Какие свойства нефти являются наиболее важными для разработки

Какие свойства нефти являются наиболее важными для разработки thumbnail

Физические свойства нефти, так же, как и её химические характеристики, изменяются в достаточно широком диапазоне, в зависимости от её состава. Например, консистенция этой жидкости меняется от легкой и газонасыщенной   до тяжелой и  густой, с высоким содержанием смол. Цвет этого полезного ископаемого также меняется от светлого, почти прозрачного,  до темно-коричневого, почти черного.

 Загрузка …

Эти нефтяные свойства определяет  преобладание в составе этой углеводородной смеси либо легких низкомолекулярных  соединений, либо сложно построенных тяжелых соединений с высокой молекулярной массой. Нефть и её применение для производства различных товаров, которые называются нефтепродукты, делают это полезное ископаемое важнейшим энергоносителем в современном мире.

Химический состав нефти

Химические свойства нефти и газа зависят от химической структуры их состава. Этот состав достаточно прост. Основные его элементы – это углерод (С) и водород (Н). Углерода в нефтях содержится от 83-х до 89-ти процентов, водорода – от 12-ти до   14-ти процентов.

Также в нефтях присутствует небольшое количество серы, азота и кислорода, а также примеси различных металлов. Соединения углерода и водорода называются углеводородами (СН).

Нефть – это  горючая маслянистая жидкость, цвет которой варьируется от светло-желтого до черного, состав которой в основном представлен  углеводородными соединениями.

Из курса школьной химии известно, что все химические элементы образуют между собой различные соединения, соотношения элементов в которых зависит от их валентности. К примеру, вода (Н2О) – это два одновалентых атома водорода и одни двухвалентный – кислорода.

Самый простой с химической точки зрения углеводород – это метан (СН4), который является горючим газообразным веществом, составляющим основу всех природных газов. Обычно в природном газе содержание метана составляет  от 90 до 95 процентов и более.

За метаном следуют: этан (С2Н6), пропан (С3Н8), бутан (С4Н10), пентан  (С5Н12), гексан (С6Н14) и так далее.

Начиная с пентана, углеводороды из газообразного состояния переходят в жидкое, то есть – в нефть.

Углерод при соединении с водородом образует огромное количество  соединений, различных по своему химическому строению и свойствам.

Для удобства все нефтяные углеводороды разделены на три группы:

  • Алканы (метановая группа) с общей формулой СnH2n+2. Эта группа представляет собой насыщенные углеводороды, поскольку все их валентные связи задействованы. С химической точки зрения они – самые  инертные, другими словами – не способны вступать в реакции с другими химическими соединениями. Структура  алканов может быть или линейной (нормальные алканы), или  разветвленной (изоалканы).
  • Цикланы (нафтеновая группа) с общей формулой СnH2n. Их главный признак –  пяти – или шестичленное кольцо, состоящее из атомов углерода. Другими словами, цикланы, в отличие от алканов, имеют  замкнутую в цепь циклическую структуру. Эта группа тоже представляет предельные (насыщенные) соединения и в реакции с другими химическими элементами они также почти не вступают.
  • Арены (ароматическая группа) с общей формулой СnH2n-6. Их структура – шестичленные циклы, в основе которых лежит ароматическое бензольное ядро (С6Н6). Их отличает  наличие между атомами двойных связей. Арены бывают моноциклическими (одно бензольное кольцо), бициклическими (сдвоенные кольца бензола) и полициклическими (кольца соединены по принципу пчелиных сот).

Нефть и природный газ  веществами с постоянным и строго определенным химсоставом не являются. Это сложные смеси  природных углеводородов, находящихся в газообразном, жидком и твердом состоянии. Однако эта смесь не является простой в привычном понимании. Ей ближе определение «сложный  раствор углеводородов», где в качестве  растворителя выступают   легкие соединения, а растворенные вещества – это высокомолекулярные углеводороды (в том числе асфальтены и  смолы).

Основное отличие раствора от простой смеси заключается в том, что компоненты, входящие его состав, могут  вступать во взаимодействие  друг с другом как с химической, так и с  физической точки зрения, и приобретать  в результате таких взаимодействий новые свойства, которых не было в первоначальных соединениях.

