошлом уроке мы изучили, что такое электростатические явления, такие как электризация и узнали, что заряды взаимодействуют между собой: с одинаковыми знаками отталкиваться, с противоположными притягиваются. Но каким образом это происходит? Английский ученый Фарадей (1791-1867) предположил, что электрические заряды не сами действуют друг на друга, а создают электрическое поле, которое и передает их действие. Доказать правда, он это не мог, доказано было позже. Сначала было доказано существование переменных во времени полей и только после этого был сделан вывод о реальности полей неподвижных зарядов.
Позже Максвелл развил идеи Фарадея. Он смог теоретически доказать, что электромагнитные взаимодействия распространяются в пространстве с конечной скоростью. Эта скорость – скорость света, примерно 300 тыс. км/сек (см. также урок Физика для чайников. Урок 8. Замедление времени или почему нельзя двигаться быстрее света). Сейчас существование электромагнитах взаимодействий никаких сомнений не вызывает, чтобы убедиться в их реальности достаточно включить радио (телевизор) или позвонить по сотовому телефону.
Но что же такое электрическое поле и чем оно отличается от электромагнитного? Что вообще такое поле? А вот этого никто не знает. Поэтому, просто примите допущение, что есть нечто, которое описывается формулами и обладает определёнными свойствами. В частности, поле материально, оно существует независимо от того знаем ли мы о нем, верим ли мы в него или нет. А его свойство заключается в том, что оно действует на электрический заряд с определённой силой. Что касается электромагнитного поля, то это более общий случай электрического поля. Соответственно, электрическое поле – это частный случай электромагнитного поля. По сути, электромагнитное поле имеет электрическую и магнитную составляющую. Электрическое поле – оно статично. А вот переменное электрическое поле, или поле движущейся заряженной частицы – это уже магнитное поле. Более того, электроны в атомах тоже имеют некий магнитный момент.
Теперь поговорим о свойствах электрического поля. Его основное свойство – это напряженность. Если в отдельно взятую точку поля поместить заряд, то на него будет действовать сила. Причем, согласно закону Кулона (см. Физика для чайников. Урок 17. Электростатические явления. Закон Кулона), эта сила пропорциональна величине заряда. Но если силу разделить на заряд, то мы получим величину, не зависимую от заряда. Действительно
Эта величина называется напряженность электрического поля, она обозначается буковкой E и вычисляется по формуле:
Стрелочка над буковками обозначает, что величина векторная, F – это сила, q – заряд. Таким образом, напряженность электрического поля измеряется в ньютон/кулон. Направление вектора напряженности электрического поля совпадает с направлением силы, действующей на положительного заряда в этом поле.
А если у нас есть несколько зарядов, и у каждого свое поле, по получается, что у нас несколько полей складываться в одно? Да. И в каждой точке напряженность этих полей будет равна сумме всех напряженностей от каждого заряда. Это называется принципом суперпозиции. Он справедлив для всех векторных величин (сил, скоростей и так далее).
И напоследок, я познакомлю вас с таким понятием, как силовые лини электрического поля. Если все векторы направления электростатических сил в каждой точке электрического поля соединить непрерывными воображаемыми линиями, то получаться силовые линии:
Изображение взято из открытых источников
Направленны эти силовые линии от плюса к минусу:
Следующий урок: Физика для чайников. Урок 19. Проводник и диэлектрик в электрическом поле
Источник
Современные представления предполагают, что электрозаряды не действуют друг на друга непосредственным образом. Абсолютно любое заряженное тело создает вокруг себя ЭП, которое воздействует на окружающее этот объект пространство. Оно может появляться и создаться при прохождении через проводник электричества и оказывает силовое воздействие на все другие заряженные тела. Основное свойство как раз в этом и заключается. В этой статье будет подробно разобрано, какие свойства электрического поля есть и какова структура электрополя.
Что это такое
Электрическое поле — это особое векторная характеристика, которая действует на все обладающие электрозарядом частицы, находящиеся в ее радиусе действия. Это электрополе входит в состав электромагнитного, то есть для него характерно отсутствие визуальной составляющей. Это значит, что ЭП нельзя увидеть глазами и оно может быть зафиксировано только в результате воздействия за заряженные частицы.
Напряженность и потенциал ЭП
Важно! На последнее реагируют все заряженные электрочастицы и тела, обладающие другими (противоположными) полюсами.
Электрополе — особая форма состояния материи, которое проявляется в ускорении электрочастиц и определенных тел, которые обладают электро зарядом. К особенностям электрополя относятся:
- Оно действует только при наличии электро заряда;
- Оно не имеет определенных четких границ;
- ЭП обладает определенной величиной воздействия;
- Его определить только по результату его воздействия.
