Какие свойства организма называют наследственностью

Какие свойства организма называют наследственностью thumbnail

Ещё в древности сложились представления о том, что для живых существ характерны наследственность и изменчивость. Было замечено, что при размножении организмов из поколения в поколение передается комплекс признаков и свойств, присущих конкретному виду, а детёныши по многим свойствам похожи на родителей (проявление наследственности). Однако столь же очевидно и то, что между особями одного вида существуют некоторые различия, даже если они являются потомками одних и тех же родителей (проявление изменчивости).

Знание о наличие этих свойств использовалось при выведении новых сортов культурных растений и пород домашних животных. Традиционно в сельском хозяйстве применялась гибридизация, т. е. скрещивание организмов, отличающихся друг от друга по каким-либо признакам. Однако до конца XIX века такая работа осуществлялась методом проб и ошибок, поскольку не были известны механизмы, лежащие в основе проявления подобных свойств организмов, а существовавшие на этот счет гипотезы имели чисто умозрительный характер.

В 1866 году вышел в свет труд чешского исследователя Грегора Менделя «Опыты над растительными гибридами». В нем были описаны закономерности наследования признаков в поколениях растений, которые Г. Мендель выявил в результате многочисленных и тщательно выполненных экспериментов. Но его исследование не привлекло внимания современников, не сумевших оценить новизну и глубину идей, опередивших общий уровень биологических наук того времени. Лишь в 1900 г., после открытия законов Г. Менделя заново и независимо друг от друга тремя исследователями (Г. де Фризом в Голландии, К. Корренсом в Германии и Э. Чермаком в Австрии), начинается развитие новой биологической науки — генетики, изучающей закономерности наследственности и изменчивости. Грегора Менделя справедливо считают основоположником этой молодой, но очень бурно развивающейся науки. Основными понятиями современной генетики являются наследственность и изменчивость.

Наследственность — свойство организмов повторять в ряду поколений комплекс признаков (особенности внешнего строения, физиологии, химического состава, характера обмена веществ, индивидуального развития и т. д.), имеющихся у предков.

Однако, если бы наследственность была абсолютной (потомки в точности повторяли бы все признаки родителей), то живые организмы не могли бы меняться и приспосабливаться к новым условиям, и эволюция была бы невозможна. Поэтому вторым основополагающим свойством живого является изменчивость.

Изменчивость — явление, противоположное наследственности. Она заключается в изменении комбинаций признаков или появлении совершенно новых признаков у особей данного вида.

Благодаря наследственности обеспечивается сохранение видов на протяжении значительных промежутков (до сотен миллионов лет) времени. Однако условия окружающей среды меняются (иногда существенно) с течением времени, и в таких случаях изменчивость, приводящая к разнообразию особей внутри вида, обеспечивает его выживание. Какие-то из особей оказываются более приспособленными к новым условиям, это и позволяет им выжить. Кроме того, изменчивость позволяет видам расширять границы своего местообитания, осваивать новые территории.

виды изменчивости

Важно отметить, что изменчивость подразделяется на наследственную и ненаследственную

Ещё Гиппократ писал о том, что если человек покалечился (например, потерял конечность под колесницей), то дети его не наследуют этот дефект. Таким образом, приобретенные в течение жизни признаки не наследуются. В данном примере это связано с тем, что изменения затрагивают только соматические клетки, но не генеративные (то есть половые и их предшественники). При половом размножении такие изменения не наследуются, но при вегетативном размножении потомкам могут достаться измененные клетки с их новыми признаками.

Ненаследственная изменчивость — это, прежде всего, модификационная изменчивость.

Модификации — это изменения организмов под действием факторов внешней среды, таких, как питание, температура, освещенность и т. п. Ее удобно наблюдать на примере монозиготных близнецов, имеющих одинаковый геном, или размноженных вегетативно растений. Понятно, что при хорошем питании животное вырастет больше, чем при скудном; то же касается и освещения для растений. Она носит групповой характер (все организмы реагируют на один и тот же фактор сходным образом) и обладает направленностью (чем больше пищи, тем больше масса животного).Модификационная изменчивость всегда носит адаптивный характер.

Наследственная изменчивость подразделяется на мутационную и комбинативную.

Мутация — это устойчивое ненаправленное и необратимое изменения генотипа.