Основные физические характеристики нефти

Плотность

Физические свойства нефти достаточно разнообразны, но самым важным среди них является её плотность (по-другому – удельный вес). Этот параметр  зависит от молекулярных весов входящих в её состав  компонентов.

Значение плотности нефти варьируется от 0,71 до 1,04 грамм на кубический сантиметр.

В нефтеносных коллекторах в нефти много  растворенного газа, поэтому в природных условиях её плотность меньше (в 1,2 – 1,8 раза), нежели в добытом дегазированном сырье.

По значению этого параметра нефть делится на следующие классы:

  • класс очень легких нефтей (плотность – менее 0,8 грамм/см3);
  • легкие нефти (от 0,80 до 0,84 грамм/см3);
  • класс средних нефтей (от 0,84 до 0,88 грамм/см3);
  • тяжелые нефти (плотность – от 0,88 до 0,92 грамм/см3);
  • нефти очень тяжелого класса (> 0,92 грамм на кубический сантиметр).

Вязкость

Вязкость этого полезного ископаемого является свойством этого вещества оказывать сопротивление при перемещении относительно друг друга нефтяных частиц при движении нефти. Другими словами, этим параметром характеризуется подвижность этого углеводородного раствора.

Измеряют вязкость специальным прибором – вискозиметром. Единица  измерения в системе СИ – миллипаскаль в секунду,  в системе СГС  – грамм на сантиметр в секунду (Пуаз).

Вязкость бывает динамической и кинематической.

Динамическая показывает значение силы сопротивления перемещению жидкостного слоя,   площадь которого – один квадратный сантиметр, на 1 сантиметр  при скорости движения 1 сантиметр в секунду.  Кинематическая вязкость характеризует  свойство нефти сопротивляться перемещению одной жидкой части относительно другой, учитывая при этом силу тяжести.

Поднятая на поверхность нефть по этому параметру делится на:

Полезная информация
1маловязкую (вязкость –  менее 5 мПа/с)
2с повышенной вязкостью (от 5-ти  до 25-ти  мПа/с)
3высоковязкую  (большее 25-ти  мПа/с)
Читайте также:  При каких условиях реальный газ по своим свойствам близок к идеальному

Чем легче углеводородная жидкость, тем меньше значение её вязкости. В пласте этот параметр нефти в меньше (причем – в десятки раз), чем вязкость этой же нефти, поднятой на поверхность и дегазированной.  Значение этого физического параметра велико, поскольку позволяет определить масштабы миграции в процессе формирования залежей.

Величину, обратную вязкости, называют текучестью.

Содержание серы в нефти

Это – весьма значимый параметр, который влияет на окислительные свойства этого полезного ископаемого. Чем больше в нем сернистых соединений – тем выше коррозионная агрессивность сырья и получаемых их него нефтепродуктов.

По этому показателю нефть бывает:

  • малосернистой  (до 0,5 процента);
  • сернистой  (от 0,5-ти до 2-х процентов);
  • высокосернистой (> 2-х процентов серы).

Парафинистость

Эта важная характеристика нефти, которая напрямую влияет на  технологии, применяемые при ее добыче, а также на её трубопроводную транспортировку. Парафинистость – это содержание в сырье твердых углеводородов, называемых   парафинами (формулы – от С17Н36  до С35Н72) и церезинами (от С36Н74 до С55Н112).

Их концентрация в некоторых случаях доходит до 13-14 процентов, а, к примеру, нефть казахского месторождения Узень вообще имеет этот показатель на уровне  35-ти процентов. Чем больше парафинистость, тем труднее добывать и транспортировать сырье. Парафины отличаются  способностью к кристаллизации, что приводит к их выпадению в твердый осадок, а это закупоривает поры в продуктивном пласте, появляются отложения на стенках НКТ, в задвижках и на прочем технологическом оборудовании.

По значению этого параметра нефть бывает:

  • малопарафинистая (< 1,5 процентов);
  • парафинистая  (от 1,5 до 6-ти процентов);
  • высокопарафинистая (> 6-ти процентов).

Газосодержание

Этот параметр по-другому называется  газовый фактор.

