Какие свойства металлов называются механическими

Анонимный вопрос

18 мая 2018  · 1,4 K

Невское Оборудование поставщик металлообрабатывающего оборудования и станков  · spbstanki.ru

К механическим свойствам металлов относят следующие:

  • Твердость — способность сопротивляться внедрению более твёрдого тела.

  • Прочность — сопротивление разрушению под действием напряжений, возникающих под воздействием внешних сил.

  • Вязкость — сопротивление быстро возрастающим ударным нагрузкам.

  • Упругость — способность восстанавливать свою первоначальную форму и размеры после снятия действующей нагрузки.

  • Пластичность — способность металла, не разрушаясь, изменять свою форму под действием нагрузки и сохранять полученную форму после снятия нагрузки.

Вас приветствует 1-я Металлургическая Корпорация! К основным механическим свойствам относят:
1) Прочность – способность материала сопротивляться разрушению под действием нагрузок.
2) Пластичность – способность материала изменять свою форму и размеры по действием внешних сил.
3) Твердость – способность материала сопротивляться проникновению в него… Читать далее

Как закалить сталь?

Первое – ст.3 или сталь 3 (содержание углерода – 0.3 %, легированные добавки отсутствуют) – не закаляется. Ст.3 – самая распространённая марка. Из нее чаще всего делают трубы отопления, квадратные профили и арматуру круглую, массив квадрата.

Второе – выясняем какая сталь у вас в наличии. Например, прижинная сталь – это 50ХГ. Напильник – У8 (У10). Подшипник – ШХ-15.

Третье – открываем “Справочник термиста” (Яндекс в помощь) и находим режимы термообработки. Важно ! Сталь необходимо не только закалить, но в последующем и отпустить – снять температурные напряжения. Режимы отпуска сталей также прописаны в справочнике.

Благодарю за внимание.

Прочитать ещё 5 ответов

способность металлов увеличивать свои размеры при нагревании, называется:?

Невское Оборудование поставщик металлообрабатывающего оборудования и станков  · spbstanki.ru

Способность металлов к изменению объема при температурных воздействиях связана с полиморфизмом. Полиморфизм это явление, когда металл в одном интервале температур или давлений имеет одну кристаллическую структуру, а в других интервалах – другую. Иными словами с изменением температуры или давления наблюдается изменение кристаллической структуры металлов.

Значение металлов и сплавов и применение их в машиностроение?

TutorOnline – одна из крупнейших онлайн-школ. Мы преподаем более 150 предметов. Наша цель…  · tutoronline.ru