Значение мутаций в эволюции огромно — благодаря им возникают новые варианты генов. Говорят, что мутации — это сырой материал эволюции. Мутации носят индивидуальный (каждая мутация в отдельной молекуле ДНК возникает случайно) и ненаправленный характер.

Комбинативная изменчивость связана с возникновением новых сочетаний генов у потомков при половом процессе, например, в ходе мейоза у эукариот.

Баланс между наследственностью и изменчивостью имеет огромное эволюционное значение. Новые признаки организмов появляются в результате изменчивости, а благодаря наследственности они сохраняются в последующих поколениях. Накапливание множества новых признаков приводит к возникновению других видов.

Источник

Генетика. Наследственность и изменчивость

Раздел ЕГЭ 3.4. Генетика, ее задачи. Наследственность и изменчивость — свойства организмов. Методы генетики. Основные генетические понятия и символика. Хромосомная теория наследственности. Современные представления о гене и геноме

Генетика: задачи, методы, понятия, символика

Генетика — наука о закономерностях наследственности и изменчивости организмов. Наследственность и изменчивость являются фундаментальными свойствами всех живых организмов. Они обеспечивают постоянство и многообразие видов и являются основой эволюции живой природы.

Читайте также:  Какие социальные свойство есть у животного

задачи генетики

Задачи генетики:

  • Исследование механизмов хранения и передачи генетической информации от родительских форм дочерним.
  • Изучение механизма реализации генетической информации в процессе онтогенеза под контролем генов и влиянием условий внешней среды.
  • Исследование типов, причин и механизмов изменчивости всех живых существ.
  • Изучение взаимосвязи процессов наследственности, отбора и изменчивости как движущих факторов эволюции органического мира.

Методы генетики:

  • Гибридологический — анализ наследования признаков при скрещиваниях.
  • Цитологический — изучение хромосом: подсчёт их числа, описание структуры, поведения при делении клетки, а также связь между изменением структуры хромосом с изменчивостью признаков.
  • Биохимические и физико-химические методы — изучение структуры и функции генетического материала и выяснение этапов пути лен — признак» и механизмов взаимодействия различных молекул на атом пути.
  • Популяционный — изучение генетической структуры популяций и характера распределения в них генных частот для установления факторов, которые влияют на эти процессы.
  • Близнецовый и онтогенетический — анализ и сравнение изменчивости признаков в пределах различных групп близнецов позволяют оценить роль генотипа и среды и наблюдаемой изменчивости.
  • Генеалогический (метод анализа родословных) даёт возможность изучить наследование признаков и семьях.

Основные генетические понятия

Ген — структурная и функциональная единица наследственности живых организмов; участок ДНК, задающий последовательность определённого белка либо функциональной РНК.
Аллели — различные формы одного и того же гена, расположенные в одинаковых локусах гомологичных хромосом и определяющие альтернативные варианты развития одного и того же признака.
Доминирование — форма взаимоотношений между аллелями одного гена, при которой один из них (доминантный) подавляет проявление другого (рецессивного). Доминантный признак проявляется у гетерозигот и доминантных гомозигот.
Доминантный ген — аллель, определяющий развитие признака не только в гомозиготном, но и в гетерозиготном состоянии; такой признак будет называться доминантным.
Рецессивный ген — аллель, определяющий развитие признака только в гомозиготном состоянии; такой признак будет называться рецессивным.
Гомозигота — диплоидный организм, несущий идентичные аллели гена в гомологичных хромосомах.
Гетерозигота — диплоидный организм, копии генов которого в гомологичных хромосомах представлены разными аллелями.
Локус — участок хромосомы, в которой расположен определённый ген.
Гены эукариот состоят из нескольких элементов: регуляторная часть (влияние на активность гена в разные периоды жизни организма) и структурная часть (информация о первичной структуре кодируемого белка). Гены эукариот прерывисты, их ДНК содержит кодирующие участки — экзоны, чередующиеся с некодирующими — нитронами.
Генотип — совокупность генов организма.
Фенотип — совокупность всех внешних и внутренних признаков организма, сформировавшегося на базе генотипа во время индивидуального развития.
Геном — совокупность генов, свойственных для гаплоидного набора хромосом данного биологического вида. Геном, в отличие от генотипа, является характеристикой вида, а не особи, поскольку описывает набор генов, свойственных данному виду, а не их аллели, обусловливающие индивидуальные отличия отдельных организмов. Степень сходства геномов разных видов отражает их эволюционное родство.