Он характеризует  количество кубометров газа в одной тонне дегазированной нефти. Другими словами, газосодержание – это количественная характеристика  того, сколько растворенного газа было в нефти, которая находилась в коллекторе,  и какое его количество перейдет  в свободное состояние в процессе извлечения сырья на поверхность.

Значение газового фактора может доходить до 300 – 500 кубометров на тонну, хотя среднее его значение варьируется от 30-ти до 100 кубометров на одну тонну.

Давление насыщения

Этот параметр (давление, при котором начинается  парообразование) является значение давления, по достижению которого из нефти начинает выделяться газ.

В естественных условиях продуктивного слоя это давление или равно внутрипластовому, иди меньше его. В первом газ полностью растворяется в жидкости, а во втором наблюдается газовая недонасыщенность.

Сжимаемость

Этот параметр обусловлен упругостью нефти и характеризуется коэффициентом сжимаемости  (βН). Этот параметр показывает величину изменения объема сырья в пласте в случае изменения давления на 0,1 МПа.

Коэффициент сжимаемости  учитывают на ранних этапах разработки, когда упругость газа и жидкости в пласте еще  растрачена , вследствие чего играет в энергетике пласта существенную роль.

Коэффициент теплового расширения

Этот параметр показывает, как изменяется первоначальный объем сырья в случае изменения температуры на 1 градус Цельсия.

Его используют в процессе проектирования и практического применения методов  теплового воздействия на продуктивные пласты.

Объемный коэффициент

Этот показатель характеризует – какой объем в коллекторе  занимает кубометр дегазированного сырья, пока оно насыщено газом.

Значение этого показателя, как правило, больше единицы. Средние значения колеблются от 1,2 до 1,8, хотя могут доходить и до двух-трех единиц. Объемный коэффициент применяется в расчетах для определения количества  запасов, а также при вычислении  коэффициента нефтеотдачи продуктивного слоя.

Температура застывания

Температура застывания показывает, при каком температурном значении в пробирке уровень охлажденной нефти не меняется при её наклоне на 45-ть градусов.

Чем больше в нефти твердых парафинов и чем меньше смол – тем выше этот показатель.

Оптические нефтяные свойства

Основным оптическим свойством этого вещества является его способность вращать вправо (изредка–влево) плоскость поляризованного светового луча.

Основные носители оптической активности в этом полезном ископаемом –  молекулы ископаемых животных и растений, которые называются  хемофоссилиями.

При облучении нефтей ультрафиолетом они начинают светиться, что говорит об их способности к люминесценции.

Легкие сорта «черного золота» люминесцируют в голубом и синем спектре, а тяжелые – в желтом и желтовато-буром.

YouTube responded with an error: The request cannot be completed because you have exceeded your <a href=”/youtube/v3/getting-started#quota”>quota</a>.

Список используемой литературы:

  • Нефть и Нефтепродукты – Википедия
  • Хаустов, А. П. Охрана окружающей среды при добыче нефти/ Хаустов, А. П., Редина, М. М. Издательство: «Дело», 2006. 552 с.
  • Алекперов, В.Ю. Нефть России: прошлое, настоящее и будущее /Алекперов В.Ю. М.: Креативная экономика, 2011. – 432 с.
  • Издательство: «Нефть и газ», 2006. 352 с. Сургутнефтегаз.
  • Экономидес, М. Цвет нефти. Крупнейший мировой бизнес: история, деньги и политика/ Экономидес М., Олини Р. Издательство: «Олимп-Бизнес», 2004. 256 с.
  • Эрих В.Н. Химия нефти и газа. — Л.: Химия, 1966. — 280 с. — 15 000 экз.

Источник

Начиная с XX века одним из важнейших для человеческой цивилизации полезных ископаемых стала нефть. Ряд уникальных свойств делают ее не только главным компонентом современного топливно-энергетического хозяйства, но и ценным химическим сырьем. Ниже мы рассмотрим некоторые особенности нефти, связанные с ее физическими свойствами и составом.

Общая характеристика

Нефть – это маслянистая жидкость, горючая, характеризующаяся низкой зольностью, представляющая собой сложную совокупность разнообразных углеводородов с примесью других соединений. Наряду с бурыми и каменными углями, антрацитом, сланцами, торфом и сапропелем, она относится к каустобиолитам – горючим минералам органического происхождения, однако имеет некоторые черты, отличающие ее от остальных представителей этой группы полезных ископаемых.

