Какие свойства не характерны для живой клетки

Общие свойства клеток и их различия

Основные положения:

• Клетка образуется только из предсуществующей клетки

• Каждая клетка несет генетическую информацию, реализация которой позволяет ей производить все необходимые компоненты

• Плазматическая мембрана состоит из липидного бислоя, отделяющего клетку от окружающей среды

В основе всего многообразия живых организмов лежит одна основная структурная единица: клетка. Основное положение биологии, утвердившееся с момента разработки клеточной теории в XIX веке, состоит в том, что каждая клетка образуется в результате деления предсуществующей.

Простейшие представляют собой одноклеточные организмы: их клетка сама по себе является самостоятельной биологической единицей, способной к воспроизведению многих себе подобных копий. Для того чтобы выжить, одноклеточные организмы могут приспосабливаться к самым различным типам окружающей среды, от крайне низких до крайне высоких температур, могут существовать в аэробных или анаэробных условиях, или даже в атмосфере метана. Некоторые из них живут в других организмах.

Клетки также могут образовывать многоклеточные организмы. В этом случае различные клетки специализируются для выполнения различных функций. В многоклеточном организме клетки взаимодействуют друг с другом, тем самым обеспечивая его функционирование как целого.

Многоклеточные организмы обладают способностью к размножению, однако их индивидуальные клетки могут проявлять или не проявлять такую способность. Клетки организма, для которых размножение обычно нехарактерно, могут приобрести способность к неограниченному делению, что может послужить причиной развития рака.

Размеры и форма клеток сильно варьируют, что иллюстрирует рисунок ниже. Самые мелкие клетки представлены одноклеточными организмами, которые имеют сферическую форму с диаметром, не превышающим 0,2 мкм. К числу одной из наиболее крупных клеток относится нейрон (нервная клетка) гигантского кальмара, диаметр которого в 5000 раз больше и составляет 1 мм. От тела нейрона отходят отростки (аксоны) диаметром 20 мкм (в 100 раз больше, чем размеры мельчайшей клетки), которые в длину могут достигать 10 см!

Клетки человека и других млекопитающих по величине занимают среднее положение, и обычно их диаметр составляет 3—20 мкм.

Клетки могут не очень сильно различаться по форме. Так, клетки сферической формы обычно существуют в жидкой среде. Иногда они могут обладать более определенной формой, как, например, нейрон, с характерными длинными отростками, или клетки эпителия, которые имеют выраженную апикальную и базолатеральную поверхности, выполняющие различные функции. Клетка может свободно существовать в жидкой среде либо быть прикрепленной к поверхности или к другим клеткам.

Клетки могут взаимодействовать друг с другом или атаковать другие клетки.

Размеры клеток
Клетки сильно различаются по своим размерам и форме. Некоторые клетки обладают сферической формой, другие имеют протяженные выросты.

Остальные по форме занимают промежуточное положение. На фотографиях представлена микоплазма (Тим Питцкер, Ульмский университет), дрожжи (Фред Уинстон, Гарвардская медицинская школа),

фибробласт (Цзюнзо Десаки, Медицинская школа Университета Эхиме), нейрон (Джералд Дж. Обермайр Бернгардт Е. Флухер, Медицинский университет Инсбрука), растительная клетка (Мин X. Чен, Университет в Альберте)

Однако, несмотря на столь различные формы клеток, в основе их строения лежат несколько общих принципов.

• Внутреннее содержимое клетки отделено от внешней среды мембраной, которая называется плазматической мембраной.

• Плазматическая мембрана содержит системы, контролирующие вход и выход из нее различных метаболитов.

• Необходимые для клетки метаболиты образуются из компонентов пищи при участии внутренних энергетических систем.

• Генетический материал содержит всю информацию, необходимую для образования всех компонентов клетки.

• Генетическая информация реализуется при экспрессии генов.

• Индивидуальные белки кодируются соответствующими генами и после синтеза могут собираться в более крупные структуры.

Клетка ограничена мембраной, состоящей из двойного слоя липидов. На рисунке ниже представлены свойства липидного бислоя. Он являет собой макромолекулярную структуру, состоящую из липидов. Основное свойство липидов заключается в том, что их молекулы являются амфипатичными, т. е. на одном конце молекулы находится гидрофильная «головка», а на другом гидрофобный «хвост».