Генетическая символика

АА ⇒ Доминантная гомозигота (даёт один тип гамет (А))
аа ⇒ Рецессивная гомозигота (один тип гамет (а))
Аа ⇒ Гетерозигота (два типа гамет (А; а))
Р ⇒ Родители
G ⇒ Гаметы
F ⇒ Потомство, число внизу или сразу после буквы указывает на порядковый номер поколения
F1 ⇒ Гибриды первого поколения
F2 ⇒ Гибриды второго поколения
⇒ Материнский организм
⇒ Отцовский организм
× ⇒ Значок скрещивания

Наследственность и изменчивость

Наследственность проявляется в способности организма передавать свои признаки и свойства из поколения в поколение. Материальной единицей наследственности являются гены, расположенные у прокариот в нуклеоиде, а у эукариот — в генетическом материале ядра и двумембранных органелл. Совокупность генов организма называют генотипом. Именно он обуславливает развитие большинства его признаков.

Изменчивость — это способность организмов приобретать новые признаки под действием условий среды. Различают генотипическую и фенотипическую изменчивость.

Генотипическая (наследственная) изменчивость затрагивает наследственную информацию организма и проявляется в двух формах: мутационной и комбинативной. В основе комбинативной изменчивости лежат половой процесс, кроссинговер и случайный характер встреч гамет в процессе оплодотворения. Это создаёт огромное разнообразие генотипов. Мутационная связана с возникновением мутаций, которые могут затрагивать как отдельные гены, так и целые хромосомы или даже весь их набор. В зависимости от природы возникновения мутации делят на спонтанные и индуцированные. Мутации делят на соматические и генеративные в зависимости от типа клеток, в которых они возникают. Наблюдения показывают, что многие мутации вредны для организма. Лишь некоторые из них могут оказаться полезными. Вещества и воздействия, приводящие к возникновению мутаций, называются мутагенными факторами, или мутагенами.

Читайте также:  Какие главные свойства вод мирового океана

Фенотипическая (ненаследственная, или модификационная) изменчивость связана с возникновением модификационных изменений признаков организма, не затрагивающих его геном. Исследования модификационной изменчивости доказывают, что наследуется не сам признак, а способность проявлять этот признак в определённых условиях. Модификационная изменчивость не имеет эволюционного значения, т. к. не связана с образованием новых генов. Так, размеры листьев одного дерева варьируют в довольно широких пределах, хотя генотип их одинаков. Если листья расположить в порядке нарастания или убывания их длины, то получится вариационный ряд изменчивости данного признака.

формы изменчивости

Хромосомная теория наследственности

Т. Морган с учениками сформулировал хромосомную теорию наследственности в начале XX в. Основные её положения:

  1. Гены находятся в хромосомах, располагаются в них линейно на определённом расстоянии друг oi друга и не перекрываются.
  2. Гены, расположенные в одной хромосоме, относятся к одной группе сцепления. Число групп сцепления соответствует гаплоидному числу хромосом.
  3. Признаки, гены которых находятся в одной хромосоме, наследуются сцепленно.
  4. В потомстве гетерозиготных родителей новые сочетания генов, расположенных в одной паре хромосом, могут возникать в результате кроссинговера.
  5. Частота кроссинговера, определяемая по проценту кроссоверных особей, зависит от расстояния между генами.
  6. На основании линейного расположения генов в хромосоме и частоты кроссинговера как показателя расстояния между генами можно построить карты хромосом.

Это конспект для 10-11 классов по теме «Генетика. Наследственность и изменчивость». Выберите дальнейшее действие:

  • Вернуться к Списку конспектов по Биологии.
  • Найти конспект в Кодификаторе ЕГЭ по биологии

Источник

Наследственность — присущее всем организмам свойство обеспечивать в ряде поколений преемственность одинаковых признаков и особенностей развития — морфологической, физиологической и биохимической организации живых существ, характера их индивидуального развития (онтогенеза). Явление Наследственности лежит в основе воспроизведения форм жизни по поколениям, что коренным образом отличает живое от неживого.