Принцип суперпозиции
Характеристика ЭП неразрывно связана с зарядами. Они находятся в определенной электрочастице или теле. Преобразование ЭП происходит в двух случаях:
- При появлении вокруг него электрозарядов;
- При перемещении волн электромагнитной природы, которые способствуют изменению электрополя.
Работа сил ЭП
Электрополе влияет на неподвижные относительно наблюдателя объекты в виде электро заряженных частиц или тел. В конечном итоге они получают силовое влияние. Пример воздействия ЭП можно наблюдать и в бытовой ситуации. Для этого достаточно создать электрозаряд достаточной мощности. Книги по теоретической физике предлагают для этого простейший эксперимент, когда диэлектрик натирается о шерстяное изделие. Получить электрополе вполне можно просто, взяв пластиковую шариковую ручку и потерев ее о волосы или шерсть. На ее поверхности образуется заряд, который приводит к появлению электрополя. Как следствие ручка притягивает мелкие электрочастицы в виде волос или бумаги. Если ее преподнести к мелко разорванным кусочкам бумаги, то они будут притягиваться к ней. Такой же результат можно достигнуть и при использовании пластмассовой расчески.
Манипуляции с магнитными свойствами ЭП на основе железной крошки
Также примером появления электрополя в быту является образование мелких световых вспышек при снятии одежды из синтетических материалов. В результате нахождения на теле диэлектрические волокна накапливают вокруг себя различные электрозаряды. При снятии такого предмета одежды с тела ЭП подвергается различным силам воздействия, которое приводит к образованию вспышек. Особенно это характерно для зимней одежды, в частности свитеров и шарфов, которые сделаны из синтетических материалов.
Сделал открытие и впервые подтвердил наличие электрополя Майкл Фарадей — английский физик и экспериментатор. Именно он внес в физику понятие «поля» и установил основы его концепции, его физическую реальность.
Важно! Фарадей ввел понятие ЭП при исследовании диамагнетизма и парамагнетизма, когда он обнаружил небольшое отталкивание специальным магнитом ряда веществ.
Напряженность электростатического поля
Свойства
Основные свойства ЭП:
- Источником самого ЭП являются заряженные частицы и переменные ЭП магнитного происхождения. ЭП неразрывно связано с магнетизмом. Источником поля электростатической природы являются неподвижные электростатические заряды;
- ЭП воздействует на внесенные в него электрозаряды с некоторой силой;
- Скорость распространения электрического поля равна конечность скорости света в вакууме, то есть константе C, которая равна 3 * 10 в 8 степени метров в секунду;
- Обнаружение электрополя происходит по его воздействию на другие электрически заряженные тела;
- ЭП подчиняются принципу суперпозиции, то есть наложения. Это означает, что в каждой точке, пространства, электрополя действуют, как будто других сил воздействия нет. В данной точке, их суммарное воздействие на пробный электрозаряд определяется как сумма воздействий действующих ЭП.
Виды
Различают несколько основных видов электрополей. Отличие зависит от того, где оно существует. Следует рассмотреть несколько примеров возникающих сил в различных ситуациях:
- Когда заряженные электрочастицы неподвижны. Это называется статическим ЭП;
- Когда заряженные электрочастицы находятся в движении по проводнику. Это называется магнитным полем, которое не следует отождествлять с электрическим;
- Стационарное ЭП возникает вокруг неподвижных проводников с неизменяющимся током.
В радиоволнах есть ЭП и МП. Они расположены в пространстве перпендикулярно друг другу. Это происходит, потому что любое изменение магнитного поля порождает возникновения электрополя с замкнутыми силовыми линиями.
Вихревые электромагнитные волны
Структура электрического поля
Для того чтобы понять структуру электрического вначале следует определить потенциал. Говоря просто, потенциал — это действие по переведению какого-либо тела или заряда из начального места в конкретный пункт размещения. Потенциал в сфере электрополя — это своеобразная энергия, которая двигает электрон. В результате движения он перемещается с точки так называемого нулевого потенциала в другую точку, имеющую ненулевой потенциал.
Чем выше потенциал, который потрачен на передвижение электрического заряда или тела, тем более значительной будет плотность потока на единице площади. Это явление сравнимо с законом гравитации: чем больше вес тела, тем выше энергия, действующая на него, а, значит, значительнее плотность гравитационной характеристики. В естественных условиях существуют заряды с незначительным потенциалом и с низкой степенью плотности, а также заряженные частицы и тела с высоким потенциалом и насыщенной плотностью потока. Такое явление, как работа по перемещению электрозаряда, наблюдается при грозе и молнии, когда в одном месте происходит истощение электронов, а в другом — их насыщение, образовывающее своеобразное электрически заряженное ЭП, когда происходит разряд в виде молнии.