Каждый из слоев липидного бислоя, с одной стороны, содержит множество гидрофильных головок, а с другой стороны, гидрофобные хвосты. В водном окружении гидрофобные хвосты агрегируют, и, таким образом, гидрофобные поверхности каждого слоя могут соединяться, образуя неионный центр, подобно масляной капле на поверхности воды. С каждой стороны липидного бислоя гидрофильные головки обращены в сторону среды, содержащей ионы. Липидный бислой обладает важным свойством текучести. Это позволяет ему сплавляться с другими мембранами, образовывать новые при разделении, и служить в качестве растворителя для белков, которые присутствуют в бислое и мигрируют в его пределах.

Липидный бислой в определенной степени пропускает молекулы воды, но непроницаем для ионов, мелких заряженных молекул, а также для всех крупных молекул. В результате различного ионного окружения по обеим сторонам мембраны создается осмотическое давление, под действием которого молекулы воды проходят через мембрану и понижают концентрацию ионов с одной или с другой стороны мембраны, в зависимости от их концентрации.

Плазматическая мембрана разграничивает содержимое клетки и внешнюю среду. Для одноклеточных организмов понятие «внешняя среда» означает окружающая среда; для многоклеточных это одновременно окружающая среда и внутреннее окружение, создаваемое другими клетками организма (например, клетками, образующими стенки кровеносных сосудов). Плазматическая мембрана не обладает опорной функцией; фактически она довольно хрупкая и легко повреждается. Поэтому для поддержания целостности клетки обычно плазматическая мембрана должна быть укреплена структурами, которые играют опорную роль и обладают большей эластичностью.

Большинство процессов в клетке катализируются ферментами, константы связывания которых с субстратами и другие свойства определяют допустимый, совместимый с жизнедеятельностью уровень изменений содержания различных метаболитов во внутри- и внеклеточной среде. Однако организмы приспособились к различным условиям существования, и у тех из них, которые существуют в экстремальном окружении, присутствуют ферменты, способные функционировать в таких условиях, которые для более «нормальных» организмов оказались бы летальными.

Для обеспечения правильной работы всех систем, клетке необходимо регулировать свойства своей внутренней среды. Особый контроль необходим за ионным составом и величиной pH. Непроницаемость мембраны создает необходимость функционирования в ней специальных систем, обеспечивающих прохождение ионов.

Мембрана клетки
Липидный бислой мембраны состоит,

главным образом, из амфипатических фосфолипидов.

Клетка должна усваивать метаболиты из окружающей среды. В первую очередь это источники энергии (являющиеся субстратами метаболических процессов) и небольшие молекулы, которые служат предшественниками компонентов, в дальнейшем образующих более крупные молекулы и структуры. Жирные кислоты используются для синтеза липидов, аминокислоты для синтеза белков, а из нуклеотидов образуются РНК и ДНК

Поскольку все клетки должны усваивать метаболиты из окружающей среды, они также должны обладать способностью выводить их. Клетки выводят в окружающую среду различные ионы, небольшие молекулы, и даже белки. Процессы экспорта, и в значительной степени импорта, являются строго специфичными: они должны с высокой селективностью удалять из клетки (или пропускать в нее) необходимые метаболиты.

Для выживания и воспроизводства клетка должна получать источники энергии из окружающей среды и использовать эту энергию для синтеза необходимых компонентов. В качестве источника энергии могут служить вещества, захваченные клеткой из внешней среды. Обычно это смесь простых и сложных соединений углерода. В качестве источника энергии клетка может использовать свет. Способы расходования энергии для разных типов клеток различны.

Поскольку образование новых клеток предполагает деление существующих, клетка должна располагать информацией о воспроизведении всех ее компонентов. Эта информация содержится в универсальном типе генетического материала — ДНК, которая кодирует все белки, содержащиеся в клетке. В свою очередь, белки могут собираться в большие структуры или участвовать в метаболических процессах в качестве катализаторов. Аппарат считывания генетического кода во всех клетках включает одни и те же компоненты.