Материалы, используемые в машиностроении В машиностроении любое изделие, оборудование, деталь из которых они состоят, изготавливают из материалов, которые удовлетворяют техническим, экологическим, экономическим, эксплуатационным и другим требованиям, обеспечивая при этом выполнение их назначения. Такие материалы называются конструкционными. Такие детали несомненно должны выдерживать как внешнее, так и внутреннее физическое воздействие (шумоизоляция, теплоизоляция, герметизация и т.п.). Данные способности материалов проверяются при анализе их свойств. Существует довольно широкий спектр конструкционных материалов, выбором наиболее подходящего для того или иного изделия материала, удовлетворяющего все требования и себестоимость, занимаются конструкторы. Металлы и сплавы В машиностроении под металлами может пониматься как химический элемент, так и его примеси, или сплавы, которые различаются рядом свойств: Металлический блеск Высокая тепло- и электропроводность Непрозрачность Способность подвергаться обработке в холодном и горячем состоянии Металлы хорошо образуют химические соединения с неметаллами (оксиды, нитриды, бориды и т.п.), а также с другими металлами (интерметаллиды). Машиностроительные предприятия активно используют более 60 видов металлов, на их основе более 5000 сплавов. Сплав – это твердый материал, образованный путем смешивание двух и более компонентов Сплавы могут создаваться как при чистом физическом процессе (плавка, растворение, перемешивание), так и химическими воздействиями между элементами. Сплавы на основе металлов называются черными, на основе других элементов – цветными. Легкие цветные металлы сделаны на основе алюминия, магния, титана и имеют малую плотность, тяжелые же, с высокой плотностью изготовлены на основе олова, свинца, меди. Чугун Один из наиболее распространенных металлов в машиностроении. Чугун подразделяется на белый, серый, ковкий, высокопрочный. Белый чугун используется в основном для переделки в сталь, он получается при быстром охлаждении при заливки металла в форму. Имеет уменьшенное количество кремния или повышенное содержание магния. При долгом отжиге белого чугуна получают ковкий чугун, он довольно хрупкий и применяется при производстве зубчатых колес, звеньев цепей, хомуты, муфты и т.п., так как не предусматривает механического воздействия. Серый чугун имеет повышенное содержание кремния, и является основным материалом для изготовления отливок. Со временем путем воздействия на графит в момент нахождения в жидком состоянии, удалось вывести модифицированный чугун, который имеет повышенную прочность. Сталь Сталь наиболее распространенный материал в машиностроении. Он обладает ковкостью, высокой прочностью, вязкостью, хорошо обрабатывается. Стали разделяются на углеродистые и легированные. Из стали изготавливаются такие изделия как: прокат, штамповые болты, штыри, свариваемые детали, сверла, зубила, валу, зубчатые колеса и т.п. Твердые сплавы Свое место твердые сплавы нашли в горнодобывающей, металлообрабатывающей и других отраслях промышленности. Режущие инструменты, изготовленные из твердых сплавов могут работать в несколько раз более производительнее, чем простые режущие сплавы. Одним из самых прочных, но довольно молодых сплавов считается титан. К тому же такие сплавы вдвое легче. Такие сплавы применяются в изготовлении сверхзвуковых самолетов, так как титан способен выдерживать температуры превышающие 500 градусов. К тому же титан обладает коррозийной стойкостью, не окисляясь в агрессивной среде. Алюминий и алюминиевые сплавы Алюминиевые сплавы широко применяются при производстве автомобилей, самолетов, приборостроении, тракторной промышленности, многие отрасли промышленности используют алюминий на производстве. Алюминий наиболее распространенный химический элемент после кислорода. Отлично поддается штамповки, ковке, и отливу. К тому же он гораздо легче чугуна и стали. Обладает хорошей электропроводностью. Другие металлы Медь широко применяется в производстве токопроводящих деталей. Медь тяжелее стали и чугуна. Обладает хорошей пластичностью. Свинец плохой проводник тепла и тока. В промышленности применяется при производстве аккумуляторов, кабеля и т.п. Он очень мягкий и пластичный. Часто используется в соединении с другими металлами. Цинк, своего рода тяжелый металл с сильным металлическим блеском. Большое количество цинка используется для шинкования деталей. В основном цинк применяется в сплавах. Так же цинк применяют при производстве белил. Олово, довольно мягкий металл, широко применяемы в быту и промышленности, за счет устойчивости к воздуху, воды, слабым кислотам. Так же олово входит в состав припоев, антифрикционных сплавов и бронз. Баббиты – это сплав на основе меди, цинка и олова, алюминия. В основном применяются для заливки подшипников в двигателях, турбин, насосов и т.п. Бронза, разделяется на оловянную бронзу и без оловянную. Оловянные бронзы обладают высокой антикоррозийностью, а также высокими литейными свойствами. Но широкого применения они не нашли, так как олово достаточно дорогой и дефицитный металл. Зато без оловянные бронзы нашли широкое применение в промышленности. Неметаллические материалы, используемые в машиностроении Основой машиностроения служат металлы, но также свое применение находят и ряд неметаллических материалов. Практически все они плохо передают тепло, прочные, легкие, а также на порядок дешевле металлов. Примеры неметаллических материалов: Стекло органическое Пресс-материал, используется для изготовления различных деталей путем прессования. Текстолит конструкционный Гетинакс, применяется для изготовления подшипников, маховиков и тп. Паронит, служит для выпуска прокладок между неподвижными металлическими деталями Пластины резиновые и резинотканевые Войлок технический Водостойкий, обивочный картон Ткань асбестовая

Прочитать ещё 2 ответа

Как защитить металл в условиях повышенной влажности?

Аналитик, учусь на магистра фин.менеджмента, люблю Италию, папа – шеф-повар

Для защиты металла от влажности используют: защитные покрытия предназначены для защиты деталей от коррозии, старения, высыхания, гниения (например ортофосфорная кислота); защитно-декоративные покрытия- защита деталей и красивый внешний вид (например грунтовка); специальные покрытия – придают поверхности защиту от влияния особых сред (например «Rocket Chemical» «WD-40»).