Переменное МП
Как определить
Для количественного определения электрополя вводится значение силы напряженности электрического поля. Ею называют физическую величину, равную отношению силовых характеристик, с которыми ЭП воздействует на положительный пробный электрозаряд, находящийся в некоторой точке пространства, к величине этого заряда. Она равна E = F/q.
Течение жидкости под действием магнитных волн
Напряженность представляет собой векторную величина физического типа. Направление векторов силы в каждой точке конкретной области пространства соответствует направлением сил, воздействующих на положительный пробный заряд.
Формула напряженности поля между двумя зарядами
Электрополе неподвижных и не меняющихся со временем зарядов называется электростатическим. Во многих случаях для краткости это ЭП обозначают общим термином — электрическое поле
Если ЭП исследуется с помощью пробного заряда и создается сразу несколькими заряженными телами, то конечная силовая характеристика оказывается равной геометрической сумме сил, которые воздействуют на электрозаряд со стороны всех заряженных тел по отдельности. Следовательно, напряженность электрополя, которая создается набором зарядов в конкретной точке пространства, равна векторной сумме напряженностей ЭП, создаваемых в той же точке зарядами в отдельности: E = E1 + E2 + E3 +…
Напряженность точечного заряда
Таким образом, было определено, какими свойствами обладает электрическое поле и какова его структура. Все тела создают электрополя, если они заряжены. Понять, есть оно или нет нельзя визуальным путем. Для этого нужно подтвердить его воздействие на окружающие объекты.
Источник
Исследование взаимодействия заряженных легких алюминиевых гильз и электрических султанов.
Каким образом осуществляется взаимодействие зарядов?
Идея электрического поля была введена М. Фарадеем и теоретически обоснована Дж. Максвеллом.
Электрическое поле это вид материи посредством которого осуществляется взаимодействие электрических зарядов.
Электрическое поле неподвижных зарядов не меняется со временем и называется электростатическим полем.
Свойства электрического поля:
- Порождается электрическим зарядом.
- Обнаруживается по действию на заряд.
- Действует на заряд с некоторой силой.
- Распространяется в пространстве с конечной скоростью с=3·108 м/с.
Силовой характеристикой электрического поля является напряженность.
Напряженность электрического поля – векторная физическая величина, равная отношению силы , действующей на пробный точечный заряд q, к этому заряду:
Направление вектора напряженности совпадает с направлением вектора кулоновской силы.
Напряженность поля не зависит от значения пробного заряда q; определяется зарядами – источниками поля, является силовой характеристикой этого поля.
Единица в СИ – Н/Кл или В/м.
Поле, напряженность которого в любой точке одинакова (E = const), называют однородным.
Напряженность точечного электрического заряда в данной точке зависит от модуля заряда Q и от расстояния до этого заряда R.
Каждый электрический заряд создает в пространстве электрическое поле независимо от наличия других электрических зарядов. В этом заключается принцип суперпозиции электрических полей.
Электрические поля изображаются графически с помощью линий напряженности.
Неоднородное электрическое поле
Силовая линия (линия напряженности) электрического поля – линия, в каждой точке которой напряженность поля направлена по касательной. Силовые линии поля в электростатике начинаются на положительных зарядах и заканчиваются на отрицательных. Густота силовых линий пропорциональна модулю вектора напряженности.
Однородное электрическое поле
На электрический заряд помещенный в однородное электрическое поле действует кулоновская сила способная совершать работу по перемещению электрического заряда.
Работа электрического поля не зависит от формы траектории и на замкнутой траектории равна нулю. Такие поля называются потенциальными. Для этих поле характерна незамкнутость линий напряженности.
Энергетической характеристикой электрического поля является потенциал (разность потенциалов), скалярная физическая величина, выражаемая в вольтах (В); 1В = 1 Дж / 1 Кл.
Потенциал поля в данной точке, находящейся на расстоянии R от заряда Q:
Потенциал поля может быть как положительным, так и отрицательным. Следуя принципу суперпозиции полей, можно утверждать, что если в данной точке пространства известен потенциал поля, созданного отдельно каждым из N зарядов (тел), то потенциал суммарного поля равен алгебраической сумме потенциалов каждого из полей
На практике используют разность потенциалов:
В электрическом поле разность потенциалов между двумя любыми точками равна напряжению между этими точками.
Эквипотенциальная поверхность – поверхность, во всех точках которой потенциал имеет одно и то же значение.
На рисунке показаны эквипотенциальные поверхности точечных положительного и отрицательного зарядов и системы двух положительных зарядов.
Связь между напряженностью электрического поля и напряжением:
Опорный конспект:
Источник