Поскольку клетка постоянно испытывает различные воздействия со стороны окружающей среды, для обеспечения ее существования необходимы системы репарации повреждений, возникающих в генетическом материале.

Клетки поддерживают свое существование за счет процесса деления. Специальный механизм предназначен для обеспечения способности к делению, при котором образуются две дочерних клетки, каждая из которых идентична родительской по содержанию генетического материала и также содержит примерно половину других структур (за некоторыми исключениями, В процессе дифференцировки образуются различные специализированные клетки, включая терминально дифференцированные).

На представлены минимальные условия, необходимые для образования клетки. Резюмируя, мембрана отделяет внутреннее содержимое клетки от окружающей среды, и многие основные пути взаимодействия клеток с окружением определяются ее свойствами. Для формирования клетки необходим источник энергии, которая используется при создании более сложных компонентов из небольших метаболитов. Генетический материал содержит информацию, необходимую для воспроизведения всех характерных особенностей той или иной клетки, и все клетки обладают системами, позволяющими эту информацию использовать.

Обязательные компоненты клетки
Клетка содержит геном, кодирующий строение всех структур,

аппарат для экспрессии генетической информации, систему использования энергии и плазматическую мембрану,

контролирующую взаимодействие клетки с окружающей средой.

– Также рекомендуем “Клетка как первоисточник жизни и самовоспроизводящаяся структура”

Оглавление темы “Строение клеток”:

  1. Общие свойства клеток и их различия
  2. Клетка как первоисточник жизни и самовоспроизводящаяся структура
  3. Клетка прокариот бактерий и архей
  4. Свойства прокариот и требования к условиям жизни
  5. Строение клетки эукариот (эукариотическая клетка)
  6. Органеллы клеток и их мембраны
  7. Ядро клетки и ядерная оболочка
  8. Обмен веществ через пламатическую мембрану и ее значение в гомеостазе клетки
  9. Эндосимбиоз – клетки внутри клеток
  10. Структуры передачи наследственной информации клеток

Источник

3. Химический состав клетки и ее жизненные свойства

Вещества клетки. Клетки нашего организма состоят из разнообразных химических соединений. Одни из этих соединений – неорганические – встречаются и в неживой природе. К ним относятся вода и минеральные соли. Но для живых клеток наиболее характерны органические соединения, молекулы которых имеют очень сложное строение. Среди них наибольшее значение имеют белки, жиры, углеводы и нуклеиновые кислоты.

Неорганические соединения клетки. Больше всего в клетках воды. Вода – хороший растворитель; она играет важную роль во всех жизненных процессах, протекающих в клетках. В водном растворе совершается химическое взаимодействие между различными веществами, содержащимися в клетке. Питательные вещества, находящиеся в растворенном состоянии, проникают в клетку через наружную мембрану. Вода также способствует удалению из .клетки веществ, которые образуются в результате совершающихся в ней жизненных процессов.

Минеральные соли содержатся в цитоплазме и ядре клеток в малых концентрациях. Но тем не менее их роль в жизни клетки очень велика. Об этом вы узнаете из следующих тем.

Органические соединения клетки. Из веществ, образующих клетку, главная роль в осуществлении ее функций принадлежит органическим соединениям.

Белки – это основные вещества любой живой клетки. Без них нет жизни. Они составляют основу цитоплазмы и ядра.

Белки принадлежат к числу наиболее сложных веществ, встречающихся в природе. Их молекулы образованы тысячами атомов. Но количество элементов, входящих в состав белков, относительно невелико. В белках обязательно содержатся углерод, водород, кислород и азот. Кроме этих четырех обязательных элементов, в белках почти всегда присутствует сера, часто фосфор и некоторые другие.

По размерам белковая молекула в сотни и тысячи раз превосходит молекулы известных вам неорганических соединений. Установлено, что молекула любого белка растений, животных или человека образована сотнями последовательно связанных друг с другом остатков аминокислот (рис. 12 ).

Рис. 12
Рис. 12

В состав белков входит только немногим более 20 различных видов аминокислот. И несмотря на это, белковые соединения бесконечно разнообразны. В одной живой клетке насчитывается до 1000 различных белков! Кроме того, белки разных организмов обладают неодинаковым составом.