Прочитать ещё 3 ответа

Источник

Основные механические свойства

К основным механическим свойствам относят прочность, пластичность, твердость, ударную вязкость и упругость. Большинство показателей механических свойств определяют экспериментально растяжением стандартных образцов на испытательных машинах.

Прочность – способность металла сопротивляться разрушению при действии на него внешних сил.

Пластичность – способность металла необратимо изменять свою форму и размеры под действием внешних и внутренних сил без разрушения.

Твердость – способность металла сопротивляться внедрению в него более твердого тела. Твердость определяют с помощью твердомеров внедрением стального закаленного шарика в металл (на приборе Бринелля) или внедрением алмазной пирамиды в хорошо подготовленную поверхность образца (на приборе Роквелла). Чем меньше размер отпечатка, тем больше твердость испытуемого металла. Например, углеродистая сталь до закалки имеет твердость 100 . . . 150 НВ (по Бринеллю) , а после закалки – 500 . . . 600 НВ.

Ударная вязкость – способность металла сопротивляться действию ударных нагрузок. Эта величина, обозначаемая КС (Дж/см2 или кгс • м/см ), определяется отношением механической работы А, затраченной на разрушение образца при ударном изгибе, к площади поперечного сечения образца.

Упругость – способность металла восстанавливать форму и объем после прекращения действий внешних сил. Эта величина характеризуется модулем упругости Е (МПа или кгс/мм2), который равен отношению напряжения а к вызванной им упругой деформации. Высокой упругостью должны обладать стали и сплавы для изготовления рессор и пружин.

Механические свойства металлов

Под механическими свойствами понимают характеристики, определяющие поведение металла (или другого материала) под действием приложенных внешних механических сил. К механическим свойствам обычно относят сопротивление металла (сплава) деформации (прочность) и сопротивление разрушению (пластичность, вязкость, а также способность металла не разрушаться при наличии трещин).

В результате механических испытаний получают числовые значения механических свойств, т. е. значения напряжений или деформаций, при которых происходят изменения физического и механического состояний материала.

Оценка свойств

При оценке механических свойств металлических материалов различают несколько групп их критериев.

  1. Критерии, определяемые независимо от конструктивных особенностей и характера службы изделий. Эти критерии находятся путем стандартных испытаний гладких образцов на растяжение, сжатие, изгиб, твердость (статические испытания) или на ударный изгиб образцов с надрезом (динамические испытания).
  2. Прочностные и пластические свойства, определяемые при статических испытаниях на гладких образцах хотя и имеют важное значение (они входят в расчетные формулы) во многих случаях не характеризуют прочность этих материалов в реальных условиях эксплуатации деталей машин и сооружений. Они могут быть использованы только для ограниченного числа простых по форме изделий, работающих в условиях статической нагрузки при температурах, близких к нормальной.
  3. Критерии оценки конструктивной прочности материала, которые находятся в наибольшей корреляции со служебными свойствами данного изделия и характеризуют работоспособность материала в условиях эксплуатации.

Конструкторская прочность металлов

Критерии конструктивной прочности металлических материалов можно разделить на две группы:

  • критерии, определяющие надежность металлических материалов против внезапных разрушений (вязкость разрушения, работа, поглощаемая при распространении трещин, живучесть и др.). В основе этих методик, использующих основные положения механики разрушения, лежат статические или динамические испытания образцов с острыми трещинами, которые имеют место в реальных деталях машин и конструкциях в условиях эксплуатации (надрезы, сквозные отверстия, неметаллические включения, микропустоты и т. д.). Трещины и микронесплошности сильно меняют поведение металла под нагрузкой, так как являются концентраторами напряжений;
  • критерии, которые определяют долговечность изделий (сопротивление усталости, износостойкость, сопротивление коррозии и т. д.).

Критерии оценки

Критерии оценки прочности конструкции в целом (конструкционной прочности), определяемые при стендовых, натурных и эксплуатационных испытаниях. При этих испытаниях выявляется влияние на прочность и долговечность конструкции таких факторов, как распределение и величина остаточных напряжений, дефектов технологии изготовления и конструирования металлоизделий и т. д.

Для решения практических задач металловедения необходимо определять как стандартные механические свойства, так и критерии конструктивной прочности.

Похожие материалы

Источник

И МЕТОДЫ ИХ ОПРЕДЕЛЕНИЯ

Цель работы: изучить способы определения основных механических свойств металлических материалов.