Читайте также:  Какие 4 свойства папок

Цвет нефти может быть различным: от черного, коричневого и темно-красного до зеленоватого и светло-желтого. Иногда нефть бывает даже бесцветной (так называемая белая нефть).

Нефть различных цветов

Отличительной особенностью нефти является специфический запах, который может несколько разниться у тех или иных нефтей, но при этом всегда узнаваем. Консистенция варьирует от подвижной, текучей до густой, похожей на смолу.

Различия в цвете и запахе обусловлены концентрацией ароматических углеводородных и примесных компонентов. Конкретные характеристики нефти важны при разведке, добыче и переработке этого полезного ископаемого, а также определяют многие эксплуатационные качества различных видов нефтепродуктов.

Химические элементы, содержащиеся в нефти

Одним из важнейших факторов, влияющих на физико-химические свойства нефти, является ее химический состав. Он складывается из множества компонентов, однако главные составляющие любой нефти – это углерод (80–88% по массе) водород (11–14%).

Кроме того, в ней в разных концентрациях присутствуют сера, кислород и азот. Содержание их может колебаться от 0,5 до 8% по массе, что оказывает существенное влияние на качество. В малых количествах в элементарный состав нефти входят многие металлы, такие как ванадий, медь, никель, кальций и другие, а также йод, бор, мышьяк и прочие.

Элементный состав нефти

Нефть является настолько сложной многокомпонентной химической системой, что полностью определить индивидуальный состав ее практически не представляется возможным. Известно, что различные нефти могут содержать более полусотни химических элементов, и выделение многих из них сопряжено с огромными трудностями вследствие сложности не только химического состава, но и структуры этого жидкого полезного ископаемого.

бочки с нефтью

Сера и свойства нефти

Сера практически всегда присутствует в нефти как в составе сернистых соединений (в тиолах, сероводороде, сульфидах и прочих), так и в свободном виде. Содержание ее может достигать 5%. Присутствие серы имеет большое значение. Во-первых, она оказывает влияние на температуру кипения нефти. Во-вторых, повышает ее окислительные свойства, способствуя коррозии оборудования, резервуаров и трубопроводов.

По содержанию серы нефти делят на следующие группы:

  • малосернистые (до 0,5% серы в составе);
  • сернистые (0,5–2%);
  • высокосернистые (свыше 2%) – наиболее агрессивные.

Групповой химический состав нефти

Нефть представляет собой сложный раствор одних углеводородов в других. Этот раствор образует коллоидную систему со сгустками нерастворимых высокомолекулярных соединений и другими примесями. В качестве основных компонентов нефть содержит углеводороды трех основных групп:

  • Парафиновые (алканы) – насыщенные, или предельные, углеводороды, такие как метан, этан и так далее, содержащие максимально возможное количество атомов водорода. Общая формула алканов – CnH2n+2. Эти соединения наиболее устойчивы химически. При 5-16 атомах углерода в молекуле алканы представляют собой жидкости, при большем их количестве – твердые вещества. Содержание алканов в нефти колеблется от 25 до 75% массы.
  • Нафтеновые (цикланы) – насыщенные циклические углеводороды с общей формулой CnH2n, например, циклопентан или циклогексан. Характеризуются большими, чем у алканов, температурами плавления и кипения. Благодаря нафтенам различные топлива и смазочные масла приобретают высокие эксплуатационные качества. В состав нефти может входить от 25 до 80% нафтеновых углеводородов.
  • Ароматические (арены) – ненасыщенные циклические углеводороды. К ним относятся бензол, нафталин, антрацен и прочие. Аренам свойственна более высокая плотность, а также способность к замещению водорода другими атомами. В составе бензинов и машинных масел арены также являются ценным компонентом, но ухудшают качество керосинов и дизельного топлива. Доля ароматических углеводородов составляет от 15 до 50%.

В зависимости от преобладания той или иной группы углеводородов нефти делят на метановые (парафиновые), нафтеновые, ароматические и промежуточные виды.

Кроме того, физико-химические свойства нефти зависят от различных смол, асфальтенов и других гетероатомных веществ, а также от присутствия и концентрации металлоорганических соединений, газов, воды, минеральных солей и прочих примесей.