Как же может комбинация из столь малого числа видов аминокислот дать такое огромное разнообразие белков? Это можно понять, вспомнив, что любой из нас, используя всего 32 буквы алфавита, может написать бесконечное количество различных слов и предложений. Подобно этому и разнообразие белков зависит от той последовательности, в которой связаны между собой образующие их молекулы аминокислот.

Жиры имеют менее сложное строение молекул. В их состав входит всего три элемента – углерод, водород, кислород.

Углеводы образованы теми же элементами, что и жиры, – углеродом, водородом и кислородом. Но строение молекул углеводов иное. К ним принадлежат разные сахара, крахмал.

Нуклеиновые кислоты образуются в клеточном ядре. Отсюда и произошло их название (нуклеус – латинское название ядра). Одни из нуклеиновых кислот – ДНК (сокращенное название дезоксирибо-нуклеиновых кислот) – находятся в основном в хромосомах клеток. Эти кислоты играют основную роль в построении характерных для данной клетки белков и в передаче наследственных задатков от родителей потомству. Молекулы ДНК значительно крупнее белковых. Функции других нуклеиновых кислот – РНК (сокращенное название рибонуклеиновых кислот) – тоже связаны с построением белков в клетке.

Основные жизненные свойства клетки. Каждая живая клетка нашего тела получает вещества, приносимые ей кровью от органов пищеварения, – питается.

В клетке происходят процессы образования органических соединений, молекулы которых имеют сложное строение, из более простых веществ, проникающих в нее извне. Эти процессы называются биосинтезом.

Органические соединения подвергаются в клетке химическому распаду и образуют вещества более простого строения. В большинстве клеток наряду с распадом органических соединений происходит их окисление кислородом, приносимым кровью. При распаде и окислении веществ освобождается энергия, расходуемая на жизненные процессы, протекающие в клетке.

Клетки способны реагировать на раздражения – физические и химические изменения в окружающей их среде, т. е. обладают раздражимостью. Так, клетки мышц под действием раздражения становятся короче и толще – сокращаются, а клетки слюнных желез при раздражении выделяют слюну.

Клеткам свойственны рост и размножение. Особенно быстро размножаются клетки в детском и юношеском организмах. Но и у взрослых людей этот процесс не прекращается. Некоторые клетки в течение всей жизни человека отмирают и постоянно заменяются новыми. Так, заживление ран, срастание костей в местах перелома происходят благодаря размножению клеток.

Питание, биосинтез органических соединений, распад и окисление клеточных веществ, раздражимость, рост и размножение – это основные свойства живых клеток.

Ферменты. Все жизненные процессы, протекающие в клетке, связаны с непрерывным изменением физического состояния и химического состава образующих ее веществ.

Течение многих химических реакций ускоряется в присутствии некоторых веществ. В живой клетке находится множество белков, каталитически ускоряющих происходящие в ней химические превращения. Эти белки – катализаторы – получили название ферментов. Так, процессы биосинтеза, окисления в живой клетке могут происходить только в присутствии определенных ферментов. Большинство белков, находящихся в клетке, обладает свойствами ферментов.

■ Белки. Жиры. Углеводы. Нуклеиновые кислоты. Ферменты.

? 1. Какие вещества содержатся в клетке? 2. Какого вещества в клетке больше всего? 3. Какие вещества наиболее характерны для живой клетки? 4. Какие вещества составляют основу цитоплазмы и ядра? 5. Какие элементы входят в состав белков? 6. Что вы знаете о строении белковой молекулы ? 7. объясняется разнообразие белков? 8. Какие элементы входят в состав жиров и углеводов? 9. Каковы основные жизненные свойства клетки?

Источник

Живые системы имеют общие признаки:
1. единство химического состава свидетельствует о единстве и связи живой и неживой материи.

Пример:

в состав живых организмов входят те же химические элементы, что и в объекты неживой природы, но в других количественных соотношениях (т. е. живые организмы обладают способностью избирательного накопления и поглощения элементов). Более (90) % химического состава приходится на четыре элемента: С, O, N, H, которые участвуют в образовании сложных органических молекул (белков, нуклеиновых кислот, углеводов, липидов).