Теоретические сведения

Механические свойства определяют способность металлов сопротивляться воздействию внешних сил (нагрузок). Они зависят от химического состава металлов, их структуры, характера технологической обработки и других факторов. Зная механические свойства металлов, можно судить о поведении металла при обработке и в процессе работы машин и механизмов.

К основным механическим свойствам металлов относятся прочность, пластичность, твердость и ударная вязкость.

Прочность – способность металла не разрушаться под действием приложенных к нему внешних сил.

Пластичность – способность металла получать остаточное изменение формы и размеров без разрушения.

Твердость – способность металла сопротивляться вдавливанию в него другого, более твердого тела.

Ударная вязкость – степень сопротивления металла разрушению при ударной нагрузке.

Механические свойства определяют путем проведения механических испытаний.

Испытания на растяжение. Этими испытаниями определяют такие характеристики, как пределы пропорциональности, упругости, прочности и пластичность металлов. Для испытаний на растяжение применяют круглые и плоские образцы (рисунок 2.1, а, б), форма и размеры которых установлены стандартом. Цилиндрические образцы диаметром d0 = 10 мм, имеющие расчетную длину l0 = 10d0, называют нормальными, а образцы, у которых длина l0 = 5d0, – короткими. При испытании на растяжение образец растягивается под действием плавно возрастающей нагрузки и доводится до разрушения.

Разрывные машины снабжены специальным самопишущим прибором, который автоматически вычерчивает кривую деформации, называемую диаграммой растяжения. Диаграмма растяжения в координатах «нагрузка Р – удлинение ∆l» отражает характерные участки и точки, позволяющие определить ряд свойств металлов и сплавов (рисунок 2.1). На участке 0 – Рпц удлинение образца увеличивается прямо пропорционально возрастанию нагрузки. При повышении нагрузки свыше Рпц, на участке РпцPупр прямая пропорциональность нарушается, но деформация остается упругой (обратимой). На участке выше точки Pvпр возникают заметные остаточные деформации, и кривая растяжения значительно отклоняется от прямой. При нагрузке Рт появляется горизонтальный участок диаграммы — площадка текучести Т-Т1, которая наблюдается, главным образом, у деталей из низкоуглеродистой стали. На кривых растяжения хрупких металлов площадка текучести отсутствует. Выше точки Рт нагрузка возрастает до точки А, соответствующей максимальной нагрузке Рв, после которой начинается ее падение, связанное с образованием местного утонения образца (шейки). Затем нагрузка падает до точки В, где и происходит разрушение образца. С образованием шейки разрушаются только пластичные металлы.

а, б – стандартные образцы для испытания на растяжение;

в – диаграмма растяжения образца из пластичного материала

Рисунок 2.1 – Испытание на растяжение

Усилия, соответствующие основным точкам диаграммы растяжения, дают возможность определить характеристики прочности, выраженные в мегапаскалях, МПа, по формуле

, (2.1)

где σi – напряжение, МПа;

Pi – соответствующая точка диаграммы растяжения, Н;

F0 – площадь поперечного сечения образца до испытания, мм2.

Предел пропорциональности σпц – это наибольшее напряжение, до которого сохраняется прямая пропорциональность между напряжением и деформацией:

, (2.2)

где Pпц – напряжение, соответствующее пределу пропорциональности, Н.

Предел упругости σупр – напряжение, при котором пластические деформации впервые достигают некоторой малой величины, характеризуемой определенным допуском (обычно 0,05 %):

, (2.3)

где Pупр – напряжение, соответствующее пределу упругости, Н.

Предел текучести физический σт— напряжение, начиная с которого деформация образца происходит почти без дальнейшего увеличения нагрузки:

, (2.4)

где – напряжение, соответствующее пределу текучести, Н.

Если площадка текучести на диаграмме растяжения данного материала отсутствует, то определяется условный предел текучести σ0,2 — напряжение, вызывающее пластическую деформацию, равную 0,2 %.

Предел прочности (временное сопротивление) σв — напряжение, равное отношению наибольшей нагрузки, предшествующей разрушению образца, к первоначальной площади его сечения:

, (2.5)

где – напряжение, соответствующее пределу прочности, Н.

По результатам испытания на растяжение определяют характеристики пластичности металлов.

Показатели пластичности металлов — относительное удлинение и относительное сужение – рассчитывают по результатам замеров образца до и после испытания.