Знание законов Наследственности позволяет понять механизмы передачи наследственной информации от родителей детям, закономерности формирования наследственно обусловленных признаков и роль генов в сложных процессах жизнедеятельности организма. Наследственность человечества с ее неисчислимым количеством разнообразных генов обеспечивает бесконечное разнообразие индивидуальностей. Разработка научно обоснованных методов уменьшения генетического груза наследственных аномалий будет способствовать сохранению наследственной природы человека.

Схематическое изображение моногенного (олигогенного) наследования признаков: слева — наследование темной (доминантный признак) и светлой (рецессивный признак) окраски у рыб; справа — наследование остистости (доминантный признак) и безостости (рецессивный признак) у пшеницы; во всех случаях в первом поколении все особи являются носителями доминантного признака, а во втором поколении (в среднем) на три особи с доминантным признаком появляется одна особь с рецессивным признаком.

Схематическое изображение моногенного (олигогенного) наследования признаков: слева — наследование темной (доминантный признак) и светлой (рецессивный признак) окраски у рыб; справа — наследование остистости (доминантный признак) и безостости (рецессивный признак) у пшеницы; во всех случаях в первом поколении все особи являются носителями доминантного признака, а во втором поколении (в среднем) на три особи с доминантным признаком появляется одна особь с рецессивным признаком.

Различают хромосомную и внехромосомную Наследственность. Хромосомная Н., связанная с распределением носителей наследственности (генов) в хромосомах, базируется на принципах, впервые четко сформулированных в работах Г. Менделя, а затем повторно открытых Корренсом (К.Correns), Чермаком (E. Tschermak) и X. де Фрисом. Роль Н. в передаче признаков потомству особенно четко проявляется при наследовании менделирующих признаков, т. е. таких наследственных признаков, к-рые в потомстве расщепляются по моногенному типу наследования (см.) в соответствии с законами Менделя (рис.).

Внехромосомная, или цитоплазматическая, Н. (см. Наследственность цитоплазматическая) проявляется в наследовании признаков, к-рые контролируются внехромосомными, цитоплазматическими наследственными факторами, локализованными у животных организмов в митохондриях (см.), у растений — в митохондриях и пластидах, у бактерий — в плазмидах (см.). Цитоплазматические элементы, обладающие свойством передачи наследственной информации, распределяются между дочерними клетками случайно, поэтому четкого менделевского расщепления в этих случаях не наблюдается. Все системы внехромосомной Н. взаимодействуют с хромосомными генами или их продуктами.

Углубленное изучение Н. началось лишь в 19 в., а значительный прогресс в этой области был достигнут лишь в 20 в. После открытия Г. Менделем основных законов Н. стало несомненным, что Н. определяется материальными факторами, в последующем названными генами (см. Ген). Однако еще в 1750 г. Мопертюи (Р. L. М. Maupertuis) и в 1814 г. Адамс (J. Adams) описали нек-рые особенности наследования отдельных признаков у человека. В 1875 г. Гальтон (F. Galton) предложил близнецовый метод (см.) для разграничения роли Н. и среды в развитии признаков у человека. Он обосновал генеалогический метод анализа не только дискретных, но и непрерывных признаков у человека (см. Генеалогический метод) и разработал ряд статистических методов, из к-рых особенно ценен метод вычисления коэффициента корреляции.

В становлении учения о Наследственности большое значение имело создание Т. Морганом и его школой хромосомной теории наследственности (см.), когда было установлено, что ген представляет собой материальную структуру в хромосомах ядра клетки. В период с 1900 по 1930 г. закладывается материалистический фундамент современного учения о Н.

Читайте также:  Какие свойства тканей относятся к механическим

В конце 20-х — начале 50-х гг. 20 в. была показана дробимость гена, установлены явление эффекта положения гена, связь генетических элементов с ДНК и сделан ряд других важных открытий. В этот период хромосомная теория Н. освобождается от свойственных ей ранее механистических и идеалистических ошибок, в частности от теории аутогенеза.

После открытия в 1953 г. структурной и функциональной природы молекул ДНК как носителей генетической информации начался современный этап изучения проблемы Н. Важнейшим достижением этого этапа является установление всеобщности материальных основ Н. на базе молекул ДНК и РНК, благодаря чему восторжествовал принцип всеобщей связи в органическом мире.