2. Клеточное строение (Единство структурной организации). Все существующие на Земле организмы состоят из клеток. Вне клетки жизни нет.
3. Обмен веществ (Открытость живых систем). Все живые организмы представляют собой «открытые системы».

Открытость системы — свойство всех живых систем, связанное с постоянным поступлением энергии извне и удалением продуктов жизнедеятельности (организм жив, пока в нём происходит обмен веществами и энергией с окружающей средой).

Обмен веществ — совокупность биохимических превращений, происходящих в организме и других биосистемах.

Обмен веществ состоит из двух взаимосвязанных процессов: синтеза органических веществ (ассимиляции) в организме (за счёт внешних источников энергии — света и пищи) и процесса распада сложных органических веществ (диссимиляции) с выделением энергии, которая затем расходуется организмом. Обмен веществ обеспечивает постоянство химического состава в непрерывно меняющихся условиях окружающей среды.
4. Самовоспроизведение (Репродукция) — способность живых систем воспроизводить себе подобных.  Способность к самовоспроизведению является важнейшим свойством всех живых организмов. В её основе лежит процесс удвоения молекул ДНК с последующим делением клеток.
5. Саморегуляция (Гомеостаз) — поддержание постоянства внутренней среды организма в непрерывно меняющихся условиях окружающей среды. Любой живой организм обеспечивает поддержание гомеостаза (постоянства внутренней среды организма). Стойкое нарушение гомеостаза ведёт к гибели организма.
6. Развитие и рост. Развитие живого представлено индивидуальным развитием организма (онтогенезом) и историческим развитием живой природы (филогенезом).

  • В процессе индивидуального развития постепенно и последовательно проявляются индивидуальные свойства организма и осуществляется его рост (все живые организмы растут в течение своей жизни).
  • Результатом исторического развития является общее прогрессивное усложнение жизни и всё многообразие живых организмов на Земле. Под развитием понимают как индивидуальное развитие, так и историческое развитие.

7. Раздражимость — способность организма избирательно реагировать на внешние и внутренние раздражители (рефлексы у животных; тропизмы, таксисы и настии у растений).
8. Наследственность и изменчивость представляют собой факторы эволюции, так как благодаря им возникает материал для отбора.

  • Изменчивость — способность организмов приобретать новые признаки и свойства в результате влияния внешней среды и/или изменений наследственного аппарата (молекул ДНК).
  • Наследственность — способность организма передавать свои признаки последующим поколениям.

9. Способность к адаптациям — в процессе исторического развития и под действием естественного отбора организмы приобретают приспособления к условиям окружающей среды (адаптации). Организмы, не обладающие необходимыми приспособлениями, вымирают.
10. Целостность (непрерывность) и дискретность (прерывность). Жизнь целостна и в то же время дискретна. Эта закономерность присуща как структуре, так и функции.

Любой организм представляет собой целостную систему, которая в то же время состоит из дискретных единиц — клеточных структур, клеток, тканей, органов, систем органов. Органический мир целостен, поскольку все организмы и происходящие в нём процессы взаимосвязаны. В то же время он дискретен, так как складывается из отдельных организмов.

Отдельные свойства, перечисленные выше, могут быть присущи и неживой природе.

Пример:

для живых организмов характерен рост, но ведь и кристаллы растут! Хотя этот рост не имеет тех качественных и количественных параметров, которые присущи росту живого.

Пример:

для горящей свечи характерны процессы обмена и превращения энергии, но она не способна к саморегуляции и самовоспроизведению.

Следовательно, все перечисленные выше свойства характерны для живых организмов только в своей совокупности.

Источники:

Каменский А. А., Криксунов Е. А., Пасечник В. В. Биология. 9 класс // ДРОФА.
Каменский А. А., Криксунов Е. А., Пасечник В. В. Биология. Общая биология (базовый уровень) 10–11 класс // ДРОФА.

Лернер Г. И. Биология: Полный справочник для подготовки к ЕГЭ: АСТ, Астрель.

https://900igr.net/kartinki/geografija/Krugovoroty-v-biosfere/005-Priznaki-zhivogo.html

Источник