Относительное удлинение δ находится как отношение увеличения длины образца после разрыва к его первоначальной расчетной длине, выраженное в процентах:

, (2.6)

где lk – длина образца после разрыва, мм;

l0 – расчетная (начальная) длина образца, мм.

Относительное сужение ψ определяется отношением уменьшения площади поперечного сечения образца после разрыва к первоначальной площади его поперечного сечения, выраженным в процентах:

, (2.7)

где F0 – начальная площадь поперечного сечения образца;

Fк – площадь поперечного сечения образца в месте разрушения.

Методы определения твердости.Наиболее распространенным методом определения твердости металлических материалов является метод вдавливания, при котором в испытуемую поверхность под действием постоянной статической нагрузки вдавливается другое, более твердое тело (наконечник). На поверхности материала остается отпечаток, по величине которого судят о твердости материала. Показатель твердости характеризует сопротивление материала пластической деформации, как правило, большой, при местном контактном приложении нагрузки.

Твердость определяют на специальных приборах – твердомерах, которые отличаются друг от друга формой, размером и материалом вдавливаемого наконечника, величиной приложенной нагрузки и способом определения числа твердости. Так как для измерения твердости испытывают поверхностные слои металла, то для получения правильного результата поверхность металла не должна иметь наружных дефектов (трещин, крупных царапин и т. д.).

Измерение твердости по Бринеллю. Сущность этого способа заключается в том, что в поверхность испытуемого металла вдавливается стальной закаленный шарик диаметром 10, 5 или 2,5 мм в зависимости от толщины образца под действием нагрузки, которая выбирается в зависимости от предполагаемой твердости испытуемого материала и диаметра наконечника по формулам: Р = 30D2; Р = 10D2;
Р = 2,5D2 (таблица 2.1).

Таблица 2.1 – Выбор диаметра шарика D и нагрузки Р

Материал образца Твердость, кгс/мм2 Толщина образца, мм Диаметр шарика D, мм P/D2, кгс/мм2 Нагрузка Р, кгс Выдержка под нагрузкой, с
Черные металлы (сталь, чугун)  
450 – 140
более 6
6 – 3
менее 3

2,5

187,5

Черные металлы Менее 140 более 6
6 – 3
менее 3

2,5

187,5

Твердые цветные металлы (латунь, бронза, медь)  
140 – 32
более 6
6 – 3
менее 3

2,5

62,5

Мягкие цветные металлы (олово, алюминий и др.)  
35 – 8
более 6
6 – 3
менее 3

2,5

2,5 62,5
15,6

На поверхности образца остается отпечаток (рисунок 2.2, а), по диаметру которого определяют твердость. Диаметр отпечатка измеряют специальной лупой с делениями.

Твердость рассчитывают по формуле

, (2.8)

где НВ – твердость по Бринеллю, кгс/мм2;

Р – нагрузка при испытании, кгс или Н;

F – площадь полученного отпечатка, мм2;

D – диаметр наконечника, мм;

d – диаметр отпечатка, мм.

Рисунок 2.2 – Измерение твердости методами Бринелля (а),

Роквелла (б), Виккерса (в)

На практике пользуются специальными таблицами, которые дают перевод диаметра отпечатка в число твердости, обозначаемое НВ. Например: 120 НВ, 350 НВ и т.д. (Н – твердость, В – по Бринеллю, 120, 350 – число твердости в кгс/мм2, что соответствует 1200 и 3500 МПа).

Этот способ применяют, главным образом, для измерения твердости незакаленных металлов и сплавов: проката, поковок, отливок и др.

Твердомер Бринелля можно использовать в том случае, если твердость материала не превышает 450 кгс/мм2. В противном случае произойдет деформация шарика, что приведет к погрешностям в измерении. Кроме того, твердомер Бринелля не применяется для испытания тонких поверхностных слоев и образцов тонкого сечения.

Измерение твердости по Роквеллу. Измерение осуществляют путем вдавливания в испытуемый металл стального шарика диаметром 1,588 мм или алмазного конуса с углом при вершине 120° (см. рисунок 2.2, б).В отличие от метода Бринелля твердость по Роквеллу определяют не по диаметру отпечатка, а по глубине вдавливания наконечника.