Парафинистость нефти

Углеводороды алканового ряда с молекулярной массой от 240 и выше, молекулы которых содержат 17 и более атомов углерода, в нормальных условиях представляют собой твердые вещества – парафины и церезины. В пластовой нефти они пребывают в растворенном состоянии, но при вскрытии пласта и подъеме на поверхность с понижением температуры и давления парафины в нефти способны кристаллизоваться и выпадать в осадок. Этот твердый осадок парафинирует поры в пласте-коллекторе, детали и стенки элементов нефтедобывающего оборудования, что существенно осложняет и удорожает добычу.

По содержанию парафинов выделяют такие группы нефтей, как:

  • малопарафинистые (до 1,5%);
  • парафинистые (1,5–6,0%);
  • высокопарафинистые (свыше 6%).

Содержание парафинов влияет также на диапазон температур кипения нефти и ее застывания.

Содержание газов и воды

В пластовых условиях нефть входит в состав флюида – смеси, содержащей также воду и газ и заполняющей пористую породу – коллектор. Для обеспечения товарных качеств нефти ее подвергают обезвоживанию. Что касается попутного газа, то его углеводородные компоненты являются ценным продуктом и используются в разных отраслях промышленности.

Утилизация попутного газа

Содержание газа характеризуется такой величиной, как газовый фактор. Он показывает, какое количество газа, выделившегося при извлечении нефти, было растворено в ней в пластовых условиях. Для большинства нефтей газовый фактор составляет от 30 до 100 м3 на тонну нефти.

Газ подразделяют на сухой, состоящий из легких углеводородов (метан, этан), и жирный, содержащий большой процент высших углеводородов. Растворимость жирного газа выше, чем сухого. Он может служить сырьем для получения сжиженных газов, конденсатов, газового бензина.

Фракционный состав нефти

Методами перегонки нефть разделяется не на индивидуальные соединения, а на группы веществ, каждая из которых кипит в определенном температурном интервале. Такие части называют фракциями (дистиллятами). Различные фракции нефти имеют следующие температурные пределы выкипания:

  • 40–120 °C – бензиновая фракция;
  • 120–180 °C – лигроиновая фракция (тяжелая нефть);
  • 180–245 °C – керосиновая фракция;
  • 245–350 °C – дизельная (газойлевая, соляровая) фракция.
Читайте также:  Укажите какое из перечисленных свойств внимания является неверным

Эти фракции называют светлыми; при этом продукты, отгоняемые при температурах до 200 °C – это легкие фракции, в интервале от 200 до 300 °C – средние и выше 300 °C – тяжелые (масляные) фракции. Чем более высокомолекулярные углеводородные компоненты содержит фракция, тем она тяжелее и требует более высоких температур для отгонки.

Фракции нефти

После отгона светлых дистиллятов остается темная мазутная фракция, подвергаемая дальнейшей – вторичной – разгонке с целью получения различных машинных масел или топлив. Высококипящий (более 500 °C) остаток фракционирования, содержащий тяжелые сернистые вещества, смолы и асфальтены, называется гудроном.

Фракционный состав нефти зависит от соотношения количества углеводородов с различной молекулярной массой, на которое, в свою очередь, в значительной степени влияют условия образования, миграции и накопления нефти в пластах.

Плотность и вязкость

Плотность (удельный вес) – это одно из основных свойств нефти, влияющих на ее товарные характеристики. Чем больше содержится в черном золоте ценных легких фракций, тем меньше ее плотность. Плотность нефти в кг/м3 может варьировать от 730 до 1040. По этому показателю различают несколько классов нефти:

  • суперлегкая с плотностью ниже 0,78 г/см3 или 780 кг/м3;
  • сверхлегкая (0,78–0,82 г/см3 или 780–820 кг/м3);
  • легкая (0,82–0,87 г/см3 или 820–870 кг/м3);
  • средняя (0,87–0,92 г/см3 или 870–920 кг/м3);
  • тяжелая (0,92–1,00 г/см3 или 920–1000 кг/м3);
  • сверхтяжелая – плотность в этом случае превышает 1000 кг/м3, такая нефть тяжелее воды.