Основной целостной единицей жизни служит клетка, имеющая ядро и цитоплазму, причем ядру, а не цитоплазме принадлежит основная роль в обеспечении преемственности признаков и особенностей развития. Напр., мужская половая клетка человека содержит очень мало цитоплазмы, в 85 000 раз меньше, чем яйцеклетка (женская половая клетка), однако вклад обеих половых клеток в наследуемые признаки будущего ребенка примерно одинаков. Ядро содержит нитевидные структуры — хромосомы (см.), представляющие собой образования, состоящие из ДНК и белка.

Основная форма воспроизведения организмов — половой процесс, когда отдельная особь возникает из оплодотворенной яйцеклетки, пли зиготы. Самовоспроизведение организмов, в основном растений, может осуществляться при помощи вегетативного размножения (см.). В этом случае потомки возникают из частей родительской особи. При половом размножении происходит расщепление признаков потомства в зависимости от генотипов, вследствие чего, напр., при скрещивании гибридных или высокогетерозиготных растений часто наблюдается возврат к диким формам и потеря ценных сортовых признаков. При вегетативном размножении удается длительное время сохранять генетические свойства сортов. Установлено, что любая растительная клетка, не потерявшая в ходе своей дифференцировки ядра и цитоплазмы, может в культуре превратиться в каллусную, или зиготоподобную, клетку издать начало новому организму. Из одной дифференцированной клетки были получены целые растения моркови, табака, пастернака и др.

Наследственная информация, заключенная в генах каждой особи, является итогом исторического развития данного вида и материальной основой будущей эволюции. Явление Наследственности сейчас рассматривается в виде сложной молекулярной внутриклеточной системы, обеспечивающей хранение и реализацию информации, в соответствии с к-рой осуществляются жизнь клетки, развитие особи и ее жизнедеятельность. Реализация наследственной информации, записанной чередованием нуклеотидов в ДНК зиготы (см. Генетический код), происходит в результате непрерывных взаимовлияний ядра и цитоплазмы, межклеточных взаимодействий и гормональной регуляции активности генов.

В ходе развития генотип (см.) постоянно взаимодействует со средой. Некоторые наследственные признаки, напр, цвет глаз или группа крови, не зависят от условий среды. В то же время на развитие количественных признаков, таких как рост и вес тела, обусловленных полигенной системой, большое влияние оказывают факторы окружающей среды. Проявление эффектов генов, обусловливающих, напр., тучность, во многом зависит от питания, поэтому при помощи соответствующей диеты можно в определенной степени бороться с наследственно обусловленной полнотой.

Материальные носители Н. содержат информацию не только для развития нормальных, но и патологических признаков. Так, различного рода мутации (см.) — генетический груз, накапливаемый в генофонде человека, являются причиной возникновения большого числа наследственных аномалий, от к-рых страдают сотни миллионов людей нашей планеты. Известно более 2000 нозологических единиц наследственных болезней человека (см. Наследственные болезни). Болезни с доминантным типом наследования или сцепленные с полом обнаруживаются сравнительно легко. Труднее установить значение Н. в развитии таких широко распространенных полигенных болезней с наследственным предрасположением, как гипертоническая болезнь, атеросклероз, язвенная болезнь, шизофрения, бронхиальная астма и др. Частота возникновения и тяжесть течения этих болезней зависят от конкретного сочетания факторов окружающей среды и наследственного предрасположения. Такой порок развития, как, напр., расщепленное небо, является результатом взаимодействия многих генов с различными тератогенными факторами в период эмбриогенеза, когда происходит срастание латеральных небных выступов.

Перед человечеством стоит задача уменьшить генетический груз наследственных болезней и защитить свою Наследственность от вредного действия радиации и хим. соединений, неуклонно возрастающего по мере научно-технического прогресса.

См. также Генетика, Изменчивость, Медицинская генетика.

Библиография: Бердышев К. Д. и Криворучко И. Ф. Генетика человека с основами медицинской генетики, Киев, 1979; Бочков Н. П. Генетика человека, М., 1978; Гершензон С.М. Основы современной генетики, Киев, 1979, библиогр.; Дубинин Н. П. Общая генетика, М., 1976; Уотсон Дж. Молекулярная биология гена, пер. с англ., М., 1978; Мс Кusiсk V. Mendelian inheritance in man, Baltimore, 1978.

Источник