Вдавливание производится под действием двух последовательно приложенных нагрузок — предварительной, равной ≈ 100 Н, и окончательной (общей) нагрузки, равной 1400, 500 и 900 Н. Твердость определяют по разности глубин вдавливания отпечатков. Для испытания твердых материалов (например, закаленной стали) необходима нагрузка 1500 Н, а вдавливание стальным шариком нагрузкой 1000 Н производят для определения твердости незакаленной стали, бронзы, латуни и других мягких материалов. Глубина вдавливания измеряется автоматически, а твердость после измерения отсчитывается по трем шкалам: А, В, С (таблица 2.2).

Таблица 2.2 – Наконечники и нагрузки для шкал А, В, С

Наконечник Суммарная нагрузка Р, Н (кгс)
 
Отсчет
по шкале
Обозначение твердости
Стальной шарик 1000 (100)
 
В (красная) HRB
Алмазный конус 1500 (150)
 
С (черная) HRC
Алмазный конус 600 (60)
 
А (черная) HRA

Твердость (число твердости) по Роквеллу обозначается следующим образом: 90 HRA, 80 HRB, 55 HRC (Н – твердость, Р – Роквелл, А, В, С – шкала твердости, 90, 80, 55 – число твердости в условных единицах).

Определение твердости по Роквеллу имеет широкое применение, так как дает возможность испытывать мягкие и твердые металлы без дополнительных измерений; размер отпечатков очень незначителен, поэтому можно испытывать готовые детали без их порчи.

Измерение твердости по Виккерсу. Данный метод позволяет измерять твердость как мягких, так и очень твердых металлов и сплавов. Он пригоден для определения твердости очень тонких поверхностных слоев (толщиной до 0,3мм). В этом случае в испытуемый образец вдавливается четырехгранная алмазная пирамида с углом при вершине 136о (см. рисунок 2.2, в). При таких испытаниях применяются нагрузки от 50 до 1200 Н. Измерение отпечатка производят по длине его диагонали, рассматривая отпечаток под микроскопом, входящим в твердомер. Число твердости по Виккерсу, обозначаемое НV, находят по формуле

, (2.9)

где Р – нагрузка, Н;

d – длина диагонали отпечатка, мм.

На практике число твердости НV находят по специальным таб-лицам.

Определение ударной вязкости производят на специальном маятниковом копре (рисунок 2.3). Для испытаний применяется стандартный надрезанный образец, который устанавливается на опорах копра. Маятник определенной массой поднимают на установленную высоту Н и закрепляют, а затем освобожденный от защелки маятник падает, разрушает образец и снова поднимается на некоторую вы-
соту h. Удар наносится по стороне образца, противоположной надрезу. Для испытаний используют призматические образцы с надрезами различных видов: U-образный, V-образный, T-образный (надрез с усталостной трещиной).

а – схема испытания; б – образцы для испытаний.

Рисунок 2.3 – Испытания на ударную вязкость

Ударная вязкость КС (Дж/см2) оценивается работой, затраченной маятником на разрушение стандартного надрезанного образца, отнесенной к сечению образца в месте надреза:

, (2.10)

где А – работа, затраченная на разрушение образца (определяется по разности энергий маятника до и после удара: А0А1), Дж;

F – площадь поперечного сечения образца в месте надреза, см2.

В зависимости от вида надреза в образце ударная вязкость обозначается KCU, KCV, KCТ (третья буква – вид надреза).

Материалы и принадлежности

· Образцы для испытания на растяжение, твердость и ударную вязкость.

· Разрывная испытательная машина.

· Твердомеры Бринелля, Роквелла, Виккерса.

· Маятниковый копер.

· Штангенциркуль.

Порядок выполнения работы

Испытания на растяжение

2.3.1.1 Измерить рабочую длину и диаметр образца перед испытанием, записать данные в протокол испытаний.

2.3.1.2 Подготовленный для испытания образец поместить в зажимы машины.

2.3.1.3 Включить электродвигатель.

2.3.1.4 Наблюдать за перемещением стрелки по шкале машины, зафиксировать нагрузку, соответствующую текучести образца, и наибольшую нагрузку, предшествующую разрушению образца, записать в соответствующие графы протокола испытаний.

2.3.1.5 После разрыва образца выключить электродвигатель, обе части образца вынуть из зажимов, снять с диаграммного аппарата часть бумажной ленты с записанной диаграммой.

2.3.1.6 Обе части образца плотно приложить одну к другой, измерить длину и диаметр образца в месте разрыва, записать данные в протокол испытаний.

2.3.1.7 Рассчитать характеристики прочности и пластичности материала, записать полученные данные.



Источник