На практике обычно пользуются понятием относительной плотности. Эта величина отражает отношение абсолютной плотности нефти в кг/м3 к плотности воды.

Для легких нефтей характерно преимущественное содержание алканов, для тяжелых – повышенная концентрация циклических углеводородов, высокомолекулярных смол и асфальтенов.

С плотностью связана еще одна важная для эффективности разработки характеристика нефти – вязкость. Легкие нефти в целом имеют меньшую вязкость, то есть более подвижны. Следует учитывать, что на вязкостные качества сильно влияют также температурный и газовый факторы. Газонасыщенная нефть в составе пласта обладает меньшей вязкостью.

Вязкая нефть

Термические показатели нефти и нефтепродуктов

К важным физико-химическим свойствам нефти относятся такие показатели, как температуры застывания и кипения, вспышки и воспламенения.

Существует широкий диапазон от 30–40 до 550 °C и даже выше, в пределах которого закипают различные фракции. Величина диапазона температуры кипения нефти может различаться и зависит также от химического состава. Так, нафтеновые и ароматические углеводороды, как и тяжелые сернистые соединения, кипят при более высокой температуре.

Кристаллизация составляющих нефть веществ – не менее сложный поэтапный процесс. Температура замерзания нефти находится в пределах от –80 °C до +30 °C. Застывшей считается нефть, не меняющая положения в сосуде при наклоне 45°. Нафтены характеризуются более низкой температурой застывания, нежели жидкие алканы. Присутствие парафинов, напротив, повышает температуру застывания.

От состава нефти, точнее от пределов перегонки нефтепродукта, зависят и такие показатели, как температура вспышки и воспламенения. Легкие – бензиновые – фракции нефти вспыхивают уже при –35 °C, керосиновые – при 30–60 °C, дизельные – при 30–90 °C. Температура воспламенения нефти и нефтепродуктов всегда несколько выше, чем температура вспышки, причем эта разница существенно возрастает у более тяжелых фракций.

Тепловые свойства

Удельная теплоемкость нефти (то есть количество энергии, необходимое, чтобы нагреть 1 килограмм вещества на 1 градус Кельвина) колеблется в пределах от 1,7 до 2,2 кДж/кг∙К при 20 °C. Чем выше плотность нефти, тем ниже ее теплоемкость. Для сравнения, удельная теплоемкость воды при той же температуре составляет около 4,18 кДж/кг∙К.

Теплопроводность нефти зависит от многих факторов, таких как состав, температура, давление, фазовое состояние. Алканы обладают наименьшей теплопроводностью, а ароматические углеводороды – наибольшей (при одинаковом количестве атомов углерода).

Одним из основных свойств нефти, придающих ей исключительную ценность как сырью для производства топлива, является удельная теплота сгорания. Эта величина характеризует отношение тепловой энергии, выделившейся при горении, к массе полностью сгоревшего топлива.

По удельной теплоте сгорания нефть и нефтепродукты (а также природный горючий газ) превосходят все остальные виды топлива. Так, для сырой нефти этот параметр составляет 40–45 МДж/кг (для лучших каменных углей – 31 МДж/кг). Теплота сгорания зависит от плотности и в некоторой степени от особенностей химического состава, но колеблется в довольно узких пределах, то есть это важное свойство присуще всем разновидностям “жидкого черного золота”. Легкие бензиновые фракции обладают еще большей теплотворной способностью.

Тяжелая нефть

Нефть известная и загадочная

Человечество уже достаточно давно и чрезвычайно активно и широко использует нефть, но, к сожалению, не всегда делает это наиболее эффективными, экономичными и экологически безопасными методами. Отчасти так происходит потому, что мы далеко не все знаем о нефти.

Например, неизвестен полный химический состав различных ее видов. Хотя в настоящее время наиболее обоснованной считается концепция биогенного происхождения нефти, доказавшая свою предсказательную силу, отсутствует согласие по поводу факторов нефтеобразования. Нет полного представления о процессах возникновения пластовых залежей, об их литологических и структурных особенностях.

Между тем все эти вопросы имеют отношение к формированию физико-химических свойств нефти, которые играют огромную роль в разведке, добыче, переработке и использовании в разных отраслях столь ценного невозобновляемого природного ресурса.

Источник